Numerische Mathematik
|
|
|
- Elsa Schneider
- vor 7 Jahren
- Abrufe
Transkript
1 Numerische Mathematik SS 999 Augabe 6 Punkte Das Integral I ln d soll numerisch bis au eine Genauigkeit von mindestens - approimiert werden. a Wie groß muss die Anzahl N der Teilintervalle sein damit mit der zusammengesetzten Trapezregel diese Genauigkeit erreicht wird? b Wie groß muss N bei der zusammengesetzten Simpsonregel sein um diese Genauigkeit zu erreichen? c Überprüen Sie mit einem der beiden Verahren dem von Ihnen ermittelten Wert N ob der Näherungswert um höchstens - vom eakten Wert I ln -.7 abweicht. Augabe 6 Punkte Die Matri A besitzt die LR-Zerlegung A LR mit. L R Die Kondition cond A der Matri A beträgt.. Es wird das lineare Gleichungssystem A b betrachtet. Die eakte Lösung * ür die rechte Seite b - -7 T ist * - - T. Nun wird das Gleichungssystem mit der gestörten rechten Seite b T gelöst. a Schätzen sie den relativen Fehler bezüglich der Lösung von A b zur Lösung * von A* b ab. b Ermitteln Sie den tatsächlichen relativen Fehler von bezüglich *. Berechnen Sie die dazu benötigte Lösung von A b mit Hile der LR-Faktorisierung von A. Augabe Die Funktion sin + π + π π π soll au dem angegebenen Intervall interpoliert werden. Als Stützstellen sollen die Punkte π π π verwendet werden.
2 a Bestimmen Sie ein Interpolationspolynom p vom Grad. b Interpolieren Sie mit linearen Splines. Geben Sie die Gleichung des linearen Splines s ür jedes Teilintervall an. c Schätzen Sie den Interpolationsehler -p ab. d Schätzen Sie den globalen Interpolationsehler - s ab. e Berechnen Sie ür / π einen Näherungswert sowohl mit p als auch mit s. Bestimmen Sie jeweils den tatsächlichen Fehler vergleichen Sie diesen mit Ihrer Abschätzung aus c bzw. d. Augabe 6 Punkte Gegeben ist ein nichtlineares Gleichungssystem F mit 7 ln e F Ermitteln Sie ausgehend vom Startvektor.. T mit dem Newtonverahren eine Näherung. Ist tatsächlich eine bessere Näherung als? Zusatzaugabe -pius Punkte Bestimmen Sie die nächste Iterierte. Verbessert sich die Näherung? Augabe 6 Punkte Die Messpunkte i y i i sollen mit Hile der Methode der kleinsten Fehlerquadrate durch eine Gerade approimiert werden. i - - ½ ½ y i Die Matri A des zugehörigen linearen Ausgleichsproblems besitzt die QR- Faktorisierung A QR mit R Q a Bestimmen Sie mit. Hile der QR-Faktorisierung die Lösung * des Ausgleichsproblems. Geben Sie die Gleichung der Ausgleichsgeraden an! b Wie groß ist die Euklidische Norm des Deektes bezüglich *?
3 Klausur SS6. A b gegen Zur Lösung Gesamt- Einzelschrittverahren Startvektor jeweils ;;;;; T a Bestimmung der Iterierten GSV ESV. b Spektralnormen der Iterationsmatrizen P GSV 9 P ESV 866. Nach welcher Anzahl von Iterationsschritten hat sich bei den Verahren der jeweilige Anangsehler * - au das mindestens ε-ache mit ε - reduziert? c Eakte Lösung * von A b ist * 8;;;;; T cond A. Seite b wird gestört b b um die restlichen b um 6. Lösung ür gestörte GLS A b mit 8;6;;;67;8. Stimmt die Lösung? 9P. Um Amplitude A Phasenwinkel Φ einer Schwingung t A sint + Φ zu bestimmen sind an Zeitpunkten t K die Auslenkungen K beobachtet worden: t K π/ π/ π/ K Kein lineares Ausgleichsproblem. Anwendung des Ansatzes ür t eines Ansatztheorems ür sinα + β Einührung neuer Unbekannter c : A cos Φ ; c : A sin Φ. Lösen des linearen Ausgleichsproblems ür c c daraus ermitteln der Amplitude des Phasenwinkels. Wie groß ist die approimative Auslenkung bei t π/6. 6P. a Wird an Stützstellen durch Polynom interpoliert
