4. Differentialgleichungen
|
|
|
- Arwed Grosser
- vor 9 Jahren
- Abrufe
Transkript
1 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas Seite 1
2 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter einer Differentialgleichung versteht man - ganz grob gesagt - eine Gleichung, in der unbekannte Funktionen, ihre Variablen und ihre Ableitungen vorkommen. Die Lösung einer solchen Gleichung sind Funktionen, welche die durch die Gleichung gegebenen Bedingungen erfüllen Differentialgleichungen Seite 2
3 Beispiel: Wachstum von Populationen N(t) = Grösse der Population zur Zeit t. Wachstumsgeschwindigkeit: N N (t) = lim t 0 t Wachstumsrate: N (t) N(t) = 1 dn N dt Das Wachstumsverhalten von Populationen lässt sich mit Hilfe von Differentialgleichungen darstellen Differentialgleichungen Seite 3
4 Unbeschränktes Wachstum Gegeben: N 0 = N(0), λ > 0 Wachstumsverhalten: N (t) = λn(t) > 0 Mit Hilfe der Wachstumsrate erhält man: N N N = dn = λn dn dt λn = d dn 1 λn = dt N dn = λ N = e λt+c = e c e λt ec =K = Ke λt dt = λt ln(n) = λt + c Die Anfangsbedingung für t = 0 ist erfüllt, falls N(0) = K Differentialgleichungen Seite 4
5 Unbeschränktes Wachstum exponentielle Wachstumsfunktion: N(t) = N 0 e λt ; (λ > 0) N N(t) N 0 t Die Population wächst immer schneller unbegrenzt weiter. Verdoppelungszeit: T = ln(2) λ N(t + T ) = 2N(t) Differentialgleichungen Seite 5
6 Einfach Beschränktes Wachstum Gegeben: N 0 = N(0), λ, B > 0 Wachstumsverhalten: N (t) = λ(b N(t)) > 0 Mit Hilfe der Wachstumsrate erhält man: N N = dn dn = λ(b N) dt λ(b N) = dt dn λ(b N) = 1 dt B N dn = λ dt = λt N ln(b N) = λt + c ln(b N) = (λt + c) N = B e (λt+c) = B Ke λt Die Anfangsbedingung für t = 0 ist erfüllt, falls K = B N(0) Differentialgleichungen Seite 6
7 Einfach Beschränktes Wachstum einfach beschränkte Wachstumsfunktion: N(t) = B (B N 0 )e λt ; (λ, B > 0) N B N(t) N 0 lim t N(t) = lim t (B (B N 0 )e λt ) = B B = Endgrösse der Population t Differentialgleichungen Seite 7
8 Logistisches Wachstum Gegeben: N 0 = N(0), λ, B > 0 Wachstumsverhalten: N (t) = λn(t)(b N(t)) > 0 Mit Hilfe der Wachstumsrate erhält man: N N = dn dn = λn(b N) dt λn(b N) = dt dn λn(b N) = 1 dt N(B N) dn = λ N dt = λt Der Bruch lässt sich vereinfachen: 1 N(B N) = 1 (B N) + N = 1 B N(B N) B ( 1 N + 1 ) B N Differentialgleichungen Seite 8
9 Logistisches Wachstum Berechnet man das Integral, so erhält man: ( 1 1 B N + 1 ) dn = λt 1 (ln(n) ln(b N)) = λt + c B N B ( ) N ln = λbt + c N B N B N = eλbt+ c N = Be λbt+ c Ne λbt+ c N = = B BeλBt+ c Be c 1 + e = e λbt c e =K λbt+ c 1 + e c e λbt 1+Ke λbt Ke λbt = B 1 K e λbt + 1 N(1 + e λbt+ c ) = Be λbt+ c 1/K =L = = BKeλBt B 1 + Le λbt 1 + Ke λbt Die Bedingung für t = 0 ist erfüllt, falls N(0) = B L = B N(0). 1+L N(0) Differentialgleichungen Seite 9
10 Logistisches Wachstum logistische Wachstumsfunktion: B N N(t) = BN 0 N 0 + (B N 0 )e λbt ; (λ, B > 0) B/2 N(t) N 0 t lim t N(t) = B B = Endgrösse der Population Wendepunkt in N = B/ Differentialgleichungen Seite 10
11 Explizite Differentialgleichung erster Ordnung F : R 2 R (stetige) Funktion in zwei Variablen. Gesucht: Gesamtheit aller differenzierbaren Funktionen y = y(x) so, dass y = F(x, y). explizit : y direkt durch x und y ausgedrückt. erster Ordnung : Es kommen höchstens erste Ableitungen vor. Lösung der Differentialgleichung: Funktion y = y(x), welche der Gleichung y = F(x, y) genügt. Spezialfälle: y = F(x), y = F(y) Differentialgleichungen Seite 11
12 Beispiele von Differentialgleichungen Am Beispiel des Wachstumsverhaltens von Populationen haben wir bereits verschiedene Differentialgleichungen gelöst. In einfachen Fällen lässt sich eine Differentialgleichung auch durch Erraten lösen: Differentialgleichung Lösung y = 2x y = 2xy y = x 2 + c y = ce x2 Sehr wichtig ist die Feststellung, dass die Lösung einer Differentialgleichung (1. Ordnung) nie eindeutig bestimmt ist, sondern noch eine Konstante (c) enthält. Jeder Wert von c liefert eine Lösung der Differentialgleichung Differentialgleichungen Seite 12
13 Richtungsfeld zu einer Differentialgleichung Gegeben ist die Differentialgleichung: y = F(x, y) y = y(x) ist die Lösung dieser Gleichung. Wir wissen, dass die Steigung der Lösungskurve, die durch (x 0, y 0 ) läuft, an der Stelle (x 0, y 0 ) durch F(x 0, y 0 ) gegeben ist. Somit können wir die Steigung der Lösungskurve an bestimmten Punkten berechnen, ohne die Lösungsfunktion f (x) zu kennen. Mit Hilfe eines Richtungsfelds lässt sich der Verlauf der Lösungskurven näherungsweise erkennen Differentialgleichungen Seite 13
14 Richtungsfeld zu einer Differentialgleichung Richtungsfeld: In (x, y) wird eine kleine Strecke mit Steigung F(x, y) eingetragen. Lösungen: Kurven, die dem Richtungsfeld folgen Differentialgleichungen Seite 14
15 Lineare Differentialgleichung erster Ordnung Definition: Eine Differentialgleichung erster Ordnung heisst linear, wenn sie die Form y = p(x)y + q(x) hat, wobei p und q Funktionen von x sind. Es werden zwei Fälle unterschieden: Eine lineare Differentialgleichung heisst homogen, wenn q(x) = 0 ist, andernfalls nennt man sie inhomogen Differentialgleichungen Seite 15
16 Lineare Differentialgleichung erster Ordnung P(x) = beliebige Stammfunktion von p(x) ( p(x)dx = P(x)) K = eine beliebige Konstante Lösung der homogenen Gleichung: y = Ke p(x)dx = Ke P(x) Kontrolle: y = Ke P(x) P (x) = Ke P(x) p(x) = p(x)y Differentialgleichungen Seite 16
17 Lineare Differentialgleichung erster Ordnung Lösung der inhomogenen Gleichung: Ansatz: Variation der Konstanten: K K (x) y (x) = K (x)e P(x) + K (x)p (x)e P(x) y = K (x)e P(x) = K (x)e P(x) + p(x)k (x)e P(x) = K (x)e P(x) + p(x)y(x) K (x)e P(x) + p(x)y(x) = p(x)y(x) + q(x) K (x)e P(x) = q(x) K (x) = q(x)e P(x) K (x) = q(x)e P(x) dx ( y = ) q(x)e P(x) dx e P(x) Differentialgleichungen Seite 17
