Polynominterpolation mit Matlab.
|
|
|
- Kurt Arnold
- vor 8 Jahren
- Abrufe
Transkript
1 Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) a(n-1)*x + a(n); zu den Daten x = (x(1),x(2),...,x(n)); f = (f(1),f(2),...,f(n)); Polynome kann man mit der Matlab-Funktion polyval auswerten. Analysis II TUHH, Sommersemester 2007 Armin Iske 65
2 8.3 Spline-Interpolation Sei n eine Unterteilung des Intervalls [a, b]: n : a = x 0 < x 1 <... < x n 1 < x n = b mit Teilintervallen [x j 1, x j ], j = 1,..., n. Definition: Eine Funktion S : [a, b] R heißt kubischer Spline, falls S C 2 ([a, b]), d.h. S ist zweimal stetig differenzierbar auf [a, b]; S ist auf jedem Teilintervall [x j 1, x j ], 1 j n, ein kubisches Polynom: S(x) [xj 1,x j ] s j(x) = a j + b j (x x j 1 ) + c j (x x j 1 ) 2 + d j (x x j 1 ) 3. Ziel: Interpolation der Daten (x j, f j ), 0 j n, mit einem kubischen Spline S, so dass S(x j ) = f(x j ), für 0 j n. Analysis II TUHH, Sommersemester 2007 Armin Iske 66
3 Interpolation mit kubischen Splines. Beobachtungen: Ein kubischer Spline besitzt 4n Parameter, die wie folgt bestimmt werden. Interpolationseigenschaft: s j (x j 1 ) = f j 1 und s j (x j ) = f j für alle 1 j n; Stetigkeit der Ableitung: Stetigkeit der zweiten Ableitung: s j(x j ) = s j+1(x j ) für alle 1 j n 1; s j (x j ) = s j+1(x j ) für alle 1 j n 1; Dies sind insgesamt 4n 2 Gleichungen für 4n Parameter. OBS! Es fehlen noch zwei Bedingungen. Analysis II TUHH, Sommersemester 2007 Armin Iske 67
4 Zwei weitere Nebenbedingungen. Definition: Ein kubischer Spline heißt natürlicher Spline, falls S (a) = S (b) = 0; periodischer Spline, falls S (i) (a) = S (i) (b), i = 0, 1, 2; vollständiger Spline, falls S (a) = f (a) und S (b) = f (b). Beachte: Jede drei obigen Bedingungen liefert zwei weitere Gleichungen. Satz: Unter allen interpolierenden C 2 -Funktionen minimiert der natürliche kubische Spline das Funktional I[y] := b a (y (x)) 2 dx Bemerkung: Das Funktional I mißt die Krümmung von y approximativ. Analysis II TUHH, Sommersemester 2007 Armin Iske 68
5 Berechnung des natürlichen kubischen Splines. Sei S auf dem Teilintervall [x j 1, x j ] gegeben durch S(x) [xj 1,x j ] s j(x) = a j + b j (x x j 1 ) + c j (x x j 1 ) 2 + d j (x x j 1 ) 3, so gilt a j = f j 1 b j = f j f j 1 h j 2M j 1 + M j 6 h j c j = M j 1 2 d j = M j M j 1 6h j wobei h j = x j x j 1 für 1 j n. Die Momente M j = S (x j ) lösen ein lineares System mit Tridiagonalmatrix. Analysis II TUHH, Sommersemester 2007 Armin Iske 69
6 Herleitung des Splines mit Momentenmethode. Der gewählte Ansatz M j := S (x j ), für 0 j n, heißt Momentenmethode: s j (x) ist eine Gerade mit s j (x) = M j 1 + M j M j 1 h j (x x j 1 ) mit h j = x j x j 1 Zweifache Integration über Intervall [x j 1, x] liefert s j(x) = B j + M j 1 (x x j 1 ) + M j M j 1 2h j (x x j 1 ) 2 s j (x) = A j + B j (x x j 1 ) + M j 1 2 mit Integrationskonstanten A j, B j. (x x j 1 ) 2 + M j M j 1 6h j (x x j 1 ) 3 Analysis II TUHH, Sommersemester 2007 Armin Iske 70
7 Lösung der Bedingungsgleichungen. Aus den Interpolationsbedingungen s j (x j 1 ) = f j 1 und s j (x j ) = f j folgt direkt A j = f j 1 und B j = f j f j 1 h j h j 6 (M j + 2M j 1 ), (1) mit der Stetigkeit von S bei x j, 1 j < n, d.h. s j (x j) = s j+1 (x j) weiterhin B j + M j + M j 1 2 h j = B j+1 für 1 j n 1. (2) Einsetzen von (1) in (2) ergibt schließlich n 1 lineare Gleichungen ( fj+1 f j h j M j 1 + 2(h j + h j+1 )M j + h j+1 M j+1 = 6 f ) j f j 1, h j+1 h j 1 j n 1, für die n 1 unbekannten Momente M 1,..., M n 1. Beachte: Die Momente M 0 = 0 und M n = 0 sind bereits bekannt. Analysis II TUHH, Sommersemester 2007 Armin Iske 71