4 kleinstmöglicher Grad. Wie groß ist der Interpolationsehler bei? b Bestimme die reellen Zahlen α β so dass α + β; { + 6; ein kubischer Spline au dem Intervall [;] bezüglich der Knoten ist. 6P. Anangswertproblem ür Funktion yt y y ; t y ; y ; y Berechne die Näherung ür y y' y'' sowohl mit eplizitem Euler- wie auch mit ineplizitem Eulerverahren jeweils mit Schrittweite n. 8P
5 Numerische Mathematik SS 7 Augabe : a Man bestimme ein Polynom p vom Grad das mit der Funktion an den Stellen 8 7 übereinstimmt. Vergleichen sie die Approimation p mit. Vergleichen sie die Abweichung mit der oberen Schranke ür den Fehler der Polynominterpolation. Hinweis: Wenn nur die Stelle von Interesse ist braucht das Knotenpolynom nicht nach oben abgeschätzt zu werden. b Sei p ein Polynom das den Gleichungen p p-8 p- p p p - genügt. Welchen Grad muss p höchstens haben um alle 6 Gleichungen zu erüllen? Was ist der kleinstmögliche Grad von p? Augabe : Beim Zerall eines Gemisches aus radioaktiven Stoen wird die Strahlungsintensität IIt zu verschiedenen Zeiten gemessen: t i It i 6 89 Für die Abhängigkeit der Strahlungsintensität von der Zeit werde das Modell I t t t angenommen. a Formulieren sie das Ausgleichsproblem zur Bestimmung der Parameter. b Lösen sie das Ausgleichsproblem mit Hile der Normalgleichungen geben sie an. c Geben sie die Norm des Residuums an. Augabe : Zur Approimation des Integrals einer Funktion im beschränkten reellen Intervall [ab] sei die Quadraturormel b a d ba a b gegeben. a Handelt es sich um eine interplatorische Quadraturormel? Wie lautet der Eaktheitsgrad? b Zeigen sie dass jede au [ab] stetige di. Funktion die Fehlerabschätzung b a d ba a b h z gilt. Hierbei bezeichnet z eine obere Schranke ür ' ' au [ab] h ba. c Wie lautet die zu gehörende zusammengesetzte Quadraturormel bei Teilintervallen? Leiten sie mit Hile von eine obere Schranke ür den Fehler der zusammengesetzten Quadraturormel in Abhängigkeit von h her. d Bestimmen sie eine Approimation ür das Integral log d mit Hile der zusammengesetzten Regel aus c ür Teilintervalle. Bestätigt sich die Abschätzung aus c?
6 Augabe : Für das lineare Gleichungssystem Ab mit 98 A[ 97 ] ; B 7 sei die Näherung ;998 T berechnet werden. Ferner sei die Konditionszahl cond A bezüglich der Spaltensummennorm cond A bekannt. Geben sie eine Abschätzung des relativen Fehlers A b A b an. Augabe : Gesucht sei der Fipunkt Stern der Funktion :R R : [ ] wobei. a Zeigen sie dass ür beliebige Vektoren y R die Beziehung y A y y gilt mit y y A y. y y Hinweis: Schreiben sie die Dierenz y au verwenden sie die Identität a b a b ab. b Die Funktion bildet die Menge D :[ R : ] in sich ab. Zeigen sie: ür alle y D gilt darüber hinaus y L y mit L. Hinweis: Verwenden sie die Aussage aus a schätzen sie A y ab unter Ausnutzung der Tatsache dass y beide in D liegen. c Welche Schlussolgerung gestattet der Banach'sche Fipunktsatz aus den Aussagen aus a b? d Wählen sie einen geeigneten Startpunkt ür die Fipunktiteration mit geben sie eine obere Schranke ür die Anzahl der Iterationsschritte die erorderlich sind um Stern m 8 sicherzustellen.
