Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Größe: px
Ab Seite anzeigen:

Download "Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015"

Transkript

1 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum oder Maximum handelt. a fx, y = x + y Wir definieren die Hilfsfunktion g : R R: gx, y = x + y. Es gilt x gx, y =. y In jeder Teilaufgabe ist das Gleichungssystem zu lösen. Das Gleichungssystem wird zu f x f y Gleichung - Gleichung ergibt x, y = λx x, y = λy x + y = = λx = λy x + y =. λx y = 0 und wir folgern x = y, da in den ersten zwei Gleichungen λ 0 sein muss. Die Extrema liegen also in x, y =, und in x, y =,. Man sieht schnell, dass in, ein lokales Maximum und in, ein lokales Minimum ist, denn wir können diese Punkte einfach einsetzen und erhalten f, = + =, f, = =. Man sieht in der Skizze, dass die Extrema genau dort liegen, wo die Höhenlinen von f die Höhenline gx, y = aus der Nebenbedingung berühren. Anders ausgedrückt: In den Extrema sind f und g linear abhängig.

2 b fx, y = xy Das Gleichungssystem wird zu y = λx x = λy x + y =. Wir setzen die erste Gleichung in die zweite Gleichung ein: x = 4λ x x 4λ = 0 x = 0 oder λ = ±. Falls x = 0 folgt y = 0, was ein Widerspruch zur dritten Gleichung ist. Falls λ = / folgt x = y, also gilt x, y =,

3 oder x, y =,. Falls λ = / folgt x = y, also gilt oder x, y = x, y =,,. Auch hier sehen wir schnell, dass sich die lokalen Minima in, und die lokalen Maxima in, und und, befinden, indem wir diese Punkte einsetzen: f, f, = f = f,, =, = In den Extrema sind f und g wiederum linear abhängig.

4 c fx, y = x + y Das Gleichungssystem wird zu 4x = λx 6y = λy x + y =. Aus der ersten Gleichung erhalten wir x = 0 oder λ =. Falls x = 0 folgt y = ±, was der zweiten Gleichung nicht widerspricht wähle λ =. Falls λ =, folgt y = 0 und daher x = ±. Wir finden also lokale Minima in ±, 0 und lokale Maxima in 0, ±, wie wir durch Einsetzen sehen: f±, 0 =, f0, ± = Die roten Höhenlinien beschreiben gegen aussen hin immer grössere Höhenniveaus. Von innen nach aussen berühren die Höhenlinien zuerst die Minima und am Schluss die Maxima auf dem Einheitskreis.. Bestimmen Sie mit Hilfe der Lagrange-Multiplikatoren auf der durch die Gleichung gx, y = x 6 + y 6 = definierten Kurve die Punkte mit minimalem und die Punkte mit maximalem Abstand zum Ursprung. 4

5 Die Aufgabenstellung lautet: Finde die Extrema von fx, y = x + y unter der Nebenbedingung gx, y = x 6 + y 6 =. fx, y = Das Gleichungssystem lautet also x, gx, y = y x = 6λx 5 y = 6λy 5 x 6 + y 6 =. 6x 5 Falls x, y 0 gilt, folgt aus den ersten beiden Gleichungen λ 0 und xy = 6λx 5 } y xy = 6λxy 5 x 5 y = xy 5 x 4 = y 4 x = y und weiter wegen der Nebenbedingung = x 6 + y = x 6 + x = x 6 x = ± 6 ±0.89, y = ± 6 6y 5 und f ± 6, ± 6 =.59. Falls x = 0 gilt, so folgt y = ± und f0, ± =. Wähle λ =. Falls y = 0 gilt, so folgt x = ± und f±, 0 =. Wähle λ =. 5

6 Zusammengefasst erhalten wir also die vier Maxima ± 6, ± 6 und die vier Minima 0, ± und ±, 0. Wenn wir uns nochmals die Skizze anschauen, dann sind die Minima die Schnitte der Kurve mit den Achsen und die Maxima liegen in den abgerundeten Ecken.. Prüfungsaufgabe 5, Winter 05. Wir betrachten die Schnittkurve S = {x, y, z R z = x + y } {x, y, z R x + y z = }. Bestimmen Sie den höchsten Punkt auf S. Lagrange: Wir maximieren die Funktion fx, y, z = z unter den Nebenbedingungen g x, y, z = x + y z = 0 und g x, y, z = x + y z =. Zu lösen ist das Gleichungssystem f = λ g + λ g unter den Nebenbedingungen, also 0 = λ x + λ 0 = λ y + λ = λ λ z = x + y z = x + y +. Die dritte Gleichung liefert λ = λ. Eingesetzt in die ersten beiden Gleichungen erhalten wir λ x = + λ λ y = + λ Nun sieht man aus der ersten Gleichung, dass λ 0 gelten muss, die Gleichungen können somit nach x und y aufgelöst werden und es gilt x = + λ λ = y. Mit den Nebenbedingungen erhalten wir x x = 0. Diese quadratische Gleichung hat die en x = ± = ±. Die Höhe in diesen Punkten ist z = ±. Das Maximum wird also im Punkt +, +, + angenommen. 6

