Die Exponentialfunktion. exp(x)
|
|
|
- Rolf Hertz
- vor 9 Jahren
- Abrufe
Transkript
1 Die Exponentialfunktion exp(x)
2 Wir erinnern: Ist f : R R eine glatte Funktion, dann bezeichnet f (x) die Steigung von f im Punkt x.
3 f (x) x x 0 x
4 Wie sehen Funktionen aus mit 3 2 f f (x) = f(x) x für alle x R? -1-2 Steigung gleich -3 Funktionswert
5 Funktionen f mit f = f gibt es viele, aber durch jeden Punkt (x 0, y 0 ) gibt es genau eine! 2 3
6 3 Speziell: 2 1 (x 0, y 0 ) = (0,1) f(0) =
7 Fakt: Es gibt genau eine Funktion f = f(x) mit f (x) = f(x), x R, und f(0) = 1. Man schreibt für diese Funktion exp(x) und nennt sie die (Standard-) Exponentialfunktion.
8 exp (x) = exp(x), x R, und exp(0) = 1. Wie kann man exp(x) berechnen?
9 Hier ist ein Vorschlag. f(x) := 1 + x + x2 2 + x x x f(0) = 1 schon mal fein! Und: man darf summandenweise ableiten: f (x) = x 2 + 3x x x = 1 + x + x2 2 + x x = f(x)
10 Wir haben gefunden: exp(x) = 1 + x + x2 2 + x x x Mit der Bezeichnung n! := 1 2 n (lies: n Fakultät) und der Konvention 0! := 1 schreibt sich exp(x) als unendliche Summe exp(x) = n=0 x n n!
11 exp(x) = n=0 ist die Darstellung von exp als Exponentialreihe. Die Euler sche Zahl e ist der Wert von exp bei x = 1. x n n! exp(1) = n=0 1 n! = }{{} 2,718
12 Die wichtigste Eigenschaft der Funktion exp: exp(a + b) = exp(a) exp(b) Wie sieht man das ein? Behauptung: Für jede feste Zahl a stimmen die Funktionen y 1 (x) = exp(a + x) und y 2 (x) = exp(a) exp(x) überein.
13 Beweis: Die Funktionen y 1 (x) = exp(a + x) und y 2 (x) = exp(a) exp(x) erfüllen beide die Gleichung y (x) = y(x), x R, mit y(0) = exp(a). In der Tat:
14 y 1 (x) = exp(a + x) y 2 (x) = exp(a)exp(x) y 1 (x) = exp(a + x) 1 = y 1 (x) y 2 (x) = exp(a)exp(x) = y 2 (x) y 1 (0) = exp(a + 0) = exp(a) y 2 (0) = exp(a)exp(0) = exp(a) 1 = exp(a)
15 Es gibt aber nur eine Funktion y(x) mit y (x) = y(x) und y(0) = exp(a). Also sind y 1 (x) und y 2 (x) gleich! y 1 (x) = y 2 (x) exp(a + x) = exp(a)exp(x)
16 Hier ist noch eine zweite Begründung für exp(a)exp(b) = exp(a + b) durch gliedweises Ausmultiplizieren von (1 + a + a2 2! + a3 3! +... ) ( 1 + b + b2 2! + b3 3! +... ):
17 1 b 1 1 b a a ab a 2 2! a 3 3! a 2 2! a 3 3! a 2 b 2! a 3 b 3! b 2 2! b 2 2! ab 2 2! a 2 b 2 2!2! a 3 b 2 3!2! b 3 3!. b 3 3!. ab 3 3!. a 2 b 3 2!3!. a 3 b 3 3!3! a + b (a2 + 2ab + b 2 ) (a3 + 3a 2 b + 3ab 2 + b 3 ) +... = 1 + (a + b) + 1 2! (a + b) ! (a + b)2 +...
18 (1 + a + a2 2! + a3 3! +... ) ( 1 + b + b2 2! + b3 3! +... ) = 1 + (a + b) + 1 2! (a + b) ! (a + b) exp(a)exp(b) = exp(a + b)
19 exp(2) = exp(1 + 1) = e e = e 2 exp(n) = exp( ) = e... e }{{} n mal }{{} n mal = e n
20 ( ) 1 ( ) 1 exp 2 exp 2 = exp(1) = e also exp ( ) 1 2 = e = e 1/2 Analog:
21 exp ( ) 1 k = e 1/k = k e
22 Wir haben gesehen (für l N 0, k N): exp(l) = e l, exp ( ) 1 k = e 1/k exp ( ) l k Allgemeiner: = e l/k = k e l = ( k e ) l.
23 exp( x) = 1 exp(x) denn exp( x)exp(x) = exp( x + x) = exp(0) = 1.
24 All dies zusammen macht klar, dass man auch für reelle Zahlen x und a mit Potenzen rechnen kann wie gewohnt: e x := exp(x), x R (e a ) x := e ax, a R, x R.
25 Größenordnungen: Die o-notation
26 Wir haben gesehen: Die Exponentialfunktion lässt sich als (unendliche) Summe von Potenzfunktionen schreiben: exp(x) = n=0 Wir fragen: Welche Potenzen geben den Ton an für (dem Betrag nach) kleines x großes x? x n n!
27 Eine Tatsache und eine Schreibweise: Sei p N. 1 wird beliebig klein, wenn nur x hinreichend groß wird. xp Man schreibt: 1 x p 0 für x und liest: 1 strebt gegen Null für x gegen Unendlich. xp Analog: x p 0 für x 0.
28 Vergleichen wir x k und x l im Fall k < l. x k Dann gilt für den Quotienten x l = 1 0 für x. xl k Man schreibt: x k = o(x l ) für x und sagt: x k ist von kleinerer Größenordnung als x l für x gegen Unendlich oder einfach x k ist klein gegen x l für große x.
29 Die o-notation: Man schreibt für zwei Funktionen f(x), g(x): f(x) = o(g(x)) für x x 0 und sagt : f(x) ist von kleinerer Größenordnung als g(x) für x gegen x 0 oder einfach f(x) ist klein gegen g(x) bei x 0 wenn f(x) g(x) 0 für x x 0.
30 Speziell: g(x) 1: f(x) = o(1) für x x 0 ist gleichbedeutend mit f(x) 0 für x x 0.
31 Merkregel Höhere Potenzen sind zu vernachlässigen bei x = 0. Niedrigere Potenzen sind zu vernachlässigen bei x =.
32 Beispiele: 2x 5x 3 + x 4 = o(1) für x x 5x 3 + x 4 = 4 + o(1) für x 0. 5x 3 + x 4 = o(x 2 ) für x x 5x 3 + x 4 = 4 + 2x + o(x 2 ) für x 0.
33 Mit o-termen kann man (fast) wie gewohnt rechnen. Z. B. gilt (bei 0 ebenso wie bei ) o(x 4 ) = x 4 o(1). Damit: 4 + 2x 5x 3 + x 4 = o(x 4 ) + x 4 = x 4 (1 + o(1)) für x.
34 Zwei wichtige Abschätzungen für exp: Für kleine x ist e x ungefähr gleich 1 + x: e x = 1 + x + o(x) für x 0. Das sieht man aus der Reihendarstellung: exp(x) = 1 + x + x2 2! + x3 3! + x4 4! + x5 5! +... = 1 + x + o(x) über einen Vergleich mit der geometrischen Reihe: x 2 2! + x3 3! + x4 4! + x5 5! +... x2 (1+ x + x 2 + x ) = x x
35 2,5 e x x 1,5 e x = 1 + x + o(x) für x ,5
36 Für große x wird e x größer als jede Potenz von x: x n = o(e x ) für x. Denn in der Reihendarstellung von exp kommen beliebig große Potenzen von x vor, alle mit positivem Vorzeichen. e x xn+1, x 0, impliziert (n + 1)! x n (n + 1)! ex x 0 für x.
37 Stammfunktionen f(x)dx
38 Zur Erinnerung: F heißt Stammfunktion von f, falls F (x) = f(x) für alle x aus dem Definitionsbereich von f. Man sagt dafür auch: F ist unbestimmtes Integral von f und schreibt F(x) = f(x) dx
39 Ist F eine Stammfunktion von f, dann ist für jede Konstante C auch F + C eine Stammfunktion von f. Denn: Die Ableitung von F(x) + C ist F (x) = f(x)
40 Außerdem: Je zwei Stammfunktionen von f unterscheiden sich nur um eine additive Konstante. Denn Wenn F (x) = f(x) und G (x) = f(x), dann hat H(x) := F(x) G(x) die Ableitung H (x) = F (x) G (x) = f(x) f(x) = 0, ist also konstant.
41 Zusammen: Wenn F(x) eine Stammfunktion von f(x) ist, so sind F(x) + C alle Stammfunktionen von f(x) (wobei C alle rellen Zahlen durchläuft).
