Mathematik - Antwortblatt Klausur
|
|
|
- Hella Dresdner
- vor 9 Jahren
- Abrufe
Transkript
1 Mathematik - Antwortblatt Klausur Aufgabe: 0 Punkte a) Allgemein heißt eine Funktion f (x) stetig an der Stelle x 0, wenn die folgenden Bedingungen erfüllt sind (2 Punkte): f (x 0 )=lim h 0 f (x 0 + h) = lim h 0 f (x 0 h) Eine Funktion heißt stetig, wenn ( Punkt):... sie in jedem Punkt ihres Definitionsbereiches stetig ist. b) Überprüfung von f (x) an der Stelle x 0 =auf Stetigkeit! Funktionswert an der Stelle x 0 =( Punkt): f () = rechtsseitiger Grenzwert (2 Punkte): limf ( + h) = lim h 0 h 0 2p 5(+h) = linksseitiger Grenzwert (2 Punkte): lim h 0 f ( h) =lim h 0 (a +ln( h)) = a Die Funktion f (x) ist an der Stelle x 0 =für folgende Parameterwerte von a stetig (2 Punkte): a =.
2 2 Aufgabe: 5 Punkte a) Allgemeine Formel zur Berechnung der Inversen der Matrix A lautet ( Punkt): A = (ad bc) Ã d c b a! b) Inverse von X lautet (2 Punkte): X = 6(x 2 ) Ã x ! c) Begründung ( Punkt): Die Determinante 6(x 2 ) muss 6= 0sein, damit der Nenner definiert ist. Einschränkung für die Parameterwahl von Parameter x ( Punkt): x 6= ±. 2
3 3 Aufgabe: 30 Punkte a) Die Lagrangefunktion lautet (3 Punkte): L = A +4K {z } λ A K {z T }. Kosten Nebenbedingung Bedingungen erster Ordnung (6 Punkte): L () = 0.5λ A K =0 λ =2 A A K bzw. =0.5λ A K L (2) =4 0.5λ A K K =0 λ =8 A K bzw. 4=0.5λ A K L (3) = A K + T =0 λ Alternative Rechenwege: ) = 2) 2 A K =8 A K A =4K oder () KA 0,5 (2) 4 0.5λ AK 0,5 4 A A =4K K oder A eingesetzt in (3) ergibt den kostenminimalen Faktoreinsatz in Abhängigkeit vom zu produzierenden Endprodukt T : Hier: K in (3): T = A K = 4K K =2K Kostenminimaler Faktoreinsatz lautet (6 Punkte): A =2T und K = T 2. b) Die Produktionselastizität des Faktors Arbeit und Kapital ist wie folgt definiert (2 Punkte): ε T,A = T A A T ε T,K = T K K T Die Produktionselastizität des Faktors Arbeit (2 Punkte): T = A K T/ A = K 2 A ε T,A = K 2 A A A K = 2 Die Produktionselastizität des Faktors Kapital (2 Punkte): T = A K T/ K = A 2 K ε T,K = T K K T = A 2 K K A K = 2 3
4 c) Die Kostenfunktion im Minimum lautet (2 Punkte): C = A +4K =4T Die Veränderung der Kosten im Minimum lautet (3 Punkte): C T =4 d) Der Lagrange-Parameter bedeutet ökonomisch (4 Punkte): Der Lagrange-Parameter λ im Kostenminimum entspricht den Grenzkosten. 4
5 4 Aufgabe: 5 Punkte a) Bitte übertragen Sie die Spieler, Strategien und Auszahlungen in den Spielbaum! (5 Punkte) Zeitpunkt t 0 : A Auszahlungen Summe Spieler: A B sparen aufteilen Teilspiel t : B sparen aufteilen t 2 : A aufteilen b) Eine Teilspiel ist wie folgt definiert (3 Punkte): Ein Teilspiel ist ein Spiel, das in einem einzelnen Entscheidungsknoten des Spielbaums beginnt und alle Knoten, die diesem Knoten nachfolgen enthält. Ein Beispiel für ein Teilspiel ist in den Spielbaum von a) eingetragen (2 Punkte). Beachte: A trifft int 2 keine Entscheidung! c) Entscheidung: Spieler B wählt in t (2 Punkte): aufteilen Spieler A wählt in t 0 (2 Punkte): aufteilen Teilspielperfektes Gleichgewicht ( Punkt): A in t 0 aufteilen 5
6 5 Aufgabe: 20 Punkte a) Übertragen Sie die Payoffs in die Matrix und zeichnen Sie das Abweichungsdiagramm (5 Punkte)! Spieler a b W keiten Spieler 2 c d 4 4 NGG NGG 2 8 p - p W keiten q - q Gleichgewicht(e)inreinenStrategien(2Punkte):(a, c) und (b, d) b) Gleichgewicht(e) in gemischten Strategien: Payoff Spieler (2 Punkte): P =4pq +4p ( q)+0+2( p)( q) =2p 2q +2pq +2 Beste Antwort von Spieler (2 Punkte): P q =2p 2= Payoff Spieler 2 (2 Punkte): 0 p = q beliebig(indiff erent) für 0 p< q =0 P 2 =6pq +6p ( q)+2q ( p)+8( p)( q) =6pq 6q 2p +8 Beste Antwort von Spieler 2 (2 Punkte): + q> p = 3 P 2 =6q 2 p 0 für q = pbeliebig(indifferent) 3 0 q< p =0 3 6