7 Klausur SS8. a Gegeben sind die Matrizen: A R ;B R Berechne die LR-Zerlegung von A bestimme anschließend mittels LR-Zerlegung die Lösung der Matrigleichung A B. b Gegeben sind die Matri A der Vektor b 98 A 6 ;b Die eakte Lösung des GLS A b sei mit * gekennzeichnet. Für die Konditionszahl von A gilt cond A. In der Prais sind allerdings die Systemmatri die rechte Seite gestört so dass nur ein System A ~ b ~ gelöst werden kann. Die Lösung des gestörten GLS sei ~. Über die Störung von A b ist bekannt dass jede Komponente von A um maimal - jede Komponente von b um maimal - gestört ist.. Um die Federkonstante einer Feder deren Verhalten durch die Beziehung F k beschrieben wird zu ermitteln sind olgende Angaben gegeben: i i 6 8 F i a Geben sie das zugehörige lineare Ausgleichsproblem an. b Ist die Lösung dieses linearen Ausgleichsproblems eindeutig bestimmt? c Bestimmen sie mit Methoden der Ausgleichsrechnung einen Wert ür k. Berechnen sie außerdem die Norm des Residuums das durch die Lösung des Ausgleichsproblems minimiert wird.. Die Trapezregel zur näherungsweisen Lösung des Anangswertproblems y k y; y y ist durchy j+ y j + h [ j; y j + j+h ; y j+ ]; j... gegeben. Dabei ist j + jh j + h; j... in einer gegebenen Schrittweite h. Berechnen sie mit diesem Verahren Schrittweite h Näherungen ür y y'. Hier bezeichnet y die Lösung des Anangswertproblemsy y ; y ; y.. a Gegeben ist ein nichtlineares Gleichungssystem F mit F + 8. Ermitteln sie ausgehend vom Startvektor T mit dem Newtonverahren eine Näherung. Ist tatsächlich eine bessere Näherung als? b Bestimmen sie ausgehend vom gleichen Startvektor T eine Näherung z mit dem gedämpten Newtonverahren wobei als Dämpungsaktor α8 zu bemessen ist. Ist z tatsächlich eine bessere Näherung als?
VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.
NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet
Institut für Geometrie und Praktische Mathematik
RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen
Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;
Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben
Diplom VP Numerik 21. März 2005
Diplom VP Numerik. März 5 Aufgabe Gegeben sei das lineare Gleichungssystem Ax = b mit A = 3 3 4 8 und b = 4 5.5 6. ( Punkte) a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung. Geben Sie
A 1 A 2 A 3 A 4 A 5 A 6 A 7
Institut für Geometrie und Praktische Mathematik Numerisches Rechnen für Informatiker WS 7/8 Prof. Dr. H. Esser J. Grande, Dr. M. Larin Klausur Numerisches Rechnen für Informatiker Hilfsmittel: keine (außer
(d) das zu Grunde liegende Problem gut konditioniert ist.
Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt
Institut für Geometrie und Praktische Mathematik
RWTH Aachen Institut für Geometrie und Praktische Mathematik Diplom VP Numerik 13. September 004 Aufgabe 1 10 0 40 Gegeben sei die Matrix A = 80 10 10. 10 5 5 (6 Punkte) a) Skalieren (Zeilenäquilibrierung)
2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p
Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.
Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016
Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)
Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)
Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren
7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)
Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl
Ausgleichsproblem. Definition (1.0.3)
Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst
Übungen zu Splines Lösungen zu Übung 20
Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)
d) Produkte orthogonaler Matrizen sind wieder orthogonal.
Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =
Numerische Integration
Numerische Integration Fakultät Grundlagen Januar 0 Fakultät Grundlagen Numerische Integration Übersicht Grundsätzliches Grundsätzliches Trapezregel Simpsonformel 3 Fakultät Grundlagen Numerische Integration
Nichtlineare Gleichungssysteme
Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische
Übungsaufgaben zur Numerischen Mathematik für Ingenieure. a) Bestimme die normalisierte Dezimaldarstellung der folgenden Dualzahlen
RWTH Aachen Institut für Geometrie und Praktische Mathematik Übungsaufgaben zur Numerischen Mathematik für Ingenieure 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität Aufgabe 2. a) Bestimme die normalisierte
6. Polynom-Interpolation
6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für
I f AM. 2. Übung zur Numerischen Mathematik I. Hausübung. Hannover, den
Hannover, den 14.10.2002 1. Übung zur Numerischen Mathematik I Aufgabe 1.1 Man nde das Interpolationspolynom p 2 P 2, das die Funktion f(x) = cos(x) in den Punkten x k := π 2 + π k n, h = 1 n, k = 0,...,
KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.
MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw
5 Randwertprobleme. y = f(t, y, y ) für t J, (5.2a) y(t 0 ) = y 0, y(t) = y T (5.2b) zu gegebener Funktion f und Werten y 0, y T.
5 Randwertprobleme Bei den bisher betrachteten Problemen handelte es sich um Anfangswertprobleme. In der Praxis treten, insbesondere bei Differentialgleichungen höherer Ordnung, auch Randwertprobleme auf.
Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.
10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung
Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,
Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.
Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1
Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von
1 2 x x x x x x2 + 83
Polynominterpolation Aufgabe 1 Gegeben sei die Wertetabelle i 0 1 2 3 x i 0 1 2 4 f i 3 1 2 7 a) Bestimmen Sie das Interpolationspolynom von Lagrange durch die obigen Wertepaare. b) Interpolieren Sie die
2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität
Institut für Geometrie und Praktische Mathematik a RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität Aufgabe 2. a) Bestimme die normalisierte Dezimaldarstellung
Numerische Lineare Algebra
Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)
D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den
D-ITET. D-MATL, RW Lineare Algebra HS 7 Dr. V. Gradinaru T. Welti Online-Test Einsendeschluss: Sonntag, den..7 : Uhr Dieser Test dient, seriös bearbeitet, als Repetition des bisherigen Vorlesungsstoffes
HTL Kapfenberg SPLINE Interpolation Seite 1 von 7.
HTL Kapfenberg SPLINE Interpolation Seite von 7 Roland Pichler [email protected] SPLINE Interpolation Mathematische / Fachliche Inhalte in Stichworten: Polynome, Gleichungssysteme, Differenzialrechnung
Begleitmaterial zur Vorlesung Numerik I
Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik
Klausur zur Vordiplom-Prüfung
Technische Universität Hamburg-Harburg SS Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren. Juli Sie haben Minuten Zeit zum Bearbeiten der Klausur. Bitte
GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida
GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?
4 Lineare Ausgleichsrechnung
Numerik I 15 4 Lineare Ausgleichsrechnung Die folgende Tabelle zeigt die Bevölkerungsentwicklung in den U.S.A. 19 191 192 193 194 75.995 91.972 15.711 123.23 131.669 195 196 197 198 199 15.697 179.323
Serie 4: Flächeninhalt und Integration
D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt
Klausur zur Vordiplom-Prüfung
Technische Universität Hamburg-Harburg SS 25 Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren 22. Juli 25 Sie haben 9 Minuten Zeit zum Bearbeiten der
Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange.
Angewandte Mathematik Ing.-Wiss., HTWdS Dipl.-Math. Dm. Ovrutskiy Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Aufgabe 1 Approximieren Sie cos(x) auf [ /, /] an drei Stützstellen
A1-1 Kubische Gleichung
A1-1 Kubische Gleichung Wir betrachten das kubische Polynom p(x) = x 3 + a 2 x 2 + a 1 x + a 0, x R bzw. die kubische Gleichung mit reellen Koeffizienten a 0, a 1 und a 2. x 3 + a 2 x 2 + a 1 x + a 0 =
Polynominterpolation
Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik
KAPITEL 8. Interpolation
KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0
Interpolation und Integration mit Polynomen
Interpolation und Integration mit Polynomen Philipp Andrea Zardo Universität Kassel 23. Februar 2006 / Kassel Outline 1 Einleitung Was ist numerische Mathematik? Die eulersche e-funktion Ein Wurzelalgorithmus
Differentialrechnung
Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f
6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme
6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear
Brückenkurs Rechentechniken
Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige
10 Der Satz über implizite Funktionen und Umkehrfunktionen
Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion
Mathematische Grundlagen II (CES) WS 2015/2016 Klausur am Informationen zur Klausur
Prof. Dr. Mike Espig Prof. Dr. Manuel Torrilhon Klausur: Bearbeitungszeit: Erlaubte Hilfsmittel: Mathematische Grundlagen II (CES) WS 2015/2016 Klausur am 18.03.2016 Informationen zur Klausur 18.03.2016,
Approximation durch Polynome
durch n Anwendungen: zur Vereinfachung einer gegebenen Funktion durch einen Polynomausdruck. Dann sind übliche Rechenoperation +,,, / möglich. zur Interpolation von Daten einer Tabelle n Beispiel Trotz
Einführung in die numerische Mathematik
Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 214 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis
AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW
AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
Numerische Verfahren
Numerische Verfahren Jens-Peter M. Zemke [email protected] Institut für Numerische Simulation Technische Universität Hamburg-Harburg 08.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren 1 / 68 Übersicht
Orthogonale Matrix. Definition 4.19
Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung
5 Numerische Mathematik
6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul
Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen
Kapitel 5 Iterative Lösung von nichtlinearen Gleichungen und Gleichungssstemen 5.1 Iterationsverfahren zur Lösung einer reellen nichtlinearen Gleichung Es sei g() eine im Intervall I definierte reellwertige
Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013
Gitterfreie Methoden 1D 2D Florian Hewener 29. Oktober 2013 Gliederung 1 Interpolationsprobleme Problemstellung Haar-Räume 2 Mehrdimensionale Polynominterpolation 3 Splines Kubische Splines und natürliche
Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen
Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt
Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.
Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x
11.4. Lineare Differentialgleichungen höherer Ordnung
4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in
Abiturprüung Mathematik 010 Baden-Württemberg (ohne CAS) Wahlteil - Augaben Analysis I 1 Augabe I 1.1: Au einem ebenen Gelände beindet sich ein geradliniger, 500 m langer Lärmschutzwall. Das Proil seines
Newton-Verfahren für ein Skalarfunktion
Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion
Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt
Lineare Ausgleichsproblems
Lineare Ausgleichsproblems Heinrich Voss [email protected] Hamburg University of Technology Department of Mathematics Lineare Ausgleichsproblems p. /7 Lineare Ausgleichsprobleme In (fast) allen Wissenschaftsbereichen
6 Polynominterpolation
Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}
Numerische Mathematik - Aufgaben Serie 1
Serie. Gesucht sei die Lösung des linearen Gleichungssystems (LGS) Ax = b mit ( ) ( ).78.563.7 A = und b =..93.659.54 Um einfach festzustellen, ob ein Vektor x Lösung des Systems ist, prüft man, ob der
4.3 Anwendungen auf Differentialgleichungen
7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,
1 Singulärwertzerlegung und Pseudoinverse
Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese
(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)
33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen
2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren
2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;
Klausur Mathematik I
Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:
Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems
Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik
Numerische Mathematik für das Lehramt - Formelsammlung
Numerische Mathematik für das Lehramt - Formelsammlung n + 1 reele Zahlen x 0,, x n und f 0,, f n (x i, f i x i heiÿen Stützstellen f i heiÿen Stützwerte von Julian Merkert, Sommersemester 006, Prof Alefeld
42 Orthogonalität Motivation Definition: Orthogonalität Beispiel
4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der
Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte
Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)
Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013
Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Gegeben ist eine GRIN-Linse oder Glasaser) mit olgender Brechzahlverteilung: 2 2 n x, y, z n0 n1 x y Die Einheiten der Konstanten bzw. n 1 sind
Einführung in die numerische Mathematik
Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 204 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis
GRUNDLAGEN MATHEMATIK
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 4. Differentialrechnung Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies
51 Numerische Berechnung von Eigenwerten und Eigenvektoren
5 Numerische Berechnung von Eigenwerten und Eigenvektoren 5. Motivation Die Berechnung der Eigenwerte einer Matrix A IR n n als Lösungen der charakteristischen Gleichung (vgl. Kapitel 45) ist für n 5 unpraktikabel,
KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen)
Mathematisches Institut WS 2012/13 der Heinrich-Heine-Universität 7.02.2013 Düsseldorf Prof. Dr. Achim Schädle KLAUSUR zu Einführung in die Optimierung Bitte folgende Angaben ergänzen und DEUTLICH LESBAR
Mathematik Übungsblatt - Lösung. b) x=2
Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung
1. Anfangswertprobleme 1. Ordnung
1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger
Lineare Algebra II 8. Übungsblatt
Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.
3 Matrizenrechnung. 3. November
3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige
2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!
Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist
Übungen Ingenieurmathematik
Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),
Methode der kleinsten Quadrate
Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,
Polynominterpolation mit Matlab.
Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) +...
Inexakte Newton Verfahren
Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n
KAPITEL 5. Nichtlineare Gleichungssysteme
KAPITEL 5. Nichtlineare Gleichungssysteme Beispiel 5.1. Gravitationskraft zwischen zwei Punktmassen m 1 und m 2 mit gegenseitigem Abstand r: F = G m 1m 2 r 2, wobei G = 6.67 10 11 Nm 2 /kg. Gravitationsfeld
3 Nichtlineare Gleichungssysteme
3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )
3.6 Approximationstheorie
3.6 Approximationstheorie Bisher haben wir uns im Wesentlichen mit der Interpolation beschäftigt. Die Approximation ist weiter gefasst: wir suchen eine einfache Funktion p P (dabei ist der Funktionenraum
Prof. Dr. L. Diening Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt. Klausur. Numerik WS 2010/11
Prof. Dr. L. Diening 09.02.2011 Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt Klausur Numerik WS 2010/11 Es ist erlaubt, eine selbst erstellte, einseitig per Hand beschriebene A4 Seite in der Klausur
Definition, Funktionsgraph, erste Beispiele
5. Vorlesung im Brückenkurs Mathematik 07 Reelle Funktionen Dr. Markus Herrich Markus Herrich Reelle Funktionen Definition, Funktionsgraph, erste Beispiele Markus Herrich Reelle Funktionen Definition Eine
Modulprüfung Numerische Mathematik 1
Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel
