K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung

Größe: px
Ab Seite anzeigen:

Download "K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung"

Transkript

1 K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 06 Klasse: 4g Profil: MN Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne CAS, beliebige Formelsammlung Bemerkungen: Die Prüfung enthält 8 Aufgaben mit 00 Punkten. Lösen Sie jede Aufgabe auf ein separates A4-Blatt. Schreiben Sie Ihre Lösungswege klar nachvollziehbar auf. Geben Sie numerische Ergebnisse wenn möglich eakt, andernfalls sinnvoll gerundet an.

2 Maturitätsprüfung 06 Klasse 4g MN Mathematik Seite von 3. [8P] Gegeben ist die Funktion f ( ) = e (siehe Figur). a) Bestimmen Sie den spitzen Winkel, unter welchem der Graph der Funktion f die y -Achse schneidet. b) Die ins Unendliche reichende Fläche zwischen dem Graphen der Funktion f, der Tangente im y -Achsenabschnitt des Graphen und der negativen -Achse (siehe Figur) wird um die -Achse rotiert. Bestimmen Sie den eakten Wert für das Volumen des Rotationskörpers. c) Zwischen dem Graphen von f der Geraden g = e (wie oben) und = wird über dem Intervall [ c, c +] eine Fläche eingeschlossen (siehe Figur). Bestimmen Sie den eakten Wert des Parameters c, für welchen dieser Flächeninhalt minimal wird.. [6P] Gegeben ist die Funktion f (siehe Figur). a) Zeigen Sie formal mit Hilfe der Funktionsgleichung, dass der Graph der Funktion symmetrisch zur y -Achse ist. b) Der Punkt Z u,v liegt auf dem Graphen der Funktion, wobei u > 0 und v < 0 (siehe Figur). Z u,v entsteht durch Spiegelung von Z an der y -Achse. Z, Z und O 0,0 bilden die Ecken des Dreiecks OZ Z. Bei Rotation dieses Dreiecks um die y -Achse entsteht ein Kegel. Bestimmen Sie den Grenzwert des Kegelvolumens, wenn der Punkt Z y -Achse) wandert. = 4 entlang des Graphen nach unten (d. h. in Richtung negativer 3. [8P] Eine Polynomfunktion dritten Grades y = a 3 + b + c + d hat in = sowohl eine Nullstelle als auch eine Etremstelle. Ausserdem hat der Graph von f im Punkt P, 8 die Steigung 6. Bestimmen Sie die Koeffizienten a, b, c und d. 00 = ln k 4. [] Gegeben ist die Funktion f. k = Bestimmen Sie einen vereinfachten Ausdruck für die erste Ableitung f '.

3 Maturitätsprüfung 06 Klasse 4g MN Mathematik Seite von 3 5. [5P] Gegeben ist die Funktion f ( ) = cos( ). a) Bestimmen Sie einen eakten Wert für die kleinste positive Nullstelle von f. b) Bestimmen Sie mit Hilfe der Trapezmethode und fünf Teilintervallen einen Näherungswert für den Inhalt der Fläche zwischen dem Graphen von f und den beiden Koordinatenachsen (siehe Figur). c) Erklären Sie nur auf Grund des Graphen in der Figur (ohne Berechnungen), ob der Näherungswert aus Aufgabe b) zu gross oder zu klein ist. Es sei w die kleinste positive Wendestelle von f. d) Zeigen Sie, dass w eine Nullstelle der Funktion = sin n + cos( ) ist. e) Illustrieren und erklären Sie mit Hilfe einer groben Skizze des Graphen der Funktion = sin n, warum = ein ungünstiger Startwert wäre, um w mit dem Newtonverfahren anzunähern. f) Geben Sie mit Hilfe Ihres Grafiktaschenrechners die Koordinaten des Wendepunkts W,y W + cos( ) von f auf 4 Dezimalen genau an. 6. [P] Gegeben sind die Ebene ε : + 6y 6z 9 = 0 und die Ebene ε, welche durch die Punkte A(,0,0 ), B (,,9) und D ( 5,9,) definiert ist. a) Beweisen Sie, dass A, B und D die Ecken eines gleichschenkligrechtwinkligen Dreiecks mit rechtem Winkel bei der Ecke A bilden. b) Bestimmen Sie den Punkt C so, dass ABCD ein Quadrat bildet. c) Bestimmen Sie den Winkel zwischen der Ebene und der -y-ebene. d) Beweisen Sie, dass die beiden Ebenen ε und ε parallel sind. e) Bestimmen Sie den Abstand zwischen den beiden Ebenen ε und ε. f) Bestimmen Sie eine Gleichung der Kugel mit folgenden Eigenschaften: () Der Mittelpunkt der Kugel ist der Mittelpunkt der Strecke BD. () Die Ebene ε ist Tangentialebene der Kugel. g) Die Ebene ε 3 steht senkrecht auf ε und enthält die Punkte B und D. Bestimmen Sie eine Gleichung der Schnittgeraden von ε und ε 3. ε

4 Maturitätsprüfung 06 Klasse 4g MN Mathematik Seite 3 von 3. [P] Ein gerader Kreiskegel hat die Spitze S 6,,9. Der Grundkreis liegt in der Ebene ε : 9 6y + z +4 = 0 und enthält den Punkt P 0,, 0. a) Zeigen Sie, dass der Punkt P in der Ebene ε liegt. b) Bestimmen Sie den Neigungswinkel der Mantellinie SP bezüglich der Grundkreisebene ε. c) Bestimmen Sie die Koordinaten des Mittelpunkts M des Grundkreises. d) Bestimmen Sie eine Gleichung der Tangente an den Grundkreis durch P. (Diese Tangente liegt natürlich ebenfalls in der Ebene ε.) 8. [P] Eine Urne enthält 6 schwarze und 4 rote Kugeln. Es werden nacheinander drei Kugeln ohne Zurücklegen aus der Urne entnommen. Die Wahrscheinlichkeit, dass genau zwei der drei Kugeln schwarz sind, lässt sich folgendermassen berechnen: P ( ) = =. a) Bestimmen Sie den Erwartungswert und die Standardabweichung der Anzahl entnommener schwarzer Kugeln. Das Eperiment wird nun 00 Mal wiederholt, wobei jeweils nach jeder Entnahme von drei Kugeln dieselbe Ausgangslage mit 6 schwarzen und 4 roten Kugeln in der Urne wiederhergestellt wird. b) Insgesamt wurden 60 schwarze Kugeln entnommen. Bestimmen Sie, ob gemäss der µ ± σ -Regel diese Anzahl (also 60 von maimal 300 schwarzen Kugeln) als normal betrachtet werden soll. c) Erklären Sie mit oder ohne Berechnung, ob die Standardabweichung grösser, gleich gross oder kleiner gewesen wäre, wenn jede entnommene Kugel sofort zurückgelegt worden wäre. A und B spielen ein Spiel. Und zwar gewinnt A, wenn alle drei entnommenen Kugeln schwarz sind. B gewinnt, wenn mindestens zwei Kugeln rot sind. Sonst ist es unentschieden. d) Bestimmen Sie die Gewinn-Wahrscheinlichkeiten für beide Spieler sowie die Wahrscheinlichkeit eines Unentschiedens. e) Das erste Spiel gewinnt B. Bestimmen Sie für diesen Fall die Wahrscheinlichkeit, dass die erste gezogene Kugel schwarz war. f) Bestimmen Sie die Wahrscheinlichkeit, dass A von den nächsten 0 Spielen mindestens 4 Spiele gewinnt. g) Am nächsten Tag wollen A und B so viele Male spielen, dass es mit einer Wahrscheinlichkeit von % nicht jedes Mal unentschieden endet, sondern dass es zu mindestens einem Sieg kommt. Bestimmen Sie, wie viele Spiele mindestens gespielt werden müssen. h) Bestimmen Sie die Wahrscheinlichkeit, dass A gewinnen wird, wenn die Spieler so lange spielen, bis einer der beiden gewonnen hat. Ende Prüfung

5 Resultate Maturitätsprüfung 06 Klasse 4g MN Mathematik. a) f '( ) = e f '( 0) = ϕ = 90 arctan( ) ϕ = b) V = π ( e ) d V 3 Kegel ; ( e ) d = ( e 4 ) d = e4 0 = 4 Nullstelle der Tangente = 0.5 h Kegel = 0.5 V Kegel = 3 π 0.5 = π 6 V = π 4 π 6 V = π 0.68 P +P ; +P c) A c c+ d A' c = e c ( ( c + )) ec c = e c+ umständlicher: A( c) = e c + c =... A' ( c) =... 5 A' ( c) = 0 : e c+ e c = 0 6 e c e e c = ( e )e c = c = ln e P. a) f = ( ) 4 4 = ( ) = f ( ) P b) V Kegel = 3 π u v = 3 π u u 4 u V = lim u 0 3 π ( 4 ) u 3 V = 4π 3 = 3 π ( 4 ) u 3. f '( ) = 3a + b + c f ( ) = 0: a + b + c + d = 0 +P ; f '( ) = 0: 3a + b + c = 0 +P ; f ( ) = 8 : a + b c + d = 8 3 +P ; f '( ) = 6 : 3a b + c = 6 4 +P z. B. 3 : a + c = 8 und + 4 : 6a + c = 6 6 a =, b = 4, c =, d = 0 8P bzw. y = f ( ) = ln( ) + ln( ) + ln( 3 ) +...ln( 00 ) = ln( ) + ln( ) ln( ) =ln( ) ( f '( ) = 3 ; = P f ' ( ) = 5050

6 5. a) = arccos( 0) = π.533 P π b) A= ( cos( ))d.5 cos cos( 0.5)+cos( 0.5 )+cos( 0.5 cos(.5) )+cos( )+ = 0.5( ) = = c) Weil die Kurve konkav ist (siehe Figur), schneiden die Trapeze einen Teil der Fläche ab. Also ist der Näherungswert zu klein. P (Genauer wäre A 0.95.) d) f '( ) = sin( ) f '' = sin ( + cos( )) f ''( w ) = 0 : sin( ) + cos( ) = 0 bzw. n ( ) = 0 e) Die Tangente an den Graphen von n ( ) an der Stelle = ist so flach, dass weit von der gesuchten Nullstelle entfernt wäre. Schätzung: > 0 (Eine Berechnung ergäbe 6.5.) f) Nullstelle von n mit Hilfe des Rechners: W.355,y W = 0.6 P 6. a) AB 6 = 9, AD 6 = 9 gleichschenklig: AB = AD = = und α=90 : AB # AD = = 0 Δ ABD rechtwinklig-gleichschenklig b) c! = b "! + AD """! = C (,, ) P c) ϕ = arccos n!"!!"! #n!"!!"! = arccos n n # 0 ϕ = (0.994rad)

7 !!" d) Z. B. n ε = AB AD = ist parallel zu n!!" ε = 6 6 ε / / ε P e) d ( ε,ε ) = d ( A,ε ) = d ( ε,ε ) = P f) M = M BD (, 5.5, 5.5 ),r = d ( ε,ε ) = ( ) + ( y 5.5) + ( z 5.5) = 4 P g) Richtung: BD = Schnittgerade: y z ; Punkt: b!" + d ε,ε ( ) n!" n!" = = t (oder durch (0, 95 /, 3 / ) etc.). a) ( ) + ( 0) +4 = 0 Punkt P liegt in der Ebene ε. P b) ϕ = arcsin PS!"! #n ε PS!"! = arcsin n ε ! 6 ϕ = (0.964rad) c) Normale zu ε durch S : y z 6 = 9 9 +t 6 geschnitten mit ε : 9( 6 + 9t ) 6( 6t ) + ( 9 + t ) +4 = 0 t + 4 = 0 t = 3 M (,,5 ) d) Richtungsvektor der Tangente = PM n!"! ε = 5 Tangente: y z 0 94 = 0 +t = 39 6

8 8. a) S 0 3 P = 4 0 = = 6 0 = 3 0 E ( X ) = E ( X ) =.8 = E X =3.8 V X σ ( X ) = V ( X ) = 0.56 σ ( X ) = =E X = 0 0 = 6 E X +P ( = = 0.56 b) µ = 00.8 = 80 ; σ = =.483 µ σ = < ist aussergewöhnlich, also nicht normal. c) Ohne Zurücklegen bedeutet: Nach jeder schwarzen Kugel steigt die Wahrscheinlichkeit für rot und umgekehrt. Die Resultate sind also ausgeglichener, d.h. weniger gestreut als beim Zurücklegen. Wenn zurückgelegt würde, wäre µ immer noch.8, aber es wäre z. B. P(S = 3) = = 0.6 statt nur 0.6. σ wäre grösser beim Ziehen mit Zurücklegen. (Berechnung: Binomialverteilung σ = = >.483) P d) Siehe a): P ( B) = P ( A ) = 6, P ( B ) = 3, P ( unentschieden ) = P e) P (. Kugel schwarz / B gewinnt) = = P = 3 0 P f) Binomial B (X 4) = B (X 3) oder B 0, 0, 6 6 0, 5 6 (X B 6) P = g) n < n > log (...) n > 9.93 A und B müssen mindestens 0 Spiele spielen. P A h) P = P A +P ( B) = = 6 P = 3 P Notenskala und Resultate Maturitätsprüfung 06 Klasse 4g MN Mathematik Note Anzahl Punkte Anzahl SchülerInnen

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 017 Klasse: g Profil: MN / M Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne

Mehr

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 203 Klasse: Profil: Lehrperson: f M Rolf Kleiner MATHEMATIK Zeit: Erlaubte Hilfsmittel: Bemerkungen: 3 Stunden Grafiktaschenrechner

Mehr

Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

Mathematik Maturaprüfung ISME 2013

Mathematik Maturaprüfung ISME 2013 Hilfsmittel: CAS Taschenrechner, Formelsammlung Abgabe: Nach 3 Stunden. Gegeben ist die Funktionsschar y = f a = a a e a mit a >. a Es sei a =. Berechnen Sie i. die Nullstellen. ii. die lokalen Etrema

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

ABITURPRÜFUNG 2001 GRUNDFACH MATHEMATIK

ABITURPRÜFUNG 2001 GRUNDFACH MATHEMATIK ABITURPRÜFUNG 2001 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 210 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Passerellen-Prüfungen 2007 Mathematik: 4 Stunden (3 Seiten)

Passerellen-Prüfungen 2007 Mathematik: 4 Stunden (3 Seiten) Punkte: Note: BME ISME MfB MSE Berner Maturitätsschule für Erwachsene Interstaatliche Maturitätsschule für Erwachsene St. Gallen/Sargans Maturitätsschule für Berufstätige, Basel Maturitätsschule für Erwachsene,

Mehr

Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung

Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Analysis Aufgabe 2 Bestimmen Sie jeweils die Gleichung einer Funktion f mit folgenden Eigenschaften: a) Die Funktion

Mehr

Maturitätsprüfung 2012 Klassen 4GI, 4S, 4Wa, 4L Mathematik, Teil 1 Lehrkräfte Bs, Fh, Td Name: Dauer 90 Minuten

Maturitätsprüfung 2012 Klassen 4GI, 4S, 4Wa, 4L Mathematik, Teil 1 Lehrkräfte Bs, Fh, Td Name: Dauer 90 Minuten Maturitätsprüfung 2012 Klassen 4GI, 4S, 4Wa, 4L Mathematik, Teil 1 Lehrkräfte Bs, Fh, Td Name: Dauer 90 Minuten Die im Unterricht verwendete Formelsammlung ist als einziges Hilfsmittel zugelassen. Alle

Mehr

Passerellen Prüfungen 2009 Mathematik

Passerellen Prüfungen 2009 Mathematik Passerellen Prüfungen 2009 Mathematik 1. Analysis: Polynom und Potenzfunktionen Gegeben sind die beiden Funktionen 21 und 32. a) Bestimmen Sie die Null, Extremal und Wendepunkte der beiden Funktionen.

Mehr

Maturitätsprüfung 2012 Mathematik Teil 1

Maturitätsprüfung 2012 Mathematik Teil 1 Maturitätsprüfung 2012 Mathematik Teil 1 Klasse: 4NP Lehrer: Fi Dauer: 90 Min. Die im Unterricht verwendete Formelsammlung ist als einziges Hilfsmittel zugelassen. Alle Lösungen müssen ordentlich und nachvollziehbar

Mehr

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

1 + λ 0, die Geraden h : x =

1 + λ 0, die Geraden h : x = Amnalytische Geometrie. In einem kartesischen Koordinatensystem des R sind die Gerade g : x 7 + λ, die Geraden h : x 8 5 + µ, λ, µ, a R sowie die Ebene E durch die Punkte A 5, und gegeben. B 6 C 5 a) K

Mehr

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i ETH-Aufnahmeprüfung Herbst 18 Mathematik I (Analysis) D C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5 α. A 1 Aufgabe [1 Punkte] Geben Sie die Lösungsmenge folgender Gleichungen in!

Mehr

Maturitätsprüfung 2010 Mathematik Teil 1

Maturitätsprüfung 2010 Mathematik Teil 1 Maturitätsprüfung 2010 Mathematik Teil 1 Klasse: 4Sa Lehrer: Fi Dauer: 90 Min. Die Formelsammlung der Neuen Kantonsschule Aarau ist als einziges Hilfsmittel zugelassen. Die Lösungen sollen sauber und übersichtlich

Mehr

1 Ableitungen. Hinweise und Lösungen:

1 Ableitungen. Hinweise und Lösungen: Hinweise und Lösungen: http://mathemathemathe.de/analsis/analsis-grundagen Ableitungen Übung.: Einfache Ableitungen - Bestimme die ersten Ableitungen a) f() = 7 + + 8 b) f() = a + a a K(t) = t t + 0 Übung.:

Mehr

= x 2x = x (x 12) = 0 x 5 =0 (lokales Maximum) x 6,7 = ± 12 (lokale Minima)

= x 2x = x (x 12) = 0 x 5 =0 (lokales Maximum) x 6,7 = ± 12 (lokale Minima) Maturitätsprüfung 7 Mathematik Aufgabe Gegeben ist die Funktion f(x) = x x + a) Untersuchen Sie die Funktion bezüglich Symmetrien, bestimmen Sie die Nullstellen, zeigen Sie, dass es zwei Minimalstellen

Mehr

Matura Mathematik schriftlich

Matura Mathematik schriftlich Kantonsschule Zofingen Matura 014 Mathematik schriftlich Abteilungen 4ABCD Hilfsmittel: Formelsammlung Taschenrechner TI84 Zeit: vier Stunden, d.h. 40 Minuten Bewertung: Aufgabe 1 16 Punkte (++3+3+6) Aufgabe

Mehr

ist symmetrisch bezüglich der y-achse, da f( x) = f(x) ist. e x + e x = 2 2 (Substitution: a = e x )

ist symmetrisch bezüglich der y-achse, da f( x) = f(x) ist. e x + e x = 2 2 (Substitution: a = e x ) Problemstellung. f() e + e ist symmetrisch bezüglich der y-achse, da f( ) f() ist. Es ist f () e e. Aus f () folgt ; f(). f () e + e vor.

Mehr

MATURITÄTSPRÜFUNGEN 2006

MATURITÄTSPRÜFUNGEN 2006 KANTONSSCHULE ROMANSHORN MATURITÄTSPRÜFUNGEN 2006 MATHEMATIK 3 Std. Klasse 4 Ma hcs Hilfsmittel: Taschenrechner Fundamentum Mathematik und Physik oder Formelsammlung DMK Beachten Sie:Jede Aufgabe ist auf

Mehr

Lösungen zum Thema Kreis & Kugel

Lösungen zum Thema Kreis & Kugel Lösungen zur Aufg. : a r ; r 8 (,8 ; M M m m M M Dann gilt: r +r + 8 > M M und weiter: r r 8, < M M b Aus r r < M M

Mehr

Fach Mathematik Grundlagenfach Prüfungsdatum 24. Mai 2013

Fach Mathematik Grundlagenfach Prüfungsdatum 24. Mai 2013 Kantonsschule Alpenquai Luzern Fach Mathematik Grundlagenfach 013 Prüfende Lehrperson Stefan Müller (stefan.mueller@edulu.ch) Klasse 7Sa Prüfungsdatum 4. Mai 013 Prüfungsdauer 180 Minuten Erlaubte Hilfsmittel

Mehr

Lösungen: (Die Aufgaben sind fett, die Lösungen normal geschrieben.)