7 Direkt: Die Schnittkurve S erfüllt die Gleichung Quadratisches Ergänzen ergibt z = x + y = + x + y x + y x y =. x + y =. Wir sehen, dass S, projiziert auf die x y-ebene, der Kreis mit Mittelpunkt M =, und Radius r = ist. Da insbesondere z = x + y gilt, ist der höchste Punkt auf S jener, welcher am weitesten vom Ursprung entfernt liegt. Dieser liegt auf der Geraden, welche durch den Ursprung und M geht. Mit dem Satz von Pythagoras berechnen wir nun die Länge a siehe Skizze, also a = r = a =. Der höchste Punkt liegt also über dem Punkt +, + auf der Höhe z = x + y + = +. 7

8 y a r 0.5 M a 0.0 x Prüfungsaufgabe 6, Sommer 0. Berechne Maximum und Minimum der Funktion fx, y, z = x + y z auf der Menge S = {x, y, z R : x + y =, 4x = z}. Die Menge S ist gegeben durch gx, y, z = x + y =, und hx, y, z = 4x z = 0. Nach dem Satz von Lagrange erfüllen die Extremalstellen folgende Gleichung. fx, y, z + λ gx, y, z + µ hx, y, z = 0, also x 4 + λ 6y + µ 0 = 0. 0 Aus der. Zeile folgt µ = und aus der. Zeile erhalten wir λ = 6y. Eingesetz in die. Zeile folgt schliesslich x = y. Da die Punkte in S liegen, muss zudem = x + y = 4x und z = 4 x gelten. Folglich sind die Extremas in,, und,,. Sie haben die Werte f,, = f,, = Minimum, Maximum. 8

9 5. Bestimmen Sie die Extrema der Funktion fx, y, z = 4x + y + z auf dem Schnitt der Einheitssphäre g x, y, z = x + y + z = mit dem elliptischen Zylinder um die z-achse g x, y, z = x + y =. a Mit der Methode von Lagrange. Als erstes setzen wir g in g ein und erhalten das äquivalente System Mit fx, y, z = x 4y 4z erhalten wir das Gleichungssystem x + y = x = ±z., g x, y, z = x y z, g x, y, z = 4x y 0 x = λ x + 4λ x 4y = λ y + λ y 4z = λ z x + y = 4 x = ±z. 5 Die dritte Gleichung impliziert z = 0 oder λ =. Fall : z = 0: Dann gilt x = 0, y = ± und λ = λ, wobei λ beliebig. Einsetzen liefert f0, ±, 0 =. Fall : λ = : Die zweite Gleichung wird zu 4y = 4y + λ y, es folgt somit y = 0 oder λ = 0. Fall.: y = 0: Dann gilt x = ±, z = ± und aus Gleichung folgt λ = ± Einsetzen liefert f f, 0, ± = 4 + = +, 0, ± = 4 + =.. 9

10 Fall.: λ = 0: Die erste Gleichung wird zu x = 4x, es folgt somit x = 0 oder x =. Fall..: x = 0: Dann gilt y = ±, z = 0 wie im Fall. Fall..: x = : Dann gilt y = ± 9 = ± 7 z = ±. Einsetzen liefert f, ± 7, ± = = 5 7. Zusammenfassend finden wir das globale Maximum +, es wird an den Stellen, 0, ± angenommen, und das globale Minimum, es wird an den Stellen, 0, ± angenommen. b Durch Parametrisierung der Nebenbedingungen. Der Schnitt besteht aus den zwei Grosskreisen auf der Einheitssphäre, die in den Ebenen {x = ±z} liegen. In der Skizze sehen wir die Einheitssphäre g x, y, z = rot und die en der Gleichung x = ±z blau, welche wir zu Beginn bereits hergeleitet hatten. Dies enspricht zwei Ebenen mit Normalenvektoren, 0, ±, welche durch den Ursprung gehen. Dieser Schnitt entspricht jeweils einem Grosskreis, analog zum Äquator Schnitt der Einheitssphäre mit der Ebene z = 0. 0

11 Wir parametrisieren die zwei Grosskreise: cos t φ: π, π] R : t, sin t, cos t cos t ψ : π, π] R : t, sin t, cos t, setzen ein und leiten ab f φt = cos t + sin t + cos t f ψt = cos t + sin t + cos t df φ df ψ t = t dt dt = cos t sint + 4 sint cost + cost sint = cost sint cost +. In einem Extremum muss die Ableitung gleich 0 sein. Das führt zu den drei Fällen cost = 0, sint = 0 und cost = : i. cost = 0: Dann ist t = π/ oder t = π/ und Einsetzen liefert f φ ± π = sin ± π =. ii. sint = 0: Dann ist t = 0 oder t = π und Einsetzen liefert : f φ0 = + f φπ =. iii. cost = Dann ist sin t = cos t = 7 9 und Einsetzen liefert f φ ±t = = 5 7. Zusammenfassend finden wir das globale Maximum +, es wird mit t = 0 an den Stellen, 0, ± angenommen, und das globale Minimum, es wird mit t = π an den Stellen, 0, ± angenommen. Bemerkung: Eigentlich sind φ und ψ keine richtigen Parametrisierungen, weil sie auf einem halboffenen Intervall definiert sind und keine stetige Umkehrabbildung haben. Genau genommen bräuchten wir für jeden Grosskreis zwei Funktionen, um ihn richtig zu parametrisieren, eine z.b. auf dem offenen Intervall π, π und die andere z.b. auf dem Intervall 0, π definiert. Deren Formeln würden aber beide genau gleich aussehen wie die obigen Formeln für φ und ψ, so dass wir obige verkürzte Schreibweise verwenden können.

12 6. Prüfungsaufgabe 6, Winter 06. Bestimmen Sie die globalen Extrema der Funktion fx, y = xy auf dem Gebiet G = {x, y R x } 5 + y. Wir bestimmen zuerst die kritischen Punkte im Innern von G. Es gilt y fx, y = = 0 xy genau dann, wenn y = 0. In diesen Fällen haben wir fx, 0 = 0. Um die Extremalstellen auf dem Rand von G zu bestimmen, verwenden wir die Methode von Lagrange mit der Nebenbedingung gx, y = 9x + 5y = 5. In den kritischen Punkten muss fx, y = λ gx, y gelten, also y = λ xy 8x 50y Falls y 0 folgt aus der zweiten Gleichung λ = x 5 und mit der ersten Gleichung y = 8 5 x. Eingesetzt in die Nebenbedingung ergibt dies 7x = 5, also x = ± 5. Wir erhalten also die kritischen Punkte ± 5, ± 6. Für diese gilt f 5, ± 6 = 0, f 5, ± 6 = 0. Folglich nimmt f jeweils in 5, ± 6 das Maximum 0 und in 5, ± 6 das Minimum 0 an.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker (Analysis ) MA90 http://www-m5matumde/allgemeines/ma90 06S Sommersem 06 Lösungsblatt (606) Zentralübung Z

Mehr

9 Differentialrechnung für Funktionen in n Variablen

9 Differentialrechnung für Funktionen in n Variablen $Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

Serie 5. Figure 1: 1.a)

Serie 5. Figure 1: 1.a) Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 Beweis. Der Beweis erfolgt durch vollständige Induktion. Angenommen wir hätten den Satz für k 1 gezeigt. Dann ist wegen auch Damit ist f(g(y), y) = 0 0 = D y

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

10. Übungsblatt zur Analysis II

10. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno WS 2009/2010 17.12.2009 10. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Gegeben sei die Funktion g : R 2 R, g(x,y) = sin 2 y + x 3 1.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt

Mehr

Mathematik II Lösung 6. Lösung zu Serie 6

Mathematik II Lösung 6. Lösung zu Serie 6 Lösung zu Serie 6. a) In einem kritischen Punkt (x, ) von f gelten f x (x, ) x + und f (x, ) x, also x. Ferner gelten f xx (x, ) f (x, ) und f x (x, ), insbesondere also f xx (, ) < und f xx (, )f (, )

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Musterl osung BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Analysis II Klausur WS 211/212 Prof. Dr. Hartmut Pecher 3.2.212, 9:15 Uhr Name Matr.Nr. Studienfach Fachsemester