8 Tridiagonalsystem für die Momente. Das hergeleitete (n 1) (n 1) lineare System hat die Form 2k 1 h 2 h 2 2k 2 h h n 2 2k n 2 h n 1 M 1 M 2. M n 2 = d 1 d 2. d n 2 h n 1 2k n 1 M n 1 d n 1 mit h j = x j x j 1, 1 j n, k j = h j + h j+1, 1 j n 1, und ( fj+1 f j d j = 6 f ) j f j 1 für 1 j n 1, h j+1 h j sowie den Randwerten M 0 = M n = 0. Analysis II TUHH, Sommersemester 2007 Armin Iske 72
9 Abschließende Bemerkungen zu Splines. Der natürliche kubische Spline kann effizient berechnet werden, nämlich durch Lösen des Tridiagonalsystems in nur O(n) Schritten. Eine Splineinterpolante vermeidet (unerwünschte) Oszillationen. Für f C 4 gilt die asymptotische Fehlerabschätzung wobei h = max 1 j n h j. f(x) S(x) = O(h 4 ), h 0 Verwendet man einen vollständigen Spline mit Randbedingungen S (a) = f (a) und S (b) = f (b) so erhält man ein Tridiagonalsystem, das effizient gelöst werden kann. Verwendet man periodische Splines, so erhält man kein Tridiagonalsystem. Die Lösung kann dennoch effizient in O(n) Schritten berechnet werden. Analysis II TUHH, Sommersemester 2007 Armin Iske 73
10 Spline-Interpolation mit Matlab. Die Matlab-Funktion spline s = spline(x,f); berechnet die Darstellung s einer kubischen Splinefunktion zu den Daten x = (x(1),x(2),...,x(n)); f = (f(1),f(2),...,f(n)); Splines kann man mit der Matlab-Funktion ppval wie folgt auswerten. t = linspace(-1,1,1000); % 1000 uniforme Knoten in [-1,1] y = ppval(s,t); % Auswertung des Splines s Analysis II TUHH, Sommersemester 2007 Armin Iske 74
Polynominterpolation
Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses
Numerisches Programmieren, Übungen
Technische Universität München SS 2011 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dr Slobodan Ilic Numerisches Programmieren, Übungen 6 Übungsblatt: Stückweise Interpolation
Taylor-Entwicklung der Exponentialfunktion.
Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die
Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe
5 Themen Lagrange- Bézier-Kurven saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad n. saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad
3 Interpolation und Approximation
In dem ersten großen Kapitel beschäftigen wir uns mit der Frage, wie eine Reihe von Daten (z.b. aus physikalischen Messungen, experimentelle Beobachtungen, Börse, etc.) durch eine möglichst einfache Funktion
6 Komplexe Integration
6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise
Interpolation und Approximation
Interpolation und Approximation Fakultät Grundlagen Mai 2006 Fakultät Grundlagen Interpolation und Approximation Übersicht 1 Problemstellung Polynominterpolation 2 Kubische Fakultät Grundlagen Interpolation
Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen
Kapitel 4 Interpolation 4 Allgemeines Nähere Funktion/Daten durch einfache Funktionen (eg Polynome) an Brauchbar für: - Integration - Differentiation [zb f(x) sei durch Polynom p(x) approximiert, F(x)
In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y
Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion
3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen
KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an
6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.
6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.
April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil
April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
Bachelorarbeit. Numerische Methoden zur Abstandsberechnung eines kubischen Splines und eines Punktes in 2D
Lehrstuhl für Angewandte Mathematik und Numerik (LS III) Bachelorarbeit Bachelor fachwissenschaftliches Profil Numerische Methoden zur Abstandsberechnung eines kubischen Splines und eines Punktes in 2D
ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS
ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung
19.3 Oberflächenintegrale
19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,
Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.
Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung
Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016
Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)
Berechnungen mit dem Horner-Schema
Berechnungen mit dem Horner-Schema Das Hornerschema kann als Rechenhilfsmittel zur Berechnung von Funktionswerten von Polynomfunktionen, zur Faktorisieriung von Polynomen alternativ zur Polynomdivision
Formelanhang Mathematik II
Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)
18 Höhere Ableitungen und Taylorformel
8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a
Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.
Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ
Analysis I. 4. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein
Interpolationsverfahren
Kapitel 3 Interpolationsverfahren Peter-Wolfgang Gräber Systemanalyse in der Wasserwirtschaft KAPITEL 3 INTERPOLATIONSVERFAHREN Problem: Durch Messung sind einige Messwerte (abhängige Variable) in Abhängigkeit
Prof. Dr. Rolf Linn
Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen
2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!
Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist
Kapitel 16 : Differentialrechnung
Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen
Klausur zur Vordiplom-Prüfung
Technische Universität Hamburg-Harburg SS 25 Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren 22. Juli 25 Sie haben 9 Minuten Zeit zum Bearbeiten der
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt
Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2
Mathematische Methoden für Informatiker
Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen
Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras
Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst
5 Potenzreihenansatz und spezielle Funktionen
5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten
Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.
Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x
Mathematik II für Inf und WInf
Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell
3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer
3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich
Kleine Formelsammlung zu Mathematik für Ingenieure IIA
Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................
Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel
Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität
Surjektive, injektive und bijektive Funktionen.
Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens
(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren
Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene
Ü b u n g s b l a t t 11
Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte
24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen
4. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4.1 Überblick Die Interpolationsaufgabe haben wir bereits in Kapitel 7 (Band Analysis 1) untersucht. Als Auffrischung: Zu n vorgegebenen
4. Differentialgleichungen
4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter
Höhere Mathematik für Physiker II
Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei
Numerische Integration und Differentiation
Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische
Beispielaufgaben rund um Taylor
Beispielaufgaben rund um Taylor Mirko Getzin Universität Bielefeld Fakultät für Mathematik 19. Februar 014 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen) Aussagen.
Numerische Verfahren
Numerische Verfahren (für Studierende des Studienganges Bauingieurwesen und Umwelttechnik) Jens-Peter M. Zemke Technische Universität Hamburg Harburg Arbeitsbereich Mathematik 25 Skript p + c 2 23 Heinrich
Konvergenz im quadratischen Mittel und Parsevalsche Gleichung
Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen
Vorkurs Mathematik Übungen zu Differentialgleichungen
Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)
Mathematik - Antwortblatt Klausur
Mathematik - Antwortblatt Klausur 30..09 Aufgabe: 0 Punkte a) Allgemein heißt eine Funktion f (x) stetig an der Stelle x 0, wenn die folgenden Bedingungen erfüllt sind (2 Punkte): f (x 0 )=lim h 0 f (x
Folgen und Reihen von Funktionen
Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die
Definition: Differenzierbare Funktionen
Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ
Differenzialrechnung
Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =
Kapitel 18 Numerisches Differenzieren und Integrieren
Kapitel 8 Numerisches Differenzieren und Integrieren 8 8 8 Numerisches Differenzieren und Integrieren.......... 43 8. Numerische Differenziation... 43 8.. Differenzenformeln für die erste Ableitung...
11 Stochastisches Integral und Itô-Formel
11 Stochastisches Integral und Itô-Formel Im diskreten Finanzmodell bei selbstfinanzierender Strategie ϑ = {ϑ n n=,...,n mit Anfangswert V gilt : Ṽ n ϑ = V + n ϑ T j S j. j=1 Dieser diskontierte Wertprozess
Γ = {(x, f(x)) : x R} R 2
Numerik I. Version: 29.5.8 46 4 Interpolation 4.1 Einführung Nehmen wir an, dass eine Funktion f : R R eine physikalische Größe beschreibt und wir ihre Werte an n+1 verschiedenen Punkten x, x 1,...,x n
Splines. Bézier-Kurven. Beispiel zur Approximation. Interpolation & Approximation. Schiffbau Automobilbau Architektur. f(x) f(x) =
Institut für Geometrie Abteilung für Geometrie im Bauwesen und im Scientific Computing Prof. Dr. H. Pottmann Interpolation & Approximation Splines Geg: Menge von Punkten Ges: Kurve, welche die Punkte interpoliert
Numerisches Lösen von Gleichungen
Numerisches Gesucht ist eine Lösung der Gleichung f(x) = 0. Das sverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz: Satz (1.1.1) Zwischenwertsatz:
2. Spezielle anwendungsrelevante Funktionen
2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für
Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts
Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist
4. DIE ABLEITUNG (DERIVATIVE)
31 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015
Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum
Taylorentwicklung von Funktionen einer Veränderlichen
Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der
Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.
Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2
Grundlagen der Numerischen Mathematik. Heinrich Voß
Grundlagen der Numerischen Mathematik Heinrich Voß Technische Universität Hamburg Harburg Arbeitsbereich Mathematik 2004 2 Inhaltsverzeichnis 1 Einleitung 1 1.1 Zahlendarstellung............................
Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3
Sie braucht weniger Speicherplatz als das Polygon und
Kapitel 7 Kurven Die bisher besprochenen 2D-Objekte haben bis auf den Kreis den Nachteil, daß sie im weitesten Sinne eckig sind. Wenn ein Objekt mit runder Form verlangt wird, z.b. ein Herz, ein Schiffsrumpf,
Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft
Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Wintersemester 29/21 16.2.21 Aufgabe A.1. Betrachten Sie die Polynomfunktion p : R R, welche durch die Abbildungsvorschrift p(x)
2.3.1 Explizite Runge-Kutta-Verfahren
Somit ist y(t + h) = y + hf(t, y ) + h (f t (t, y ) + f y (t, y )f(t, y )) + O(h 3 ) Setzen wir Φ(t, y, h) := f(t, y) + h (f t(t, y) + f y (t, y)f(t, y)), so erhalten wir ein Verfahren mit der Konsistenzordnung
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html
Folgerungen aus dem Auflösungsatz
Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und
(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge
ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,
Anhang B. Regression
Anhang B Regression Dieser Anhang rekapituliert die in der Analysis und Statistik wohlbekannte Methode der kleinsten Quadrate, auch Regression genannt, zur Bestimmung von Ausgleichsgeraden Regressionsgeraden
Differenzengleichungen. und Polynome
Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich [email protected] 1 Einleitung Mit linearen Differenzengleichungen
Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr.
Interpolation Nadine Losert Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Nachdem wir in den vorherigen Vorträgen verschiedene
f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}
9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen
Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57
Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5
8 Extremwerte reellwertiger Funktionen
8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R
Integration über allgemeine Integrationsbereiche.
Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und
cos(kx) sin(nx)dx =?
3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]
Nichtlineare Gleichungssysteme
Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische
3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten
Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.
Das Skalarprodukt zweier Vektoren
Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften
13. Funktionen in einer Variablen
13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die
Die Taylorreihe einer Funktion
Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist
Abschlussaufgabe Nichttechnik - Analysis II
Analysis NT GS - 0.06.06 - m06_ntalsg_gs.mcd Abschlussaufgabe 006 - Nichttechnik - Analysis II.0 Gegeben sind die reellen Funktionen fx ( ) mit ID f = ID g = IR. ( ) = x und gx ( ) = fx ( ) +. Zeigen Sie,
DIFFERENTIALGLEICHUNGEN
DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung
Rückblick auf die letzte Vorlesung. Bemerkung
Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D
Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem
Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies
7 Fourier-Transformation
7 Fourier-Transformation Ausgangspunkt: Die bereits bekannte Fourier-Reihenentwicklung einer T-periodischen, stückweise stetig differenzierbaren Funktion f T : R R, f T (t) = k= γ k e ikωt mit Frequenz
Numerische Mathematik für das Lehramt
Numerische Mathematik für das Lehramt Skriptum zur Vorlesung im SS 009 PD Dr. Markus Neher Universität Karlsruhe TH) Forschungsuniversität gegründet 85 Institut für Angewandte und Numerische Mathematik
7.8. Die Regel von l'hospital
7.8. Die Regel von l'hospital Der Marquis de l'hospital (sprich: lopital) war der erste Autor eines Buches über Infinitesimalrechnung (696) - allerdings basierte dieses Werk wesentlich auf den Ausführungen
Exemplar für Prüfer/innen
Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2016 Mathematik Kompensationsprüfung 3 Angabe für Prüfer/innen Hinweise zur
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
27 Taylor-Formel und Taylor-Entwicklungen
136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen
