Berechnungen mit dem Horner-Schema
|
|
|
- Meta Engel
- vor 9 Jahren
- Abrufe
Transkript
1 Berechnungen mit dem Horner-Schema Das Hornerschema kann als Rechenhilfsmittel zur Berechnung von Funktionswerten von Polynomfunktionen, zur Faktorisieriung von Polynomen alternativ zur Polynomdivision genutzt werden. Mit etwas Übung ist man mit der Berechnung über das Hornerschema schneller als die Polynomdivision. Vorbetrachtungen: Das Hornersche Schema beruht auf folgender Zerlegung, die für jedes Polynom möglich ist: p(x) = a n x n + a n-1 x n a 2 x 2 + a 1 x + a 0 = (a n x n-1 + a n-1 x n a 2 x + a 1 )x + a 0 = ((...(a n x + a n-1 )x + a n-2 )x + + a 2 )x + a 1 )x + a 0 Wenn man also das Polynom an der Stelle x berechnen möchte, kann man beginnend von links nach rechts nur mit Multiplikation und Addition bis nach rechts durchrechnen. p(x) = 2x 3 + 5x 2 11x 3 = ((2x + 5)x 11)x 3 Das Schema: p(2) = (( ) 2 11) 2 3 = 11 p(3) = (( ) 3 11) 3 3 = 63 Wenn man die obige Berechnung tabellarisch aufschreibt, kann man folgendes Schema erhalten: a n a n-1 a n-2... a 1 x = x 0 b nx 0 b n-1x 0... b 1x 0 b n = a n b n-1 = a nx 0+ a n-1 b n-2 = b n-1x 0+ a n-2. b 1 =... b 0=b 1x 0 + a 0 = p(x 0) Koeffizienten des neuen Polynoms vom Grad n-1 Rest bzw. Wert an der Stelle x 0
2 Was hier im ersten Anblick recht kompliziert aussieht, vereinfacht sich stark, wenn man konkrete Zahlen einsetzt. p(x) = 2x 3 + 5x 2 11x 3 p x = p* Interpretation der letzten Zeile: (1) p(2) = 11 (2) p*(x) = 2x 2 + 9x + 7 Beschreibung der Rechenschritte: (1) Schreibe die Koeffizienten des Ausgangspolynoms in die erste Zeile des Schemas. (2) Übernimm in der linken Spalte den ersten Koeffizienten. (3) Multipliziere nun entlang des ersten Pfeiles mit x 0. (4) Bilde die Summe in der zweiten Spalte. (5) Multipliziere das Ergebnis mit x 0 (zweiter Pfeil) usw. (6) Die letzte Zahl in der letzten Zeile ist der Funktionswert. (7) Die anderen Zahlen sind die Koeffizienten des Restpolynoms p*. Es gilt stets: p(x) p(x 0 ) = p*(x) (x x 0 ) p(x) = x 4 3x 3 + 5x 2 Probierlösung: x = 2 p x = p*
3 Interpretation der letzten Zeile: (1) p(2) = 0 (Bestätigung der Nullstelle von p) (2) p(x) = (x 3 x 2 2x + 1)(x 2) Die erste Klammer des Ausdrucks (also p*) könnte nun ebenfalls mit dem Hornerschema weiter entwickelt und faktorisiert werden. Beispiel zur mehrfachen Anwendung: p(x) = x 4 3,5x 3 2x 2 +13,5x 9 p 1-3,5-2 13,5-9 x 1 = 1 1-2,5-4, ,5-4,5 9 0 x 2 = ,5 4,5 0 x 3 = 3 3-4,5 1-1,5 0 p(x) = (x 1)(x + 2)(x 3)(x 1,5) weitere Anwendungen: 1. Zerlegung einer gebrochen rationalen Funktion Aufgabenstellung: Gegeben ist die gebrochen-rationale Funktion y=f x = x3 6x. Bestimmen Sie x 2 die Gleichungen aller Asymptoten und asymptotischen Funktionen. Lösung: Die Polasymptote lautet offensichtlich: x = -2 (Hier wird nur der Nenner 0.)