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung

Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung TU Bergakademie Freiberg Sommersemester Dr. Gunter Semmler Dr. Anja Kohl Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung Differentialrechnung für Funktionen

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

42 Lokale Extrema mit Nebenbedingungen

42 Lokale Extrema mit Nebenbedingungen 4 Lokale Extrema mit Nebenbedingungen 09 4 Lokale Extrema mit Nebenbedingungen Lernziele: Resultate: Kriterien für lokale Extrema mit Nebenbedingungen Methoden: Lagrange-Multiplikatoren Kompetenzen: Bestimmung

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 15.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

A N A L Y S I S I I F Ü R T P H, UE ( ) 1. Test (DO, 5. Mai 2011) / Gruppe weiÿ (mit Lösung )

A N A L Y S I S I I F Ü R T P H, UE ( ) 1. Test (DO, 5. Mai 2011) / Gruppe weiÿ (mit Lösung ) Institut für Analysis und Scientic Computing TU Wien E. Weinmüller SS 2011 A N A L Y S I S I I F Ü R T P H, UE (103.091) 1. Test (DO, 5. Mai 2011) / Gruppe weiÿ (mit Lösung ) Aufgabe 1. Gegeben ist die

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch Technische Universität Berlin Fakultät II Institut für Mathematik WS /3 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch 6.4.3 Rechenteil April Klausur Analysis II für Ingenieure. Aufgabe Punkte a Es gilt:

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1 Fachbereich Mathematik Universität Stuttgart Prof. Dr. C. Rohde Höhere Mathematik I III Diplomvorprüfung 3. 3. 8. Klausur für Studierende der Fachrichtungen phys Bitte unbedingt beachten: In dieser Klausur

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) =

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) = Karlsruher Institut für Technologie (KIT Institut für Analysis Priv-Doz Dr P C Kunstmann Dipl-Math D Roth SS 0 7060 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8 Übungsblatt

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

Technische Universität München. Probeklausur Lösung SS 2012

Technische Universität München. Probeklausur Lösung SS 2012 Technische Universität München Andreas Wörfel & Carla Zensen Ferienkurs Analysis für Physiker Probeklausur Lösung SS Aufgabe Differenzierbarkeit / Punkte: [4,, 3, 4] Es sei f(x, y) = sin(x3 + y 3 ) x +

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte C. Eicher Analysis Study Center ETH Zürich HS 05 Extremwerte Gelöste Aufgabenbeispiele:. Bestimme die lokalen und globalen Extrema der Funktion f(x) = x x + x auf dem Intervall [ 4, ]. a. Bestimmung der

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Lösungsvorschläge zum 7. Übungsblatt.

Lösungsvorschläge zum 7. Übungsblatt. Übung zur Analysis II SS Lösungsvorschläge zum 7 Übungsblatt Aufgabe 5 a) f : R R definiert durch fx, y) : x, y) und D : U, ) und D : U 4, ) \ U, ) b) f : R R definiert durch fx, y) : x ) cost) c) γ :

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

0.1 Hauptsatz über implizite Funktionen

0.1 Hauptsatz über implizite Funktionen 0.1 Hauptsatz über implizite Funktionen 0.1 Hauptsatz über implizite Funktionen Ein lineares homogenes Gleichungssystem von q Gleichungen in r + q Unbekannten kann bekanntlich verwendet werden um q Unbekannte

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

7.11. Extrema unter Nebenbedingungen

7.11. Extrema unter Nebenbedingungen 7.11. Extrema unter Nebenbedingungen Randextrema Wir haben schon bemerkt, daß die üblichen Tests mit Hilfe von (eventuell höheren) Ableitungen nur Kriterien für (lokale) Extrema im Inneren des Definitionsgebietes

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

2 Funktionen in mehreren Variablen: Differentiation

2 Funktionen in mehreren Variablen: Differentiation Satz 2. (Richtungsableitung) Für jede auf der offenen Menge D R n total differenzierbaren Funktion f (insbesondere für f C 1 (D, R) und für jeden Vektor v R n, v 0, gilt: n v f(x) = f(x) v = f xi (x)v

Mehr

Extremalprobleme mit Nebenbedingungen

Extremalprobleme mit Nebenbedingungen Extremalprobleme mit Nebenbedingungen In diesem Abschnitt untersuchen wir Probleme der folgenden Form: g(x 0 ) = inf{g(x) : x Ω, f(x) = 0}, (x 0 Ω, f(x 0 ) = 0). (1) Hierbei sind Ω eine offene Menge des

