6 Differentialgleichungen
|
|
|
- Gabriel Weiss
- vor 9 Jahren
- Abrufe
Transkript
1 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung sind Funktionen y, welche die Gleichung erfüllen. Gewisse Differentialgleichungen sind uns schon in Kapitel 5 begegnet, nämlich in der Form y = f(x) wobei f eine gegebene reelle Funktion ist. Eine Lösung dieser Gleichung ist eine Stammfunktion y = y(x) = F(x) von f(x). Diese Lösung ist eindeutig bis auf eine Konstante c. Es gibt eine eindeutige Lösung, wenn zusätzlich eine sogenannte Anfangsbedingung vorgegeben ist, zum y(0) = 0. Differentialgleichungen kommen vor allem in der Physik vor, aber auch das Wachstumsverhalten von Populationen wird oft mit Hilfe von Differentialgleichungen beschrieben. Fruchtfliegen vermehren sich im Sommer unter idealen Bedingungen besonders schnell. Eine Biologin stellt fest, dass für die Wachstumsrate y (t) von Fruchtfliegen zum Zeitpunkt t die Beziehung y (t) = 1,5y(t) gilt. Dabei bezeichnet y(t) die Anzahl der Fruchtfliegen nach t Tagen. Am ersten Tag (zum Zeitpunkt t = 0) zählt sie 20 Fruchtfliegen. Mit wie vielen Fruchtfliegen muss sie nach einer Woche rechnen? Die Differentialgleichung im vorhergehenden nennt man Differentialgleichung (kurz DGL) erster Ordnung, weil nur y und die erste Ableitung von y vorkommen. Allgemein nennt man eine Differentialgleichung von n-ter Ordnung, wenn die n-te Ableitung von y die höchste in der Differentialgleichung vorkommenden Ableitung ist. Differentialgleichungen von erster Ordnung sind zum y = 0, y = f(x), y = ay +b, y = p(x)y +q(x), y = ay 2 +by +c. Differentialgleichungen von zweiter Ordnung sind zum y = 0, y +ay = 0, y +by +cy = cosx. 6.1 Differentialgleichungen erster Ordnung Exponentielles Wachstum Die Gleichung y = y (1) ist eine Differentialgleichung erster Ordnung. Genauer müsste man schreiben f (x) = f(x) für alle x R. Um aber anzudeuten, dass die Funktion f variabel ist, schreiben wir in diesem Kapitel statt f immer y, also y (x) = y(x) für alle x R. Und weil in dieser Gleichung y und nicht x gesucht ist, lassen wir in der Differentialgleichung wie oben das x einfach weg.
2 89 Eine Lösung der DGL (1) können wir erraten: Die Funktion y(x) = e x erfüllt die DGL (1), denn (e x ) = e x. Ist dies die einzige Lösung? Betrachten wir die DGL y = y geometrisch, indem wir in jedem Punkt (x,y) des Koordinatensystems y = y als Steigung einzeichnen. Dies nennt man ein Richtungsfeld. Eine Lösung y(x) der DGL y = y passt in dieses Richtungsfeld, denn die rot eingezeichneten Steigungen sind gerade Tangentenabschnitte an den Graphen von y(x). Im ersten Bild ist die Lösung y = e x eingezeichnet, denn für diese Lösung gilt die Anfangsbedingung y(0) = e 0 = 1. Im mittleren Bild gilt die Anfangsbedingung y(0) = 2, was durch die Funktion y(x) = 2e x erfüllt ist. Im Bild rechts sehen wir die Lösung y(x) = 1 2 ex, da dort die Anfangsbedingung y(0) = 1 2 gilt. Die allgemeine Lösung der Differentialgleichung y = y ist also gegeben durch y(x) = Ae x, wobei die Konstante A durch die Anfangsbedingung y(0) = Ae 0 = A bestimmt ist. Betrachten wir nun die leicht allgemeinere Differentialgleichung y = ay (2)
3 90 für eine reelle Zahl a. Für jede Konstante A ist die Funktion y(x) = Ae ax eine Lösung dieser DGL, und jede Lösung hat diese Form. Durch Ableiten können wir überprüfen, dass y(x) eine Lösung ist: Die Differentialgleichung (2) beschreibt also ein exponentielles Wachstum für a > 0, bzw. ein exponentieller Zerfall für a < 0, wobei die momentane Wachstums-, bzw. Zerfallsgeschwindigkeit y proportional vom Bestand y abhängt. Die Wachstumsrate von Fruchtfliegen aus dem zu Beginn des Kapitels ist genau von dieser Form, und zwar gilt y (t) = 1,5y(t), das heisst, a = 1,5. Die Lösung ist also von der Form y(t) = Ae 1,5t. Mit der Anfangsbedingung y(0) = 20 können wir A und damit die Lösung y(t) bestimmen: Nach einer Woche muss die Biologin bei idealen Bedingungen also bereits mit Fruchtfliegen rechnen! Beschränktes Wachstum y(7) = Wir verallgemeinern noch einmal und betrachten die Differentialgleichung y = ay +b (3) für reelle Zahlen a 0 und b. Um eine Lösung dieser Differentialgleichung zu finden, schreiben wir dy dx = y (x) = ay +b. Nun bringen wir die Variablen y auf die linke Seite und die Variablen x auf die rechte Seite und integrieren beide Seiten. dy dy = dx = ay +b ay +b = dx.