4 Bestimmung der schrägen Asymptote mit dem Hornerschema: Wir entwickeln den Zähler an der Stelle x = -2, denn hier wird der Nenner gerade 0. z(x) x 1 = Ergebnis: y=f x =x 2 2x 2 4 x 2 Die asymptotische Funktion ist eine quadratische Parabel mit: y = a(x) = x 2 2x 2 Man bemerkt bei diesem Beispiel, dass der Funktionswert des Zählers an der Stelle x 0 auch dem Zähler des Restgliedes entspricht. (hier 4). Bemerkung: Beachten Sie, dass diese Methode nur bei linearem Nenner so schnell funktioniert. Hat der Nenner höheren Grad, so wären nacheinander alle Nullstellen des Nenners zu entwickeln. In diesem Fall ist man mit Polynomdivision sicherlich schneller. 2. Bestimmung der Tangente t an eine Polynomfunktion im Berührungspunkt Aufgabenstellung: Bestimmen Sie die Gleichung der Tangente t an den Graphen von f mit: y = f(x) = -x 4 + 4x 3 3x 7 im Kurvenpunkt P(2; f(2)). Lösungsidee: Zur Lösung dieses Aufgabentyps kann man ausnutzen, dass sich bei zweimaliger Anwendung des Hornerschemas auch der Wert der Ableitung an der Stelle x direkt ergibt. Somit hat man nicht nur y = f(x 0 ) sondern auch m = f'(x 0 ) sofort bestimmt. Nach zweimaliger Anwendung für dasselbe x 0 erhält man rechts den Wert der ersten Ableitung.
5 Lösung: Wir entwickeln die Funktion f zweimal nacheinander an der Stelle x 0 = 2: f x 1 = x 1 = f(2) = 3; f'(2) = 13 Beide Werte kann man nun in die Tangentengleichung einsetzen: y = mx + n: 3 = n Daraus ergibt sich: n = -23 Und als Tangentengleichung: y = 13x 23. Bemerkung: Es könnte sich nun die Frage stellen: Wie sieht es mit der Berechnung von höheren Ableitungen aus? Bereits bei der zweiten Ableitung erhält man nach dreimaliger Anwendung des Schemas nicht mehr direkt den Wert dieser, sondern nur noch die Hälfte des Wertes der zweiten Ableitung. Prüfen Sie dies selbst anhand geeigneter Beispiele nach!
Partialbruchzerlegung für Biologen
Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine
Kapitel 19 Partialbruchzerlegung
Kapitel 19 Partialbruchzerlegung Mathematischer Vorkurs TU Dortmund Seite 1 / 15 Zur Erinnerung wiederholen wir Definition 4.5 [part] Es sei n N 0 und a 0, a 1,..., a n R mit a n 0. Dann heißt die Funktion
Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft
Algebra Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt [email protected] Algebra
5 Gebrochen-rationale Funktionen
5 Gebrochen-rationale Funktionen 5. Definition: Eine Funktion f, deren Term f(x) als Bruch Z(x) N(x) von zwei Polynomfunktion Z(x) und N(x) geschrieben werden kann und deren Nennergrad größer als 0 ist,
Polynome. Analysis 1 für Informatik
Gunter Ochs Analysis 1 für Informatik Polynome sind reelle Funktionen, die sich ausschlieÿlich mit den Rechenoperation Addition, Subtraktion und Multiplikation berechnen lassen. Die allgemeine Funktionsgleichung
osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen
Musterl osungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I f ur Ingenieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 5.. Thema: Rationale und trigonometrische Funktionen
Grundlagen komplexe Zahlen. natürliche Zahlen
Grundlagen komplexe Zahlen Die Zahlenbereichserweiterungen von den natürlichen Zahlen hin zu den reellen Zahlen waren dadurch motiviert, bestimmte Rechenoperationen uneingeschränkt ausführen zu können.
2 Polynome und rationale Funktionen
Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine
Aufstellen der Funktionsgleichung aus gegebenen Bedingungen
R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll
Gebrochen Rationale Funktionen
Gebrochen Rationale Funktionen W. Kippels. September 2017 Inhaltsverzeichnis 1 Vorwort 3 2 Einführung 3 Polstellen und Lücken Asymptote 10 5 Übungsaufgaben 11 5.1 Aufgabe 1...................................
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.
7 Ganzrationale Funktionen (Polynomfunktionen)
7 Ganzrationale Funktionen (Polynomfunktionen) Siehe dazu die Abschnitte 8.5 und 8.6 in der Formelsammlung. 7.1 Wissensfragen 1. Wieviele Nullstellen kann eine Polynomfunktion vom Grad 3 maximal haben?
2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16
Vorkurs Mathematik WS 2015/16 2.Tag Arten von Gleichungen Lineare Gleichungen (und Funktionen) 0 = ax + b (oft als Funktion: y = mx + n) a,b R Parameter m Anstieg, n Achsenabschnitt Quadratische Gleichungen
Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 4
Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 017/018 Übung Aufgabe 1 : Äquivalenzumformungen Bestimmen Sie ohne Taschenrechner die Lösungsmengen für folgende Gleichungen/Ungleichungen
Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 4. (iii) = 33. (iv)
Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 01/016 Übung Aufgabe 1 : Lineare Gleichungen (a) Für welche x R gilt (i) 31 6(x + 1) = 9 (ii) 11(x ) = ( + 1x) (iii) + = 33
Kapitel III Ringe und Körper
Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem
In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y
Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion
Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016
Vorlesung Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Inhalt Polynome, Algebraische Strukturen Vektorrechnung Lineare Algebra Elementare
Differentialrechnung Taschenrechner Differenzialrechnung Üben Ermitteln von Funktionsgleichungen. Mathematik W15. Mag. Rainer Sickinger LMM, BR
Mathematik W15 Mag. Rainer Sickinger LMM, BR v 1 Mag. Rainer Sickinger Mathematik W15 1 / 27 Wendetangente Wir wissen: Grafisch betrachtet handelt es sich bei einem Wendepunkt um einen Punkt, an dem der
Mathematik Semester 3 / Arbeitsblatt f (x) = x x 3 4 x. 5 x 3 20 x. x 2 1
9.2 Aufgaben Aufgabe 16.39 aus dem Buch. 1. f (x) = x4 + 1 x 3 + x 4. f (x) = x4 1 2 x 3 8 x 2. f (x) = x3 + 1 x 3 4 x 5. f (x) = x5 + 1 5 x 3 20 x 3. f (x) = 4 x2 x 2 + 1 6. f (x) = x2 2 x 2 7. f (x)
Partialbruchzerlegung
Partialbruchzerlegung Lucas Kunz 27. Januar 207 Inhaltsverzeichnis Theorie 2. Definition.................................... 2.2 Nullstellen höheren Grades........................... 2.3 Residuen-Formel................................
Analysis f(x) = x 2 1. (x D f )
Analysis 15 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f mit f(x) = x3 x 1 (x D f ) a) Geben Sie den maximalen Definitionsbereich der Funktion f an. Zeigen Sie, dass der Graph der Funktion
5 Gebrochen rationale Funktionen
c 003, Thomas Barmetler FOS, 11 Jahrgangsstufe (technisch) 5 Gebrochen rationale Funktionen Unter einer gebrochen rationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen Dabei
Lösung Semesterendprüfung
MAE Mathematik: Analysis für Ingenieure Herbstsemester 07 Dr. Christoph Kirsch ZHAW Winterthur Aufgabe : Aufgabe : Lösung Semesterendprüfung a) Wir verwenden die Def. 4 der Vorlesung für die Implikation,
Übungen zur Vorlesung Mathematik I für Studierende der Chemie (WS 2015/2016) Institut für Chemie und Biochemie, FU Berlin Blatt
Übungen zur Vorlesung Mathematik I für Studierende der Chemie (WS 05/06) Institut für Chemie und Biochemie, FU Berlin PD Dr. Dirk Andrae Blatt 9 06--6. Bestimmen Sie die Partialbruchzerlegung von (a) x(x
Aufgaben zu den Ableitungsregeln
Aufgaben zu den Ableitungsregeln 1.0 Bestimmen Sie die Gleichung der Tangente im Punkt P(2;?) an den Graphen der folgenden Funktionen. 1.1 f(x) = x 2 2x 1.2 f(x) = (x + 1 2 )2 1.3 f(x) = 1 2 x2 3x 1 2.
Ganzrationale Funktionen (ohne Ableitungen) Datei Nr Ausdrucken ist nur von der Mathematik-CD möglich. Mai 2002.
Funktionen Klassenstufe 0/ Teil Ganzrationale Funktionen (ohne Ableitungen) Datei Nr. 80 Ausdrucken ist nur von der Mathematik-CD möglich Mai 00 Friedrich Buckel Internatsgymnasium Schloß Torgelow Funktionen
Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2 Inhaltsverzeichnis 1 Translationen 2 2 Skalierungen 4 3 Die
Ganzrationale Funktionen
Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade
Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft
Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Wintersemester 29/21 16.2.21 Aufgabe A.1. Betrachten Sie die Polynomfunktion p : R R, welche durch die Abbildungsvorschrift p(x)
Aus meiner Skriptenreihe: "Keine Angst vor "
Dipl.-Kaufm. Wolfgang Schmitt Aus meiner Skriptenreihe: "Keine Angst vor " Verfahren der Nullstellenberechnung der Funktionen n n 1 n 2 n i 1 f x ax a x a x... ax... a x 0 1 2 3 i n für n > 1 http://www.nf-lernen.de
Übungen zur Vorlesung Mathematik für Chemiker 1
Prof. Dr. D. Egorova Prof. Dr. B. Hartke Lösungen Aufgabe Übungen zur Vorlesung Mathematik für Chemiker WiSe 204/5 Blatt 2 0.-2..204 f( x) = f(x) = gerade f( x) = f(x) = ungerade 8 6 4 2. f ( x) = ( x
$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln
$Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der
Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:
1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich
Extrema gebrochen rationaler Funktionen
Übungen zum Thema: Extrema gebrochen rationaler Funktionen Hier angewandte Lösungsmethode: Grenzwertmethode Versionsnummer: Version in Arbeit vom 6.09.007 / 19.00 Uhr Finde lokale Extrema der gebrochen
Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form
3. Polynome 3.1 Definition und Grundlagen Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0,
Vorbereitungskurs Mathematik
BBS Gerolstein Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik für die Berufsoberschule II www.bbs-gerolstein.de/cms/download/mathematik/vorkurs-mathe-bos-.pdf bzw. www.p-merkelbach.de/bos/mathe/vorkurs-mathe-bos-.pdf
Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen?
R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Lösungen VBKA Ganzrationale Funktionen I Zur Vorbereitung einer Klassenarbeit en: A A A A A A A4 A4 n n Was bedeutet: f(x) = a x + a x +... + a x + a x +
Polynome und Polynomgleichungen
Polynome und Polynomgleichungen Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 2011 Inhaltsverzeichnis 1 Polynomgleichungen 1 1.1 Polynomfunktionen........................ 1 1.1.1
Arbeitsblatt Gleichungen höheren Grades
Mathematik-Service Dr. Fritsch www.math-service.de Tel. 061/776 Arbeitsblatt Gleichungen höheren Grades 1. Lösen Sie folgenden quadratischen Gleichungen mittels quadratischer Ergänzung! (a) x x + = 0 (b)
F u n k t i o n e n Rationale Funktionen
F u n k t i o n e n Rationale Funktionen Die erste urkundlich erwähnte Rechenmaschine wurde 163 von Wilhelm Schickard in einem Brief an Johannes Kepler knapp beschrieben. Die Maschine besteht aus einem
Übungen zu Splines Lösungen zu Übung 20
Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)
Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte
Aufgabe 1 Aufgabe 2 Die Funktion f ist eine ganzrationale Funktion dritten Grades. Die Summanden sind nicht in der richtigen Reihenfolge und müssen deshalb nach absteigenden x- Potenzen geordnet werden.