Lösungen: (Die Aufgaben sind fett, die Lösungen normal geschrieben.) KANTONSSCHULE ROMANSHORN MATHEMATIK - Std. MATURITÄTSPRÜFUNGEN Klasse 4 MC - hcs TYPUS MAR Lösungen: (Die Aufgaben sind fett, die Lösungen normal geschrieben.) ) Gegeben sind die Punkte A( 4 ), B( 4 )

Mehr

a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen:

a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen: . ANALYSIS Gegeben ist die kubische Parabel f: y = x 3 6x + 8x + a) Die Gerade g: y = k x + berührt die Parabel an der Stelle x = x 0 > 0. Bestimmen Sie den Parameter k. b) Berechnen Sie den Inhalt der

Mehr

Maturitätsprüfungen 2011 Mathematik schriftlich

Maturitätsprüfungen 2011 Mathematik schriftlich schriftlich Klassen: (Er, Fr, Hg, Mo, Ug, Wn) Prüfungsdauer: 4 h Erlaubte Hilfsmittel: Formelsammlung "Fundamentum" und Taschenrechner TI 89 resp. TI Voyage 200. Alle Aufgaben ergeben je maximal 10 Punkte.

Mehr

Mathematik Teil 1, ohne Hilfsmittel, 1 Stunde. Alle Aufgaben werden gleich gewichtet.

Mathematik Teil 1, ohne Hilfsmittel, 1 Stunde. Alle Aufgaben werden gleich gewichtet. Mathematik Teil 1, ohne Hilfsmittel, 1 Stunde. Alle Aufgaben werden gleich gewichtet. 1. In der untenstehenden Grafik sind die Ableitung f (x) und der Punkt T gegeben. a) Der Graph der Ableitung f (x)

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Analysis 7. f(x) = 4 x (x R)

Analysis 7.   f(x) = 4 x (x R) Analysis 7 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch fx) = 4 x R) a) Führen Sie für die Funktion f eine Kurvendiskussion durch Nullstellen, Koordinaten der lokalen Extrempunkte,

Mehr

Hauptprüfung Abiturprüfung 2017 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2017 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 07 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com Mai 07 Aufgabe : (,5 VP) Bilden Sie die Ableitung

Mehr

Mathematik. Abiturprüfung Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten

Mathematik. Abiturprüfung Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten Mathematik Abiturprüfung 017 Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

Mathematik Grundlagenfach. Lukas Fischer 180 Minuten

Mathematik Grundlagenfach. Lukas Fischer 180 Minuten Schriftliche Maturitätsprüfung 015 Kantonsschule Alpenquai Luzern Fach Mathematik Grundlagenfach Prüfende Lehrperson Lukas Fischer (lukas.fischer@edulu.ch) Klasse 6Wa Prüfungsdatum 6. Mai 015 Prüfungsdauer

Mehr

Abiturprüfung 2001 MATHEMATIK. als Leistungskursfach. Arbeitszeit: 240 Minuten

Abiturprüfung 2001 MATHEMATIK. als Leistungskursfach. Arbeitszeit: 240 Minuten Abiturprüfung 001 MATHEMATIK als Leistungskursfach Arbeitszeit: 0 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten LM1, LM und LM zur Bearbeitung aus. -- LM1. INFINITESIMALRECHNUNG I. x

Mehr

Ich wünsche euch allen viel Erfolg!

Ich wünsche euch allen viel Erfolg! Klasse 6B, 007 Allgemeine Bemerkungen Im Prüfungsmäppchen sollen enthalten sein: Prüfung bestehend aus diesem Titelblatt und 4 weiteren Seiten Formelsammlung Schreibpapier Bemerkungen zur Prüfung Erlaubte

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 1999, Typus AB Be/Sw Mathematik Lösungen Sw / 2003

Kantonsschule Reussbühl Maturitätsprüfung 1999, Typus AB Be/Sw Mathematik Lösungen Sw / 2003 Lösung der Aufgabe a) Nullstelle: : = Ableitungen: f () = : - = : = a f (a) = - e < : ist Stelle eines Maimums f () = : = : = a f (a) = e - : ist Wendestelle b) = e unabhängig von a tan = e ; = 69,8...

Mehr

Lösungen: (Die Aufgaben sind fett, die Lösungen normal geschrieben.)

Lösungen: (Die Aufgaben sind fett, die Lösungen normal geschrieben.) Seite von 6 KANTONSSCHULE ROMANSHORN MATURITÄTSPRÜFUNGEN 006 MATHEMATIK Std. Klasse 4 Ma hcs Lösungen: (Die Aufgaben sind fett, die Lösungen normal geschrieben.) ) Vektorgeometrie, 0 Punkte Gegeben sind

Mehr

Impressum. Torsten Möller Augustastraße Flensburg. 1. Auflage. Idee und Ausführung in L A TEX: Torsten Möller

Impressum. Torsten Möller Augustastraße Flensburg. 1. Auflage. Idee und Ausführung in L A TEX: Torsten Möller Impressum Torsten Möller Augustastraße 6 4937 Flensburg. Auflage 8 Idee und Ausführung in L A TEX: Torsten Möller Umschlaggestaltung: Torsten Möller Illustrationen: Torsten Möller Das Werk, einschließlich

Mehr

Mathematik Grundlagenfach. Prüfende Lehrpersonen Franz Meier 180 Minuten

Mathematik Grundlagenfach. Prüfende Lehrpersonen Franz Meier 180 Minuten Kantonsschule Alpenquai Luzern Schriftliche Maturitätsprüfung 2016 Fach Mathematik Grundlagenfach Prüfende Lehrpersonen Franz Meier franz.meier10@edulu.ch Christoph Arnold christoph.arnold@edulu.ch Klassen

Mehr

(Tipp: Formelbuch!) x3 dx?

(Tipp: Formelbuch!) x3 dx? Integralrechnung. bestimmte und unbestimmte Integrale (a) x ( + x ) dx =? (b) e x + e x dx =? (c) x 3 x + x x 6x + 9 dx =? (d) x cos x dx =?. Bestimmtes Integral x3 3x + 9 x dx =? 4 3. Bestimmtes Integral

Mehr

Studienberechtigungsprüfung Mathematik VHS Floridsdorf

Studienberechtigungsprüfung Mathematik VHS Floridsdorf Studienberechtigungsprüfung Mathematik VHS Floridsdorf von Dr. Manfred Gurtner Würl 0/ Teil für : ) Zahlenrechnen und Taschenrechner: a) Berechnen Sie: [( 6) ( ) (+)] [( 0)+(+)] (+5) + ( ) = 5 b) Berechnen

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil Wahlteil Analysis 8 Wahlteil Analysis Wahlteil Analysis 9 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 9 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte

Mehr

Grundlagenfach Mathematik. Prüfende Lehrpersonen Adrian Häfliger 6Lb, 6Na, 6Nb, 6Rc

Grundlagenfach Mathematik. Prüfende Lehrpersonen Adrian Häfliger 6Lb, 6Na, 6Nb, 6Rc Schriftliche Maturitätsprüfung 015 Fach Prüfende Lehrpersonen Adrian Häfliger adrian.haefliger@edulu.ch Claudia Sänger claudia.saenger@edulu.ch Markus T. Schmid markust.schmid@edulu.ch Klassen Prüfungsdatum

Mehr

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik (Aufgaben aus Klausuren). Bestimmen und skizzieren Sie in der Gaußschen Zahlenebene

Mehr

Schriftliche Maturitätsprüfung 2016

Schriftliche Maturitätsprüfung 2016 Fach Prüfende Lehrpersonen Sibille Burkard sibille.burkard@edulu.ch Patrik Hess patrik.hess@edulu.ch Franz Steiger franz1.steiger@edulu.ch Klassen Prüfungsdatum Freitag, 20. Mai 2016 Prüfungsdauer Erlaubte

Mehr

Abitur - Übung 1 Glege 9/11

Abitur - Übung 1 Glege 9/11 Abitur - Übung 1 Glege 9/11 Aufgabe 1.1) ganz-rationale Funktion 1.1.a) Bestimmen Sie eine ganz-rationale Funktion 3.Grades, deren Graph bei =4 die -Achse berührt und an deren Punkt (2/f(2)) die Tangente

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs

Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs Ministerium für Bildung, Jugend und Sport Zentrale schriftliche Abiturprüfung 009 Mathematik Aufgabenstellung A und A (Wahl für Prüflinge) Aufgabenstellung A3 (siehe Extrablatt) (wird durch die Lehrkraft

Mehr

Gymnasium Oberwil / Maturitätsprüfung Mathematik

Gymnasium Oberwil / Maturitätsprüfung Mathematik Mathematik Verwenden Sie bitte für jede Aufgabe eine neue Seite Dauer: Hilfsmittel: Bewertung: Vier Stunden Formeln, Tabellen, Begriffe (DMK), Taschenrechner TI-84 Plus Die maximal möglichen Punktzahlen

Mehr

Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

Hinweise zum Wahlteil

Hinweise zum Wahlteil ea Gymnasium Hinweise zum Im sind 94 Bewertungseinheiten (BE) von insgesamt 120 BE erreichbar. Am Ende jeder Teilaufgabe sind die erreichbaren Bewertungseinheiten angegeben. Auswahl der Aufgaben Sie erhalten

Mehr

Kursarbeit Nr.1 LK Mathematik NAME :

Kursarbeit Nr.1 LK Mathematik NAME : Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen

Mehr

Gruppe A. Mündliche Matur 2003, Mathematik, 4cN. Aufgabe 1 (Matrizen) Finde eine Matrix mit. und

Gruppe A. Mündliche Matur 2003, Mathematik, 4cN. Aufgabe 1 (Matrizen) Finde eine Matrix mit. und Gruppe A Aufgabe 1 (Matrizen) Finde eine Matrix mit und Wie lauten die Eigenwerte und Eigenvektoren von? Aufgabe 2 (Analysis) Ein Ball fällt aus 5m Höhe auf den Boden und springt dann mehrmals wieder auf