4 91 Wir erhalten und lösen diese Gleichung nach y auf: Die Differentialgleichung (3) hat also die allgemeine Lösung y(x) = Ae ax b a für eine Konstante A. Bei vielen Wachstumsprozessen in der Natur ist die Zu- oder Abnahme eines Bestandes durch eine natürliche Grenze (man nennt sie Sättigungs- oder Kapazitätsgrenze) beschränkt. Zum kann ein Teich nicht unendlich viele Fische aufnehmen oder eine warme Flüssigkeit kann sich nicht unendlich stark abkühlen. Die Wachstumsgeschwindigkeit ist in diesen Fällen proportional zur Differenz aus Sättigungsgrenze S und Bestand, das heisst, man erhält eine Differentialgleichung der Form y = a(s y) = ay+as für eine Konstante a. Diese Differentialgleichung ist vom Typ der DGL (3) und hat damit die allgemeine Lösung y(x) = S +Ae ax. Frisch aufgebrühter Kaffee hat meistens eine Temperaturum die80 C. Als angenehmetrinktemperatur gilt ungefähr 45 C. Wir lassen den Kaffee im 20 C warmen Zimmer stehen. Pro Minute kühlt der Kaffee um 15 Prozent der aktuellen Temperaturdifferenz zur Raumtemperatur ab. Nach wieviel Minuten können wir den Kaffee trinken, ohne uns die Zunge zu verbrennen? Sei y = y(x) die Temperatur des Kaffees in C nach x Minuten. Dann gilt mit der Anfangsbedingung y(0) = 80. y = 0,15 (y 20) = 0,15 (20 y)
5 92 Für die eindeutige Lösung erhalten wir Der Graph von y(x) = 20+60e 0,15 x sieht so aus: Für die optimale Trinktemperatur von 45 C müssen wir nun die Gleichung y(x) = 45 nach x auflösen: Wir können unseren Kaffee also nach ungefähr 6 Minuten trinken. Separierbare Differentialgleichungen Kehren wir nochmals zur allgemeinen Differentialgleichung (3) zurück. Die Methode, mit welcher wir diese Differentialgleichung gelöst haben, ist auch auf andere Differentialgleichungen anwendbar, nämlich auf sogenannte separierbare Differentialgleichungen. Definition Eine Differentialgleichung der Form heisst separierbar. y = g(x) h(y)
6 93 Eine separierbare Differentialgleichung kann nach der folgenden Methode gelöst werden; man nennt sie Trennung der Variablen. 1. Schreibe dy dx = g(x) h(y). 2. Trenne die Variablen, das heisst bringe y nach links und x nach rechts: h(y)dy = g(x)dx. 3. Integriere unbestimmt: h(y)dy = g(x)dx das heisst, H(y) = G(x)+c für Stammfunktionen H von h und G von g. 4. Löse nach y auf. Gesucht ist die Lösung der Differentialgleichung y = yx 2 mit der Anfangsbedingung y(1) = 2. In der obigen Notation ist hier g(x) = x 2 und h(y) = 1 y. Die Differentialgleichung ist also separierbar und wir können sie durch Trennung der Variablen lösen. Die ersten beiden Schritte ergeben Im dritten Schritt wird integriert: Und schliesslich müssen wir die Gleichung nach y auflösen: Mit der Anfangsbedingung folgt Die eindeutige Lösung der Differentialgleichung ist also y(x) 1,433 e 1 3 x3.