18 Lösungsverfahren für lineare Dgl. 1. Ordnung Zu lösen: y = p(x)y + q(x) (1) 1. Löse die zugehörige homogene Dgl. erster Ordnung, nämlich y = p(x)y. (2) Lösung: y = Ke P(x) ; (K R ; P(x) = p(x)dx) 2. Mache den Ansatz Variation der Konstanten : y = K (x)e P(x) (3) 3. Setze (3) in (1) ein. Dies führt zu einer Dgl. für K (x). 4. Löse diese neue Dgl. nach K (x) auf. 5. Setze die gefundene Lösung für K (x) in (2) ein. Nun erhält man die Lösung von (1) Differentialgleichungen Seite 18
19 Allgemeine und spezielle Lösungen Allgemeine Lösung : Gesamtheit aller Lösungen der Dgl. Spezielle Lösung : einzelne Lösung Eine spezielle Lösung der Dgl. y = p(x)y + q(x) ist festgelegt durch eine Anfangsbedingung y(x 0 ) = y 0 y spezielle Lösung mit y(x 0 ) = y 0 Lösungskurve durch (x 0, y 0 ) y 0 weitere Lösungen x 0 x Differentialgleichungen Seite 19
20 Allgemeine und spezielle Lösungen Form der allgemeinen Lösung von y = p(x)y + q(x) : y = y i + c y h y i = spezielle Lösung von y = p(x)y + q(x) = Lösung der inhomogenen Gleichung y h = spezielle Lösung von y = p(x)y ; y h 0 = Lösung der homogenen Gleichung c = eine beliebige Konstante Differentialgleichungen Seite 20
21 Separation der Variablen - Lösungsmethode Zu lösen: y = r(x)s(y) 1. Schreibe die Differentialgleichung in der Form dy dx = r(x)s(y). 2. Separiere y links von =, x rechts von = dy s(y) = r(x)dx. 3. Bilde auf beiden Seiten das unbestimmte Integral dy s(y) = r(x)dx S(y) = R(x) + c. S(y) = Stammfunktion von 1/s(y), R(x) = Stammfunktion von r(x) 4. Löse (wenn möglich) die Gleichung nach y auf. Dies liefert y = y(x) Differentialgleichungen Seite 21
22 Singuläre Lösungen Singuläre Lösungen der Differentialgleichung y = r(x)s(y) können auftreten, wenn die Funktion s(y) nicht linear ist. Diese Lösungen sind nicht in der durch S(y) = R(x) + c bestimmten Lösungsschar enthalten. Es handelt sich um konstante Funktionen y mit s(y) = Differentialgleichungen Seite 22
23 Singuläre Lösungen - Beispiel Zu lösen: y = 2x(y 1) 2 Durch die Separation der Variablen erhalten wir: dy dx = 2x(y 1)2 dy (y 1) = 2xdx dy 2 (y 1) = 2 1 y 1 = x2 + c y = 1 1 x 2 + c Allgemeine Lösung: Singuläre Lösung: y = 1 1 x 2 + c y 1 Für keine Wahl von c erscheint y = 1! 2xdx Differentialgleichungen Seite 23
24 Singuläre Lösungen:.. anschaulich y c = 1 c = 2 c = 1 c = 2 y = 1 x c = 0.5 c = 0 Singuläre Lösung y 1 Grenzkurve der allgemeinen Lösungsschar für c ± Differentialgleichungen Seite 24
16. EINIGE LÖSUNGSMETHODEN
134 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
6 Differentialgleichungen
93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung
5.4 Uneigentliche Integrale
89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.
6 Differentialgleichungen
88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung
6 Gewöhnliche Differentialgleichungen
6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige
4 Gewöhnliche Differentialgleichungen
4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten
Die Differentialgleichung :
Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen
Mathematische Methoden für Informatiker
Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen
12 Gewöhnliche Differentialgleichungen
2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert
Lösungen der Aufgaben zu Kapitel 10
Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist
1 Einführung, Terminologie und Einteilung
Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen
Kapitel 7. Differenzengleichungen
apitel 7 Differenzengleichungen I n h a ltsverze ichnis DIFFERENZENGLEICHUNGEN... 3 EINFÜHRUNG UND BEISPIELE... 3 DIFFERENZENGLEICHUNG 1. ORDNUNG... 3 ELEMENTARE DIFFERENTIALGLEICHUNGEN... 4 GEWÖHNLICHE
Differenzialgleichungen erster Ordnung
Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2
Gewöhnliche Differentialgleichungen Aufgaben, Teil 1
Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe
Lösung - Schnellübung 13
D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim
8.1 Begriffsbestimmung
8 Gewöhnliche Differentialgleichungen 8 Gewöhnliche Differentialgleichungen 8.1 Begriffsbestimmung Wir betrachten nur Differentialgleichungen für Funktionen einer (reellen) Variablen. Definition: Für eine
Serie 13: Online Test
D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.
6.2 Lineare Differentialgleichungen erster Ordnung
98 6.2 Lineare Differentialgleichungen erster Ordnung Eine Differentialgleichung erster Ordnung heisst linear, wenn sie auf die Form y = p(x)y +q(x) (I) gebracht werden kann. Die DGL y = p(x)y (H) heisst
Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016
Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)
Lineare Differentialgleichungen 1. Ordnung
Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl
Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik
Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.5.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.
unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x
Lineare Differentialgleichungen höherer Ordnung
Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine
Übungen zum Ferienkurs Analysis II
Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,
Mathematische Methoden der Physik I
Karl-Heinz otze Mathematische Methoden der Physik I Nachschrift des Vorlesungs-Manuskripts und A TEX-Satz von Simon Stützer Jena, November 2009 Inhaltsverzeichnis 9 Gewöhnliche Differentialgleichungen
MATHEMATISCHE METHODEN DER PHYSIK 1
MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen
Trennung der Variablen, Aufgaben, Teil 1
Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g
Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )
TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare
Prüfung zur Vorlesung Mathematik I/II
Prof. Dr. E. W. Farkas ETH Zürich, August 015 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Vollständigkeit
Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa
103 Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Was bedeutet das für die Ableitungen? Was ist eine
Einfache Differentialgleichungen (algebraische Lösung)
Einfache Differentialgleichungen (algebraische Lösung) 0. Definition, Einschränkung Definition: Sei die Funktion mit Gleichung = f() n-mal differenzierbar. Gilt F(,,,,, (n) ) = 0 (für alle ), so erfüllt
Musterlösungen Serie 9
D-MAVT D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Serie 9 1. Frage 1 Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : x sin x als Lösung besitzt. Welche der folgenden
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (
Lineare DGL. Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3
Lineare DGL Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3 Die zugehörige homogene Gleichung ist dann 2x+y = 0 Alle Lösungen (allgemeine Lösung)
5 Gewöhnliche Differentialgleichungen
5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und
Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4
Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)
Lösung zur Übung 19 SS 2012
Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die
MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 10: Gewöhnliche Differentialgleichungen Prof. Dr. Erich Walter Farkas Mathematik I+II, 10. Diff. Gl. 1 / 59 1 Differentialgleichungen
Kapitel L. Gewöhnliche Differentialgleichungen
Kapitel L Gewöhnliche Differentialgleichungen Inhalt dieses Kapitels L000 1 Erste Beispiele von Differentialgleichungen 2 Exakte Differentialgleichungen 3 Fazit: Existenz, Eindeutigkeit, Lösungsmethoden
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 20/202 Mathematik für Anwender I Vorlesung 30 Gewöhnliche Differentialgleichungen mit getrennten Variablen Definition 30.. Eine Differentialgleichung der Form y = g(t)
y hom (x) = C e p(x) dx
Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)
Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y
Apl. Prof. Dr. N. Knarr Musterlösung , 120min
Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die
Lineare gewöhnliche Differentialgleichungen und Randwertprobleme
Kapitel Lineare gewöhnliche Differentialgleichungen und Randwertprobleme Eine Differentialgleichung (DGL) ist eine Gleichung, in der die Variable x, die gesuchte Funktion y(x) sowie deren Ableitungen vorkommen.
Prüfungsvorbereitungskurs Höhere Mathematik 3
Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit
Mathematischer Vorkurs Lösungen zum Übungsblatt 3
Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester [email protected] Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (
Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.
Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ
Gewöhnliche Differentialgleichungen
Gewöhnliche Differentialgleichungen Vorbemerkungen. Eine gewöhnliche Differentialgleichung ist eine Gleichung, wo neben einer gesuchten Funktion y(x) auch deren Ableitungen y, y etc. auftreten, z.b. y
Mathematik II Frühlingsemester 2015 Kapitel 11: Gewöhnliche Differentialgleichungen
Mathematik II Frühlingsemester 2015 Kapitel 11: Gewöhnliche Differentialgleichungen www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
2.5 Lineare Differentialgleichungen n-ter Ordnung
2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,
H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur
H. Schmidli Mathematik für Physiker WS / Lösung der Klausur. a) Zähler und Nenner konvergieren gegen. Somit verwenden wir die Regel von L Hospital e sin x x x e cos x (cos x)e sin x x (sin x)e cos x x
Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I
Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also
Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder
DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/
Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37
Höhere Mathematik III
Universität Stuttgart Fachbereich Mathematik Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani Blatt 5 Höhere Mathematik III el, kb, mecha, phs Vortragsübungen (Musterlösungen) 7..4 Aufgabe
Mathematik 1 für Naturwissenschaften
Hans Walser Mathematik für Naturwissenschaften Modul 0 Differenzialgleichungen, Wachstum Hans Walser: Modul 0, Differenzialgleichungen, Wachstum ii Inhalt Einführung: Wachstum.... Beispiel: 50% Wachstum
Skalare Differenzialgleichungen
3 Skalare Differenzialgleichungen Differenzialgleichungen stellen eine Beziehung her zwischen einer oder mehreren Funktionen und ihren Ableitungen. Da Ableitungen Veränderungen beschreiben, modellieren
Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!
Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,
Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 8.1 (Herbst 2002, Thema 1, Aufgabe 6) y = 3y +2x x 8.2 (Frühjahr 2005, Thema 1, Aufgabe 6) (x > 0) y(1)
exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur
Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen
Prüfungsklausur Mathematik II für Bauingenieure am
HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Bauingenieure am 9.7.8 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 4 5 6 7 8 9 gesamt erreichbare P. 6 6 7 (5) (+5)
- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.
- 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel
Exakte Differentialgleichungen
Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte
Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen
MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass
5. Vorlesung Wintersemester
5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode
Exakte Differentialgleichungen
Kapitel 4 Exakte Differentialgleichungen 4.1 Kurvenscharen Sei D R 2 ein offenes und zusammenhängendes Gebiet. Dann kann man zu jeder D einfach überdeckenden Kurvenschar eine Differentialgleichung erster
4.1 Stammfunktionen: das unbestimmte Integral
Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung
Eine gewöhnliche Differentialgleichung ist eine. Funktionsgleichung, Die allgemeine Differentialgleichung n-ter Ornung für eine Funktion y = y (x) :
Gewöhnliche Differentialgleichung. Einleitung und Grundbegriffe Def.: Eine gewöhnliche Differentialgleichung ist eine Funktionsgleichung, die eine unbekannte Funktion = () sowie deren Ableitungen nach
Kleine Formelsammlung zu Mathematik für Ingenieure IIA
Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................
PROBEPRÜFUNG MATHEMATIK I UND II
PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant
Lösungen zu Mathematik I/II
Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx
Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten
Robert Labus Wintersemester 01/013 Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten Definition Ist n N eine natürliche Zahl und a k R für k = 1;...; n, dann wird die Abbildung
Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik
Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen
BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften
Musterl osung BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Analysis II Klausur WS 211/212 Prof. Dr. Hartmut Pecher 3.2.212, 9:15 Uhr Name Matr.Nr. Studienfach Fachsemester