Mehr

AUFGABEN ZUM SCHULSTOFF FÜR DIE STEOP IM BSC MATHEMATIK WINTERSEMESTER 2018/19

AUFGABEN ZUM SCHULSTOFF FÜR DIE STEOP IM BSC MATHEMATIK WINTERSEMESTER 2018/19 AUFGABEN ZUM SCHULSTOFF FÜR DIE STEOP IM BSC MATHEMATIK WINTERSEMESTER 208/9 Selbststudium, Workshops und E-Learning zur Aufarbeitung des Schulstoffs sind mit 4 ECTS (entsprechend also einem geschätzten

Mehr

ABITURPRÜFUNG 2003 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2003 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 2003 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

Abitur 2011 G8 Abitur Mathematik Geometrie VI

Abitur 2011 G8 Abitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur 0 G8 Abitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem sind die Punkte A( 7 ), B(6 7 ) und C( ) gegeben. Teilaufgabe a (4 BE) Weisen

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analysis 3... 5 Wahlteil Analytische Geometrie... Wahlteil Analytische Geometrie... Lösungen: 00 Pflichtteil Lösungen zur Prüfung 00: Pflichtteil

Mehr

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg Pflichtteilaufgaben zu Beschreiben und Begründen Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 06 Abituraufgaben (Haupttermin) Aufgabe

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2005 Mathematik (Grundkurs)

SCHRIFTLICHE ABITURPRÜFUNG 2005 Mathematik (Grundkurs) Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung aus. Gewählte Aufgaben (Die drei zur Bewertung vorgesehenen Aufgaben

Mehr

Passerelle Mathematik Frühling 2005 bis Herbst 2006

Passerelle Mathematik Frühling 2005 bis Herbst 2006 Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch info@mathenachhilfe.ch 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3

Mehr

Analysis 8.

Analysis 8. Analysis 8 www.schulmathe.npage.de Aufgaben Gegeben sind die Funktionen f a durch f a (x) = a x x + (x R x ; a R a ) a) Geben Sie die Koordinaten der Schnittpunkte der Graphen der Funktionen f a mit den

Mehr

ABITURPRÜFUNG 2003 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2003 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 2003 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 270 Minuten Computeralgebrasystem Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben A1 und A2 eine und von den

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

lautet y = x 4x 8. Bestimme die Komponenten von v. 2 Maturitätsprüfung Punkte Aufgabe 1 Welche Lage hat die Gerade 2 Punkte Aufgabe 2

lautet y = x 4x 8. Bestimme die Komponenten von v. 2 Maturitätsprüfung Punkte Aufgabe 1 Welche Lage hat die Gerade 2 Punkte Aufgabe 2 Maturitätsprüfung 008 Mathematik Teil 1 Klasse: 4L Lehrer: Fi Dauer: 90 Min. Die Formelsammlung der Neuen Kantonsschule Aarau ist als einziges Hilfsmittel zugelassen. Die Lösungen sollen sauber und übersichtlich

Mehr

ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK

ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: grafikfähig) Tafelwerk 270 Minuten Taschenrechner (nicht programmierbar, nicht Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR)

MATHEMATIK K1 EINSTIEGSARBEIT (OHNE GTR) MATHEMATIK K EINSTIEGSARBEIT (OHNE GTR Einige Stichworte: Bruchrechnen: bei Addition und Subtraktion beide Brüche auf den Hauptnenner bringen Man teilt durch einen Bruch, indem man mit dessen Kehrwert

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung. Gegeben seien die Gerade G und die Ebene E : G : x (0,

Mehr

Diskussion einzelner Funktionen

Diskussion einzelner Funktionen Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,

Mehr

EN-Herbst f 1 (x)dx= 1+4x 2dx. 1+(2x) 2dx = 2x=u und du. dx =2. = 1 2 π

EN-Herbst f 1 (x)dx= 1+4x 2dx. 1+(2x) 2dx = 2x=u und du. dx =2. = 1 2 π EN-Herbst 007. Gegeben ist die Gleichungf a (x)= a3 a +4x einer Funktionf a, wobei a ein positiver, reeller Parameter ist. a) Berechnen Sie + f(x)dx für a= I = I = I = + + f (x)dx= + +(x) dx = [ arctanu

Mehr

Grundlagenfach Mathematik. Prüfende Lehrpersonen Hess Patrik

Grundlagenfach Mathematik. Prüfende Lehrpersonen Hess Patrik Fach Prüfende Lehrpersonen Hess Patrik patrik.hess@edulu.ch Müller Stefan stefan.mueller@edulu.ch Sassone Edoardo edoardo.sassone@edulu.ch Klassen Prüfungsdatum Freitag, 19. Mai 2017 Prüfungsdauer Erlaubte

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK 22. Juni 2016 8:0 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Zu jeder Aufgabe darf nur eine Lösung eingereicht werden. Mehrfache Lösungen für eine Aufgabe werden nicht bewertet.

Zu jeder Aufgabe darf nur eine Lösung eingereicht werden. Mehrfache Lösungen für eine Aufgabe werden nicht bewertet. Kantonsschule Zürcher Oberland Wetzikon Mathematik M6b Maturitätsprüfungen 2012 schriftlich Dauer: 4 Stunden Name: Punkte (max 58): Note: Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Beginnen

Mehr

1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1.