7 Graphische Darstellung der Gleichgewichte in reinen und gemischten Strategien (5 Punkte): NGG in den reinen und gem. Strategien: p = q = 0 NGG: b, d /3 q p (q) NGG in den gem. Strategien q (p) NGG in den reinen und gem. Strategien: p = q = NGG: a, c 0 p 7
8 6 Aufgabe: 8 Punkte a) Die Stammfunktion von h (y) =y y lautet (3 Punkte): H (y) = 3 y3 +2lny b) Funktion umschreiben: f(x) = x e x Z =(x ) e x (x ) e x dx Partielle Integration von f(x) = x e x u (x) = e x u 0 (x) =e x mit Nebenrechnung (2 Punkte): v (x) =(x ) v 0 (x) = Die Stammfunktion Z lautet (3 Punkte): Z F (x) = (x ) e x dx = e x (x ) e x dx F (x) = xe x 8
9 7 Aufgabe: 20 Punkte a) Bedingungen erster Ordnung (2 Punkte): f x =2ax + y +2=0 f y =2by + x +2=0 2ax + y = 2 x +2by = 2 Die Übertragung der Gleichungen in den Gauß-Algorithmus sieht wie folgt aus ( Punkt): x y RS 2a 2 : 2a 2b 2 Zwischenschritte: x y RS 2a a 2b 2 II-I 2a 4ab 0 2a a 2a a 2a 4ab Die letzte Stufe nach Anwendung des Gauß-Algorithmus sieht wie folgt aus (3 Punkte): x y RS 2a 0 a 2( 2a) 4ab Optimale Werte (2 Punkte): x = 2( 2b) y = 2( 2a) 4ab 4ab b) Matrix zweiter Ableitungen (4 Punkte): Ã! Ã! D 2 f f = xx f xy 2a = 2b f yx f yy 9
10 c) Minimum: Allgemeine Vorzeichenbedingungen ( Punkt): Det > 0, f xx > 0 und f yy > 0. Parameterbedingungen für f (x, y) (3 Punkte): f xx > 0 für a>0 f yy > 0 für b>0 Det =4ab > 0 für ab > 4 bzw. a> 4b. Sattelpunkt: Allgemeine Vorzeichenbedingungen ( Punkt): Det < 0. Parameterbedingungen für f (x, y) (3 Punkte): Det =4ab < 0 für ab < bzw. a< 4 4b 0
11 8 Aufgabe: 2 Punkte Die Formel für eindimensionale Funktionen an der Stelle x 0 lautet für: lineare Approximation ( Punkt): ef (x 0 )=f (x 0 )+f x (x 0 )(x x 0 ) quadratische Approximation ( Punkt): e f (x 0 )=f(x 0 )+f x (x 0 )(x x 0 ) + {z } f 2 xx (x 0 )(x x 0 ) 2 f(x 0 ) Umformung der Funktion: f (x) = Die Ableitungen lauten (2 Punkte): f x (x) = 2 x 3 2 f xx (x) = 3 4 x 5 2 q x = x 2 Die Funktionswerte an der Stelle x 0 =lauten (3 Punkte): f () = f x () = f 2 xx () = 3 4 Für f (x) lautet die lineare ApproximationanderStellex 0 =(3 Punkte): ef (x) =f () + f x () (x ) = (x ) 2 ef (x) = (3 x) 2 Für f (x) lautet die quadratische Approximation an der Stelle x 0 = (3 Punkte) e f (x) =f () + f x () (x ) + f 2 xx () (x ) 2 = (3 x)+ 3 (x ) e e f (x) = 8 (3x2 0x +5)
Mathematik 3 für Informatik
Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4
Lösungen der Aufgaben zu Kapitel 9
Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x
z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix
Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i
Kapitel 6 Differential- und Integralrechnung in mehreren Variablen
Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Inhaltsverzeichnis FUNKTIONEN IN MEHREREN VARIABLEN... 3 BEISPIELE UND DARSTELLUNGEN... 3 GRENZWERT UND STETIGKEIT (ABSTANDSBEGRIFF)...
Extremwerte von Funktionen mehrerer reeller Variabler
Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein
Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12
Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3
Anwendungen der Differentialrechnung
KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle
Klausur Mathematik 2
Mathematik für Ökonomen WS 215/16 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 16.2.216, 13:3-15:3 Uhr (12 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib- und Zeichengeräte.
MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer
Klausur Mathematik, 1. Oktober 2012, A
Klausur, Mathematik, Oktober 2012, Lösungen, A 1 Klausur Mathematik, 1. Oktober 2012, A Die Klausureinsicht ist Do, 8.11.2012 um 18:00 in MZG 8.136. Die Klausur ist mit 30 Punkten bestanden. Falls Sie
Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester
Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 04 5.07.04 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................
a,b,c a,b,d a,d,e b,c,e c,d,e ( ) ( ) ( ) ( ) ( )
Klausur, Mathematik, Juli 2012, A 1 [ 1 ] Bestimmen Sie Y und C in dem makroökonomischen Modell Y = C + Ī C = a + by mit a = 300, b = 0.7 und Ī = 600. Y = C = [ 2 ] Die folgenden Aussagen befassen sich
Lösungen zu Mathematik I/II
Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx
(a), für i = 1,..., n.
.4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung
Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker
Apl. Prof. Dr. W.-P. Düll Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen inf, swt Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer Zettel mit Namen und
Lösungsvorschlag zur Nachklausur zur Analysis
Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x
Prüfung zur Vorlesung Mathematik I/II
Prof. W. Farkas ETH Zürich, Februar 2018 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total
Nachklausur Analysis 2
Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik
Wirtschaftsmathematik: Formelsammlung (V1.40)
Wirtschaftsmathematik: Formelsammlung (V.40) Grundlagen n! = 2 3... n = 0! = n i für n N, n 0, i= pq-formel Lösung von x 2 + px + q = 0 x /2 = p p 2 ± 2 4 q abc-formel Lösung von ax 2 + bx + c = 0 Binomische
Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) =
Karlsruher Institut für Technologie (KIT Institut für Analysis Priv-Doz Dr P C Kunstmann Dipl-Math D Roth SS 0 7060 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8 Übungsblatt
Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung
TU Bergakademie Freiberg Sommersemester Dr. Gunter Semmler Dr. Anja Kohl Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung Differentialrechnung für Funktionen
Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4
Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)
Gegeben: Die beiden Funktionen (a x) 2, 0 x < 1
SoSe 216 H-Aufgaben sind weiteres, bunt gemischtes Übungsmaterial, das teilweise auch, wenn die Zeit reicht, in den Tutorien besprochen wird. Im Laufe des Semesters erhalten Sie zu diesen Aufgaben Ergebniskontrollen
Klausur zur Mathematik III. Variante A
Lehrstuhl C für Mathematik (Analysis) Prof. Dr. Oliver Schaudt Aachen, den 21.02.2018 Klausur zur Mathematik III WS 2017/18 Variante A Name Matrikelnr. Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel
Klausur Mathematik I
Klausur Mathematik I (E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). September 7 (Hans-Georg Rück) Aufgabe (6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft Re(z) = und (z
Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Höhere Mathematik Teil
Prof. Dr. Guido Schneider Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen el, kyb, mecha, phys, tpel Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer
Inverse und implizite Funktionen
Kapitel 8 Inverse und implizite Funktionen Josef Leydold Mathematik für VW WS 2017/18 8 Inverse und implizite Funktionen 1 / 21 Inverse Funktion Sei f : D f R n W f R m, x y = f(x). Eine Funktion f 1 :
1 Übungsaufgaben zu Kapitel 1
Übungsaufgaben zu Kapitel. Übungsaufgaben zu Abschnitt... Aufgabe. Untersuchen Sie die nachstehend definierten Folgen ( a k ) k und ( b k ) k auf Konvergenz und bestimmen Sie ggf. den jeweiligen Grenzwert:
Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A =
Stroppel Musterlösung 4. 9., 8min Aufgabe 5 Punkte Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit 4 A =. Weiter sei b = 3 gegeben. Entscheiden Sie jeweils, ob die durch gekennzeichneten freien
Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )}
Die Tangentialebene Der Graph der linearen Approximation ist Tangentialebene an den Graph der Funktion. In Symbolen: Es sei D R 2. Es sei f : D R, (x, y) f(x, y) differenzierbar. Dann ist {(x, y, z) z
Mathematik II: Übungsblatt 03 : Lösungen
N.Mahnke Mathematik II: Übungsblatt 03 : Lösungen Verständnisfragen 1. Was bestimmt die erste Ableitung einer Funktion f : D R R im Punkt x 0 D? Die erste Ableitung einer Funktion bestimmt deren Steigung
Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix
Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta
Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag
Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien
Prof. Steinwart Höhere Mathematik I/II Musterlösung A =
Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,
Lösungen der Aufgaben zu Kapitel 10
Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist
Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2
Lösung zur Prüfung HM, el+phys+kyb+geod, Teil Universität Stuttgart Fachbereich Mathematik Institut für Analysis, Dynamik und Modellierung 9.7.6 Name Vorname Matr.-nummer Raum Anmerkungen zur Korrektur:...
Rückblick auf die letzte Vorlesung. Bemerkung
Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D
Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie
Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Def.: eine Funktion n f :D mit D,x (x,...x
Übung 5, Analytische Optimierung
Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =
Musterlösung Klausur zu Analysis II. Verständnisteil
Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex
Klausur zum Grundkurs Höhere Mathematik I
Name, Vorname: Studiengang: Matrikelnummer: 2 4 5 6 Z Punkte Note Klausur zum Grundkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 22. Februar 2007, 8.00 -.00 Uhr Zugelassene
Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik
Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik (Aufgaben aus Klausuren). Bestimmen und skizzieren Sie in der Gaußschen Zahlenebene
Klausur Mathematik 2
Mathematik für Ökonomen WS 2009/10 Campus Duisburg U. Herkenrath/H. Hoch, Fachbereich Mathematik Klausur Mathematik 2 09. Febr. 2010, 16:00 18:00 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-
Stroppel Musterlösung , 180min
Stroppel Musterlösung 040907, 80min Aufgabe (8 Punkte) (a) Seien A, D, T R d d für ein d N Weiter sei T invertierbar und es gelte T AT D Zeigen Sie durch vollständige Induktion, dass A n T D n T gilt für
Aufgabe 1 (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen:
Mathematik für Wirtschaftswissenschaftler im SoSe 24 Lösungsvorschläge zur Klausur im SoSe 24 Aufgabe (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen: z = ( + i) 2 w = + i. Stellen Sie jeweils
Aufgabensammlung zum UK Mathematische Optimierung
Aufgabensammlung zum UK Mathematische Optimierung Mehrdimensionale Analysis Stetigkeit. Man bestimme den natürlichen Definitionsbereich D f der folgenden Funktionen f: a) f(x, y) = ln(x y ) b) f(x, y)
Mathematik für Ökonomen WS 2016/17 Campus Duisburg Prof. Dr. V. Krätschmer, Fakultät für Mathematik. Test-Klausur
Mathematik für Ökonomen WS 2016/17 Campus Duisburg Prof. Dr. V. Krätschmer, Fakultät für Mathematik Test-Klausur geplante Bearbeitungszeit: 120 Minuten Auf den folgenden Seiten finden Sie eine Test-Klausur.
Funktionen in zwei (und mehreren) Veränderlichen
Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstsemester 8 Funktionen in zwei (und mehreren) Veränderlichen Inhalt: 1. Definition und Beispiele.
Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester
Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester 2015 14.07.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................
Abschlussprüfung Mathematik 12 Nichttechnik A I - Lösung
GS.06.0 - m_nt-a_lsg_gs.pdf Abschlussprüfung 0 - Mathematik Nichttechnik A I - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f mit f( x) D f = IR. x x x mit der Definitionsmenge Teilaufgabe. (7
Übungen zum Ferienkurs Analysis II
Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,
Mathematik II für Inf und WInf
Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell
Übungsaufgaben zu den mathematischen Grundlagen von KM
TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4
Serie 13: Online Test
D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.
18.2 Implizit definierte Funktionen
18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir
Wirtschaftsmathematik Formelsammlung
Wirtschaftsmathematik Formelsammlung Binomische Formeln Stand März 2019 (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) (a b) = a 2 b 2 Fakultät (Faktorielle) n! = 1 2 3 4 (n 1) n Intervalle
Klausur Mathematik II
Technische Universität Dresden. Juli 8 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. M. Herrich Klausur Mathematik II Modul Dierentialgleichungen und Dierentialrechnung für Funktionen mehrerer
Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten
Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II am 5.8.25, Zeit: 2 Minuten Aufgabe (3 Punkte Eine Bakterienkultur hat eine stetige Wachstumsrate von % pro Stunde. Wie
Klausur Mathematik I
Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.
Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...
................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik
Nachklausur zur Analysis 2, SoSe 2017
BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)
2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!
Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion
Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt
Mathematik I für MB und ME
Mathematik I für MB und ME Übungsaufgaben Serie 5: Folgen Funktionen Dierentialrechnung Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 206/207 Bestimmen Sie die Grenzwerte der nachstehenden
10 Extremwertaufgaben, dreidimensional
Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq 10 Extremwertaufgaben, dreidimensional 3D: Notwendige Bedingung für das Auftreten eines
LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung
LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet
Probeklausur zur Analysis 2, SoSe 2017
BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen
Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,
Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.
(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z
Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (
BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften
Musterl osung BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Analysis II Klausur WS 211/212 Prof. Dr. Hartmut Pecher 3.2.212, 9:15 Uhr Name Matr.Nr. Studienfach Fachsemester
Klausur zur Mathematik für Maschinentechniker
SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,
Ableitungen von Funktionen
Kapitel 8 Ableitungen von Funktionen 8. Der Begriff der Ableitung Aufgabe 8. : Prüfen Sie mit Hilfe des Differenzenquotienten, ob folgende Funktionen an den gegebenen Stellen x 0 differenzierbar sind.
Prüfung zur Vorlesung Mathematik I/II
Prof. Dr. E. W. Farkas ETH Zürich, Februar 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total
Prof. Steinwart Höhere Mathematik I/II Musterlösung A =
Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A