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Mathematik II für ET/IT und ITS im SS 2012

Mathematik II für ET/IT und ITS im SS 2012 Matrikelnummer: 8 Name: Vorname: 2 3 4 5 6 7 8 9 Bonus Gesamtpunktzahl Klausur Mathematik II für ET/IT und ITS im SS 22 Hinweise: Schreiben Sie auf das eckblatt der Klausur Ihren vollständigen Namen und

Mehr

Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag

Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 06/7 Blatt 4 5..06 Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag 3. Die gegebene Polynomfunktion f : R R, f(x, y) =

Mehr

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen)

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen) Name: Vorname: Matrikelnummer: TU Dresden, Fachrichtung Mathematik, Dr. N. Koksch 6. Februar 8 Prüfung Modul A, Teil (Mathematik ) (Fernstudium auingenieurwesen) ewertet werden nur solche Lösungsschritte,

Mehr

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2015

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2015 Institut für Analysis und Scientific Computing TU Wien Dr. E. Weinmüller SS 205 A N A L Y S I S I I F Ü R T P H, (0.09) Test 2 Gruppe (DI, 6.6.205) (mit Lösung ) Sie können den Taschenrechner verwenden.

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Mehrdimensionale Differentialrechnung Übersicht

Mehrdimensionale Differentialrechnung Übersicht Mehrdimensionale Differentialrechnung Übersicht Partielle und Totale Differenzierbarkeit Man kann sich mehrdimensionale Funktionen am Besten für den Fall f : R 2 M R vorstellen Dann lässt sich der Graph

Mehr

3. Approximation von Funktionen und Extremwertprobleme im R n

3. Approximation von Funktionen und Extremwertprobleme im R n 3. Approximation von Funktionen und Extremwertprobleme im R n Wie in D ist es wichtig Funktionen mit mehreren Variablen durch Polynome lokal approximieren zu können. Polynome lassen sich im Gegensatz zu

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Scheinklausur Analysis 2 Ss Juli 2008

Scheinklausur Analysis 2 Ss Juli 2008 Scheinklausur Analysis 2 Ss 2008 11. Juli 2008 Es gibt 10 Aufgaben. Die jeweilige Punktzahl steht am linken Rand. Die Gesamtpunktzahl ist 40 Punkte. Zum Bestehen der Klausur sind 16 Punkte erforderlich.

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag

Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 016/17 Blatt 3 08.11.016 Übungen zur Vorlesung Mathematik im Querschnitt Lösungsvorschlag 9. Bei der Definitionsmenge D = { (x, y) R x

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2.

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2. Aufgabe (8 Punkte (a der Realteil von z +i 4 i zu bestimmen. z + i ( + i(4 + i + i 4 i + i.,5 Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält Re (z Im (z.,5 (b (b

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Probeklausur Höhere Mathematik II für Elektrotechniker

Probeklausur Höhere Mathematik II für Elektrotechniker I. Bouw.7.8 U. Hackstein Probeklausur Höhere Mathematik II für Elektrotechniker Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 7 Punkte. Aufgabe. Skizzieren Sie folgenden Bereich: D = {(x, y) R x + y

Mehr

Musterlösung Prüfung

Musterlösung Prüfung D-BAUG Analysis I/II Winter 24 Meike Akveld Theo Bühler Musterlösung Prüfung. (a) Bestimmen Sie die reellen Koeffizienten p und q, so dass z = 2 3i eine Lösung der Gleichung z 3 3z 2 + pz + q = ist. Bestimmen

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Math. C. Zwilling Fakultät für Mathematik TU Dortmund Musterlösung der. Klausur zur Vorlesung Analysis II 6.7.6) Sommersemester 6 Aufgabe. i) Die Folge f n ) n N konvergiert genau

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn,

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn, Stroppel Musterlösung 0. 09. 03, 80min Aufgabe 7 Punkte) Gegeben seien folgende Potenzreihen: ) n fx) = n xn, gx) = n= + ) n n x+) n. 3 n= a) Bestimmen Sie jeweils den Konvergenzradius und den Entwicklungspunkt.

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

Mathematik III - Blatt 6

Mathematik III - Blatt 6 Mathematik III - Blatt Christopher Bronner, Frank Essenberger 8. November Aufgabe Wir suchen erstmal im inneren des Vierecks nach Punkten, die für einen Extremwert in Frage kommen, danach auf den Rändern

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 4 Blatt 5.6.4 Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag 37. Wir bestimmen zunächst die Schnittpunkte

Mehr