Ganzrationale Funktionen 1
Ganzrationale Funktionen Das Buch: Dieses Kapitel ist Teil eines Buches. Das vollständige Buch können Sie unter www.mathe-laden.de bestellen (falls Sie das möchten). Sie werden in diesem Buch ein paar
Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:
Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x
Beispiele für eine vollständige Kurvendiskussion
Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da
Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen
Gleichungen Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Lineare Gleichungen Lineare Gleichungen ax + b = 0 Lineare Gleichungen ax
Analysis 8.
Analysis 8 www.schulmathe.npage.de Aufgaben Gegeben sind die Funktionen f a durch f a (x) = a x x + (x R x ; a R a ) a) Geben Sie die Koordinaten der Schnittpunkte der Graphen der Funktionen f a mit den
A.12 Nullstellen / Gleichungen lösen
A12 Nullstellen 1 A.12 Nullstellen / Gleichungen lösen Es gibt nur eine Hand voll Standardverfahren, nach denen man vorgehen kann, um Gleichungen zu lösen. Man sollte in der Gleichung keine Brüche haben.
1. Fall: 2. Fall: Lösungsblatt zu: Differentialquotient. Tipp: Nullstellen. Tipp: Es reicht, wenn einer der Faktoren Null wird.
Lösungsblatt zu: Differentialquotient Aufgabe 1: Gegeben: f(x) = 0,5x 3 1,5x² a) Bestimmen Sie die Nullstellen: Nullstellen f(x) = 0 0,5x 3 1,5x 2 = 0 ( 0,5x 2 ausklammern) 0,5x 2 (x + 3) = 0 Es reicht,
Ansgar Schiffler. Die Polynomdivision. Seite 1 von 5. Aufgabe 1: Es sollen die Nullstellen des Graphens der folgenden Funktion bestimmt werden.
Seite 1 von 5 Aufgabe 1: Es sollen die Nullstellen des Graphens der folgenden Funktion bestimmt werden. Dies ist der Graph der Funktion: y = f(x) =,5x³,5x² + 1,8x +,88 Die erste Nullstelle können Sie durch
13. Funktionen in einer Variablen
13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier
2 Rechentechniken. 2.1 Potenzen und Wurzeln. Übersicht
2 Rechentechniken Übersicht 2.1 Potenzen und Wurzeln.............................................. 7 2.2 Lösen linearer Gleichungssysteme..................................... 8 2.3 Polynome.........................................................
Durch Eliminieren der Wurzel erhalten wir die bekannte Kreisgleichung:
Fixieren wir ein Seil der Länge r an einem Punkt M, nehmen das lose Ende in die Hand und bewegen uns so um den Punkt M herum, dass das Seil stets gespannt bleibt, erhalten wir, wie in nebenstehender Abbildung
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 4 Injektive und surjektive Abbildungen Definition 4.1. Es seien L und M Mengen und es sei eine Abbildung. Dann heißt F F
3. Schularbeit/7C/2-stündig Schularbeit. 7C am
3. Schularbeit 7C am 27.3.2017 Name: Note: Beispiel-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 AP Teil 1: Teil 2: Punkte Teil 1 (inkl. AP) Punkte Teil 2 Gesamtpunkte Notenschlüssel: 0 7 P von Teil 1 (inkl. Anrechnungspunkte
( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )
64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den
Lösung Serie 5 (Polynome)
Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Dozent: Roger Burkhardt Klasse: Studiengang ST Lösung Serie 5 (Polynome) Büro: 4613 Semester: 2
Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung
TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 1. Übung
6. Übungsblatt zur Vorlesung Mathematik I für Informatik
Fachbereich Mathematik Prof Dr Thomas Streicher Dr Sven Herrmann Dipl-Math Susanne Pape 6 Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 009/00 7/8 November 009 Gruppenübung Aufgabe
Partialbruchzerlegung
Partialbruchzerlegung W. Kippels 26. Oktober 2018 Inhaltsverzeichnis 1 Vorwort 2 2 Prinzip der Zerlegung 3 2.1 Nenner mit einfachen Nullstellen...................... 3 2.2 Nenner mit mehrfachen Nullstellen.....................