7 94 Blau eingezeichnet in diesem Richtungsfeld ist die Lösung y(x) einerseits mit y(1) = 2 und andererseits mit y(1) = 2. Logistisches Wachstum Wachstumsprozesse können zu verschiedenen Zeitpunkten unterschiedlich verlaufen. Es kann zum vorkommen, dass eine Population zunächst exponentiell wächst, da die Sättigungsgrenze zunächst noch kein Hindernis für die noch kleine Population darstellt. Doch nähert sich die Grösse der Population der Sättigungsgrenze, dann verringert sich das Wachstum und es ist begrenzt. Man nennt diese Kombination von exponentiellem und begrenztem Wachstum logistisches Wachstum. Die Wachstumsgeschwindigkeit ist hier proportional zum Produkt vom Bestand und der Differenz aus Sättigungsgrenze und Bestand. Wir erhalten also eine Differentialgleichung der Form y = ay(s y). (4) Ist die Population y noch klein, dann ist S y S und y asy beschreibt ein exponentielles Wachstum. Je mehr sich y der Grenze S nähert, desto kleiner wird S y, und die Änderungsrate von y nimmt immer mehr ab. Wir beobachten das Wachstum einer Pantoffeltierchenpopulation im Labor mit konstanten Umweltbedingungen. Die Population wird durch die Gleichung ( ) 900 y y = 1,1 y 900 beschrieben. Welche Funktion y beschreibt die Anzahl der Pantoffeltierchen in Abhängigkeit der Zeit, wenn wir zur Zeit x = 0 ein einziges Pantoffeltierchen haben? Diese Differentialgleichung beschreibt ein logistisches Wachstum mit Sättigungsgrenze S = 900 und a = 1,1 900.
8 95 Wir können die Differentialgleichung (4) (und damit auch die DGL des s) durch Trennung der Variablen lösen. Das Integral auf der linken Seite berechnen wir durch Partialbruchzerlegung. Damit erhalten wir ( ) y S ln = asx+c y und wir müssen diese Gleichung noch nach y auflösen. Die allgemeine Lösung der Differentialgleichung (4) ist also für eine Konstante A. y(x) = S 1 Ae asx
9 96 Für das Wachstum der Pantoffeltierchenpopulation gilt S = 900 und a = 1, Mit der Anfangsbedingung y(0) = 1 erhalten wir für A Das Wachstum der Pantoffeltierchenpopulation wird also beschrieben durch y(x) = e 1,1 x. Die Differentialgleichung (4) ist ein Spezialfall einer Differentialgleichung der Form y = ay 2 +by +c (5) für reelle Zahlen a 0, b und c. Hat das quadratische Polynom auf der rechten Seite zwei verschiedene reelle Nullstellen, dann können wir die Differentialgleichung (5) analog zur DGL (4) lösen. Wir betrachten die Differentialgleichung y = y 2 5y +6 = (y 2)(y 3). Durch Trennung der Variablen erhalten wir die allgemeine Lösung y(x) = 3 2Aex 1 Ae x. Für x gilt y(x) 2 (die eine Nullstelle von y 2 5y+6) und für x gilt y(x) 3 (die andere Nullstelle). Wir untersuchen nun diese Lösung y(x) für verschiedene Anfangsbedingungen.
10 97 1. Sei y(0) = 1. Wir erhalten y(x) = 3 4ex 1 2e x. 2. Sei y(0) = 2 (eine Nullstelle von y 2 5y +6!). Es gibt also keine Lösung für A. Trotzdem gibt es eine Lösung der Differentialgleichung, nämlich y(x) = 2. Analog ist y(x) = 3 eine Lösung mit y(0) = Sei y(0) = 2,5. Wir erhalten in diesem Fall y(x) = 3+2ex 1+e x.
6 Differentialgleichungen
93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung
5.4 Uneigentliche Integrale
89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.
4. Differentialgleichungen
4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter
4 Gewöhnliche Differentialgleichungen
4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten
Mathematik 1 für Naturwissenschaften
Hans Walser Mathematik für Naturwissenschaften Modul 0 Differenzialgleichungen, Wachstum Hans Walser: Modul 0, Differenzialgleichungen, Wachstum ii Inhalt Einführung: Wachstum.... Beispiel: 50% Wachstum
Differentialgleichungen
Differentialgleichungen Eine einfache Differentialgleichung löst man bereits beim Integrieren in der Oberstufe. Sie hat die Form y (x) = f(x) und y wird gesucht. Beispiel: y (x) = 6x² - 4x + 1 fl y(x)
Die Differentialgleichung :
Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen
16. EINIGE LÖSUNGSMETHODEN
134 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
Serie 13: Online Test
D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.
Mathematische Methoden für Informatiker
Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen
Kapitel L. Gewöhnliche Differentialgleichungen
Kapitel L Gewöhnliche Differentialgleichungen Inhalt dieses Kapitels L000 1 Erste Beispiele von Differentialgleichungen 2 Exakte Differentialgleichungen 3 Fazit: Existenz, Eindeutigkeit, Lösungsmethoden
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x
Trennung der Variablen, Aufgaben, Teil 1
Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g
6 Gewöhnliche Differentialgleichungen
6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige
Kapitel 7. Differenzengleichungen
apitel 7 Differenzengleichungen I n h a ltsverze ichnis DIFFERENZENGLEICHUNGEN... 3 EINFÜHRUNG UND BEISPIELE... 3 DIFFERENZENGLEICHUNG 1. ORDNUNG... 3 ELEMENTARE DIFFERENTIALGLEICHUNGEN... 4 GEWÖHNLICHE
Gewöhnliche Differentialgleichungen Aufgaben, Teil 1
Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe
6.2 Lineare Differentialgleichungen erster Ordnung
98 6.2 Lineare Differentialgleichungen erster Ordnung Eine Differentialgleichung erster Ordnung heisst linear, wenn sie auf die Form y = p(x)y +q(x) (I) gebracht werden kann. Die DGL y = p(x)y (H) heisst
Prüfungsvorbereitungskurs Höhere Mathematik 3
Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.
Aufgaben zum logistischen Wachstum. Buscharten-Aufgabe. Punktsymmetrie zum Wendepunkt. Sonnenblumen-Aufgabe. Typische Fragestellungen
Aufgaben zum logistischen Wachstum Kürbis-Aufgabe Buscharten-Aufgabe Punktsymmetrie zum Wendepunkt Sonnenblumen-Aufgabe Typische Fragestellungen Aufgaben zum logistischen Wachstum 1. Eine Untersuchung
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)
7 Integralrechnung für Funktionen einer Variablen
7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare
Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016
Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der
Übungen zum Ferienkurs Analysis II
Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,
4.1 Stammfunktionen: das unbestimmte Integral
Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
Lösungen der Aufgaben zu Kapitel 10
Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist
12 Gewöhnliche Differentialgleichungen
2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert
Integration durch Substitution
Integration rch Substitution E Integration einer DGL cc rch Substitution In einigen Fällen ist es möglich, eine explizite Differen tialgleichung. Ordnung y' = f (x, y) mit Hilfe einer ge eigneten Substitution
MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.
3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.
unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit
Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2
Kapitel :»Rechnen«Übung.: Multiplizieren Sie die Terme so weit wie möglich aus. a /5 a 5 Versuchen Sie, vorteilhaft zu rechnen. Übung.2: Berechnen Sie 9% von 2573. c 3 c 4 b 5 c 4 ( b 2 c 2 ) (2x + 3)
Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten:
Abitur Mathematik: Bayern 2013 Teil 1 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSMENGE BESTIMMEN Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: 3x + 9 0 x 3 2. SCHRITT: NULLSTELLEN
Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )
TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare
Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4
Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)
Lösung zur Übung 19 SS 2012
Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die
Die Exponentialfunktion. exp(x)
Die Exponentialfunktion exp(x) Wir erinnern: Ist f : R R eine glatte Funktion, dann bezeichnet f (x) die Steigung von f im Punkt x. f (x) x x 0 x Wie sehen Funktionen aus mit 3 2 f f (x) = f(x) -3-2 -1
Differenzialgleichung
Differenzialgleichung Die Differenzialgleichung ist die kontinuierliche Variante der Differenzengleichung, die wir schon bei den Folgen und Reihen als rekursive Form ( n+1 = n + 5) kennengelernt haben.