1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1. Maturavorbereitung GF Mathematik Kurzaufgaben 1 Mengenlehre Aufgabe 1.1 Gegeben sind die Mengen A = {1, 2, 3} und B = {2, 3, 6, 8}. Bestimme A B. Aufgabe 1.2 Gegeben sind die Mengen A = {1, 2, 3} und B

Mehr

Maturitätsprüfung Mathematik

Maturitätsprüfung Mathematik Maturitätsprüfung 007 Mathematik Klasse 4bN Kantonsschule Solothurn Mathematisch-naturwissenschaftliches Maturitätsprofil Name: Note: Hinweise zur Bearbeitung der Prüfung: Zur Lösung der Aufgaben stehen

Mehr

) (1 BE) 1 2 ln 2. und somit

) (1 BE) 1 2 ln 2. und somit 1 Aufgaben aus dem Aufgabenpool 1 1.1 Analysis A1_1 Eine Funktion f ist durch 1 x f(x) e 1, x IR, gegeben. Ermitteln Sie die Nullstelle der Funktion f. ( ) b) Die Tangente an den Graphen von f im Punkt

Mehr

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I:

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I: Mathematik LK13 Kursarbeit 1 6.11.14 Musterlösung Aufgabe I: Analysis I 1. Spaß mit natürlichen Eponentialfunktionen Gegeben sind die Funktionen f ()=e ( + ) und g ( )=5 e Untersuchen Sie beide Funktionen

Mehr

Mathematik. Abiturprüfung Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 017 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Herbst mit den Parametern a und b

Herbst mit den Parametern a und b Herbst 4. Gegeben ist eine Funktion f :f()=a+ b mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(/) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

MATURITÄTSPRÜFUNGEN 2008

MATURITÄTSPRÜFUNGEN 2008 Kantonsschule Romanshorn MATURITÄTSPRÜFUNGEN 2008 Mathematik 3 Std. Maturandin, Maturand (Name, Vorname) Klasse 4 Md hcs... Hilfsmittel Taschenrechner Fundamentum Mathematik und Physik oder Formelsammlung

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

Gymnasium Liestal Maturitätsprüfungen 2006

Gymnasium Liestal Maturitätsprüfungen 2006 Bemerkungen: - Die Prüfungsdauer beträgt 4 Stunden. - Beginnen Sie jede Aufgabe mit einem neuen Blatt. - Die Arbeit mit dem Taschenrechner muss dokumentiert sein. Hilfsmittel: - CAS-Taschenrechner mit

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 5 4 3 3 4 2 WT Ana A.1a) b) c) d) Summe P. (max) 6 4 3

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte: O 1

Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte: O 1 Prüfungsdauer: Abschlussprüfung 007 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben ist die Funktion f 1 mit

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

f(x) = x + 1 ±(x + 1) für 1 x < 0 ±( x + 1) für 0 x 1

f(x) = x + 1 ±(x + 1) für 1 x < 0 ±( x + 1) für 0 x 1 Problemstellung. Die gesuchte lineare Funktion durch die Punkte (0, ) und (, 0) lautet f(x) = x + im Intervall [0, ]. Die Gleichungen für die Begrenzungslinien sind: Λ(x) = { ±(x + ) für x < 0 ±( x + )

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 4. MC-Aufgaben Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welche der folgenden Aussagen ist richtig? a) b) f ist stetig f ist differenzierbar.

Mehr

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt.

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt. Diese Aufgaben sind zu bearbeiten. Sie können nicht abgewählt werden. Aufgabe A1 1. Gegeben ist die Funktion mit 2 3; 1.1 Eine der folgenden Abbildung zeigt das Schaubild. 6P Untersuche für jede der Abbildungen,

Mehr

Lösung Matura 6J und 6K (2007)

Lösung Matura 6J und 6K (2007) O. Riesen Kantonsschule Zug Lösung Matura 6J und 6K (007) Aufgabe a) Definiere die Funktion. D = R, Symmetrie: gerade Funktion, Asymptote y = 0 keine Nullstelle, Maximum (0 ½), Wendepunkte ( ± e ) Funktionsgraph:

Mehr

Gymnasium Liestal Maturitätsprüfungen 2006

Gymnasium Liestal Maturitätsprüfungen 2006 Bemerkungen: - Die Prüfungsdauer beträgt 4 Stunden - Beginnen Sie jede Aufgabe mit einem neuen Blatt - Die Arbeit mit dem Taschenrechner muss dokumentiert sein Hilfsmittel: - CAS-Taschenrechner mit Anleitung

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mathe-aufgaben.com Analysis: Eponentialfunktionen Analysis Klausur zu Eponentialfunktionen ohne Wachstum (Ableitung, Stammfunktion, Fläche, Rotationsvolumen, Etremwertaufgabe) Gymnasium ab J Aleander

Mehr

Berufsmaturitätsprüfung 2006 Mathematik

Berufsmaturitätsprüfung 2006 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2006 Mathematik Zeit: 180 Minuten Hilfsmittel: Hinweise: Formel- und Tabellensammlung ohne gelöste Beispiele,

Mehr