2.1 Polynome, Polynomfunktionen und Nullstellen. k=0
Kapitel 2 Polynome 2.1 Polynome, Polynomfunktionen und Nullstellen Der Polynomring R[x] Definition: Ein Polynom mit einer Variablen x über einem kommutativen Ring R ist ein formaler Ausdruck der Form p(x)
Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele
Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1
Gebrochen rationale Funktionen
Gebrochen rationale Funktionen Anmerkung: Auf dieser Seite wurden LaTeX Formeln mit MathJa eingebaut die nötigen Formatierungen werden über einen eternen Server (cdn.mathja.org) bezogen. Keine Garantie,
Gebrochen-Rationale Funktionen
Gebrochen-Rationale Funktionen Bernhard Scheideler Albrecht-Dürer-Gymnasium Hagen Hilfen zur Analysis (Q1) 20. Januar 2012 Inhalt: Die Diskussion einer gebrochen-rationalen Funktion wird an einem Beispiel
Approximation durch Polynome
durch n Anwendungen: zur Vereinfachung einer gegebenen Funktion durch einen Polynomausdruck. Dann sind übliche Rechenoperation +,,, / möglich. zur Interpolation von Daten einer Tabelle n Beispiel Trotz
Faktorisierung bei Brüchen und Bruchtermen
Faktorisierung bei Brüchen und Bruchtermen Rainer Hauser Mai 2016 1 Einleitung 1.1 Rationale Zahlen Teilt man einen Gegenstand in eine Anzahl gleich grosse Stücke, so bekommt man gebrochene Zahlen, die
Nullstellen quadratischer Funktionen berechnen
Arbeitsblätter zum Ausdrucken von sofatutorcom Nullstellen quadratischer Funktionen berechnen Gib an, in welcher Form die jeweilige Funktion vorliegt und wie du ihre Nullstellen berechnen kannst Berechne
Einführung in die Differenzialrechnung. Teil I. Klasse 10 B / Schuljahr 2018 / 19. Deyke
Einführung in die Differenzialrechnung Teil I Klasse 10 B / Schuljahr 2018 / 19 Deyke www.deyke.com Diff_Teil_I.pdf Einführung in die Differenzialrechnung Etwas Wirtschaftsmathematik: Einführung Seite
Brüche, Polynome, Terme
KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................
R. Brinkmann Seite Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SG10 D Gruppe A NAME: Lösungen
R. Brinkmann http://brinkmann-du.de Seite 8..0 Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di.06. SG0 D Gruppe A NAME: Lösungen Hilfsmittel: Taschenrechner Alle Ergebnisse sind soweit möglich durch
Kontrollfragen zur Unterrichtsstunde
Kontrollfragen zur Unterrichtsstunde Frage 1: Das Newtonverfahren ist eine Methode zur Bestimmung A: der Extremstellen eines C: des Verhalten im Unendlichen. B: der Nullstellen eines D: der Fallzeit eines
TEIL 1 (ohne Rechner)
Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Dozent: Roger Burkhardt Klasse: Studiengang ST Lösungen Repetition Algebra Büro:.63 Semester: 2 Modul:
VERTIEFUNGSKURS MATHEMATIK. Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren
VERTIEFUNGSKURS MATHEMATIK ÜBUNGEN Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren Funktionen: () Mit der Partialbruchzerlegung lässt sich jede gebrochen-rationale Funktion
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens Fläche des Kreissektors b = α α 2rπ A = 360 360 πr2 Das Bogenmaß
ANALYSIS. Ganzrationale Funktionen. Kurvendiskussionen zu Funktionen vom Grad 3. Aufgaben 301-xxx INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
ANALYSIS Ganzrationale Funktionen Kurvendiskussionen zu Funktionen vom Grad Aufgaben 0- Datei Nr. 0 Stand 9. Juli 008 Friedrich. Buckel INTRNTBIBLIOTHK FÜR SCHULMATHMATIK 0 Ganzrationale Funktionen. Grades
Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen
Kurvendiskussion Gebrochenrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 7. September 0 Inhaltsverzeichnis Gebrochenrationale Funktion Gebrochen rationale Funktion Zählergrad < Nennergrad
( ) ( ) Schnittpunkt mit der y Achse P 0 y : Bedingung: y = f 0. y s s
R. Brinkmann http://brinkmann-du.de Seite 07.0.0 Achsenschnittpunkte ganzrationaler Funktionen Schnittpunkt mit der y Achse P 0 y : Bedingung: y = f 0 y s s f = f 0 = 0 0 = 0 0 = P ( 0 ) oder P ( 0 f(0)
Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten:
Abitur Mathematik: Bayern 2013 Teil 1 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSMENGE BESTIMMEN Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: 3x + 9 0 x 3 2. SCHRITT: NULLSTELLEN
Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) < 0 x ]a, b[
Monotonie und erste Ableitung: Satz: Eine Funktion f ist monoton wachsend auf einem Intervall ]a, b[, wenn gilt: f (x) 0 x ]a, b[ Eine Funktion f ist monoton fallend auf einem Intervall ]a, b[, wenn gilt:
Kapitel 3 Relationen, Ordnung und Betrag
Kapitel 3 Relationen, Ordnung und Betrag Kapitel 3 Relationen, Ordnung und Betrag Mathematischer Vorkurs TU Dortmund Seite 27 / 254 Kapitel 3 Relationen, Ordnung und Betrag Definition 3.1 (Relationen)
GF MA Differentialrechnung A2
Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall
Gebrochen-rationale Funktionen
Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale
I. Verfahren mit gebrochen rationalen Funktionen:
I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt
Aufgabe zum Thema: Gebrochen - rationale Funktionen
Aufgabe zum Thema: Gebrochen - rationale Funktionen Eine gebrochen-rationale Funktion Z (x) hat als Zähler- N (x) funktion Z (x) eine lineare Funktion und als Nennerfunktion N (x) eine ganz-rationale Funktion
B Anwendungen der Differenzialrechnung
B Anwendungen der Differenzialrechnung Kurvendiskussionen Um den Verlauf eines Funktionsgraphen zu bestimmen, kann eine Wertetabelle aufgestellt werden. Dies kann jedoch sehr mühselig sein und es ist nicht
Mathematik: Mag. Schmid Wolfgang+ LehrerInnenTeam ARBEITSBLATT 6-8 UMKEHRAUFGABEN ZUR KURVENDISKUSSION
Mathematik: Mag. Schmid Wolfgang LehrerInnenTeam ARBEITSBLATT 6-8 UMKEHRAUFGABEN ZUR KURVENDISKUSSION Wir wollen uns zu diesem Aufgabenbereich noch einige komplexere Aufgabenstellungen überlegen: Beispiel:
4.1 Stammfunktionen: das unbestimmte Integral
Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung
Mathematik W7. Mag. Rainer Sickinger LMM, BR. v 1 Mag. Rainer Sickinger Mathematik W7 1 / 25
Mathematik W7 Mag. Rainer Sickinger LMM, BR v 1 Mag. Rainer Sickinger Mathematik W7 1 / 25 Problem Angenommen wir haben eine quadratische Funktion ϕ : R R mit ϕ(x) = 1 3 x 2 2 3x 1 und wir wollen die Nullstellen
1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:
Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.
Mathematik für Informatik 3
Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:
Übungen: Tangenten an ganzrationale Funktionen Lösungen und Lösungshinweise
Übungen: Tangenten an ganzrationale Funktionen Lösungen und Lösungshinweise Aufgabe 1: Bestimme jeweils die 1. Ableitung der Funktionen. a) f(x) = (2 + x)(x² + 1) / Ausmultiplizieren = 2x² + 2 + x³ + x