5 Differenzialrechnung für Funktionen einer Variablen
5 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,
Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)
exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur
Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen
ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld
ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,
Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y
Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3
Crashkurs. Funktion mit Parameter/Ortskurve - Wahlteil Analysis.. Gegeben sei für t > die Funktion f t durch f t (x) = 4 x 4t x 2 ; x R\{}. a) Welche Scharkurve geht durch den Punkt Q( 4)? b) Bestimme
Exponentielles Wachstum:
Exponentielles Wachstum: Bsp.: Ein Wald hat zum Zeitpunkt t = 0 einen Holzbestand von N 0 = N(0) = 20 000 m 3. Nach 0 Jahren ist der Holzbestand auf 25 000 m 3 angewachsen. a) Nimm an, dass die Zunahme
Mathematischer Vorkurs Lösungen zum Übungsblatt 3
Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester [email protected] Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)
PROBEPRÜFUNG MATHEMATIK I UND II
PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant
1 Einführung, Terminologie und Einteilung
Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (
Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder
DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/
Übungen zum Ferienkurs Analysis II
Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4. Umkehrbarkeit I Man betrachte die durch g(s, t = (e s cos(t, e s sin(t gegebene Funktion g : R R. Zeigen Sie, dass
MATHEMATISCHE METHODEN DER PHYSIK 1
MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen
Differenzialgleichungen erster Ordnung
Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 20/202 Mathematik für Anwender I Vorlesung 30 Gewöhnliche Differentialgleichungen mit getrennten Variablen Definition 30.. Eine Differentialgleichung der Form y = g(t)
Exakte Differentialgleichungen
Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte
y hom (x) = C e p(x) dx
Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)
Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12
Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.
Übungsaufgaben zu den mathematischen Grundlagen von KM
TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte
BASISPRÜFUNG MATHEMATIK I UND II
ETH Zürich Sommer 015 Dr. Ana Cannas BASISPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften 1. Sei a) Ist das System lösbar? b) Lösen Sie das System
Musterlösungen Serie 9
D-MAVT D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Serie 9 1. Frage 1 Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : x sin x als Lösung besitzt. Welche der folgenden
Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.
Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ
Mathematische Methoden der Physik I
Karl-Heinz otze Mathematische Methoden der Physik I Nachschrift des Vorlesungs-Manuskripts und A TEX-Satz von Simon Stützer Jena, November 2009 Inhaltsverzeichnis 9 Gewöhnliche Differentialgleichungen
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende
Dynamische Systeme. Mathematik für Biologen, Biotechnologen und Biochemiker. Angela Holtmann
Mathematik für Biologen, Biotechnologen und Biochemiker 16.7.2008 Das Räuber-Beute-Modell Das Räuber-Beute-Modell Es gibt zwei Arten, wobei die eine Art die andere frisst. 1925: Volterra (Italiener) und
Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung
Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle
7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen
Prof. Dr. Walter Arnold Lehrstuhl für Materialsimulation Universität des Saarlandes 5. Januar 2016 7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Abgabe des Übungsblattes
Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa
103 Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Was bedeutet das für die Ableitungen? Was ist eine
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002
Zusätzliche Aufgabe 5:
D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas Zusätzliche Aufgabe 5: Populationsmodelle Um die Entwicklung einer Population zu modellieren, gibt es diskrete Modelle, wobei die Zeit t bei diskreten
Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4
anu [email protected] www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne
Skalare Differenzialgleichungen
3 Skalare Differenzialgleichungen Differenzialgleichungen stellen eine Beziehung her zwischen einer oder mehreren Funktionen und ihren Ableitungen. Da Ableitungen Veränderungen beschreiben, modellieren
Lineare DGL. Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3
Lineare DGL Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3 Die zugehörige homogene Gleichung ist dann 2x+y = 0 Alle Lösungen (allgemeine Lösung)
Abiturvorbereitung Wachstum S. 1 von 11. Wachstum
Abiturvorbereitung Wachstum S. 1 von 11 Themen: Exponentielles Wachstum Exponentielle Abnahme Beschränktes Wachstum Logistisches Wachstum Modellieren bei gegebenen Daten Übungsaufgaben Wachstum Exponentielles
Übungsklausur Analysis & Geometrie Stausee & Personenaufzug Pflichtteil (ohne Hilfsmittel)
Pflichtteil (ohne Hilfsmittel) ) Berechne die. Ableitung. a) f(x) 3x sin( x ) b) f(x) 3x sin( x ) (VP) 3 ) Berechne und vereinfache x 3) Bestimme die Lösungsmenge der Gleichung sin( x) dx. (3VP) cos(x)
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (
ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang
ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der
Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen
Institut für Wissenschaftliches Rechnen Dr. Ute Feldmann, Maximilian Becker Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. Die 3 Kreise mit Ampelfarben dienen der Selbsteinschätzung.
Nachklausur Analysis 2
Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,
Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I
Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also