42 Die Stammfunktionen von exp sind von der Form e x dx = e x + C.
43 Wie findet man die Fläche zwischen der Kurve y = e x, der x-achse und den Grenzen a und b?
44 Wie findet man die Fläche zwischen der Kurve y = e x, der x-achse und den Grenzen a und b? 10 y = e x a 2 b 3 x
45 y = f(x) Φ(a, b) a b Φ(a, b) ist die Größe der Fläche zwischen der Kurve y = f(x) und der x-achse zwischen x = a und x = b
46 f(x) Φ(a, b) a b b + h Wie wächst Φ(a, b) mit b?
47 f(x) Φ(a, b) a b b + h Φ(a, b + h) = Φ(a, b) + hf(b) + o(h)
48 f(x) F(b) a b b + h F (b) = f(b) Die Größe der Fläche unter der Kurve f, aufgefasst als Funktion der oberen Grenze b, ist eine Stammfunktion von f.
49 y = f(x) ba f(x)dx a b Man nennt Φ(a, b) auch das bestimmte Integral von f(x) zwischen a und b und schreibt b f(x)dx := Φ(a, b) a
50 Wir haben gesehen: b a Die Beziehung f(x)dx = F(b) F(a) gilt für die Stammfunktion F(x) = Φ(a, x) und damit für jede Stammfunktion F.
51 Fazit: 10 y = e x 5 b a e x dx = e b e a a 2 b 3 x
Polynomiale Approximation. und. Taylor-Reihen
Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome
Der natürliche Logarithmus. logarithmus naturalis
Der natürliche Logarithmus ln logarithmus naturalis Zur Erinnerung: Die Exponentialfunktion y = exp(x) ist festgelegt durch 2 y = exp(x) y (x) = y(x) 0 x y(0) = 2 Zur Erinnerung: e := y() 2.78 exp(x) =
Übungsaufgaben zu den mathematischen Grundlagen von KM
TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4
Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005
Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................
Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche
Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 Inhalt 1 Exponential- und Logarithmusfunktion Potenzen
16. Differentialquotient, Mittelwertsatz
16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand
Funktionalgleichungen
Funktionalgleichungen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 10. Mai 2010 Funktionalgleichungen sind Gleichungen, mit denen Funktionen charakterisiert oder bestimmt werden können. In diesem
Analysis I. 3. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine
Eulersche Zahl und Exponentialfunktion
Eulersche Zahl und Exponentialfunktion Raphael Dumhart 5. Juni 20 Inhaltsverzeichnis Vorwort 2 2 Die Eulersche Zahl 2 2. Einige Eigenschaften......................... 2 2.2 Die Entdeckung von e........................
Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl. auch nur in Intervallen) nicht. Knicke im Funktionsgraphen auftreten.
FOS, 11 Jahrgangsstufe (technisch) 6 Stetigkeit Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl auch nur in Intervallen) nicht abreißen und gezeichnet werden können, ohne den Zeichenstift
heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2
9 DIE EXPONENTIALREIHE 48 absolut konvergent. Beweis. Wegen x n+ n! n + )!x n = x n + < 2 für n 2 x folgt dies aus dem Quotientenkriterium 8.9). Definition. Die Reihe x n heißt Exponentialreihe. Die durch
Differentialrechnung
Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und
7 Integralrechnung für Funktionen einer Variablen
7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare
Mathematik I Herbstsemester 2018 Kapitel 3: Differentialrechnung
Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 39 3. Differentialrechnung Einführung Ableitung elementarer Funktionen Ableitungsregeln Kettenregel Ableitung
6 Differentialgleichungen
88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung
Mathematik I Herbstsemester 2014
Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende
Analysis für Informatiker und Statistiker Nachklausur
Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................
Integrale. Mathematik Klasse 12. Fläche 1. Fläche 4. Fläche 2. Fläche 5 Fläche 3. Fläche 6. Ditmar Bachmann / Eurokolleg.
Fläche 1 Fläche 4 Fläche 2 Fläche 5 Fläche 3 Fläche 6 aus Google maps Begriff des Integrals Die Wurzeln zur Integralrechnung reichen bis ins Altertum zurück. Damals ist man auf das Problem gestoßen, Flächen
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.
5.4 Uneigentliche Integrale
89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.
Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion
1/22 Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 2/22 Inhalt Exponential- und Logarithmusfunktion
Übungen Analysis I WS 03/04
Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe
Aufgaben für Analysis in der Oberstufe. Robert Rothhardt
Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................
e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.
8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine
Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker
REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich
Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.
Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor
Mathematik Übungsklausur 2013 Ausführliche Lösungen
Mathematik Übungsklausur 0 Ausführliche Lösungen Analysis Aufgabe Die Nullstellen einer Funktion f mit Definitionsbereich D f sind die Lösungen der Gleichung f(x) = 0 in D f. Damit erhält man: a) f: x
4.1 Stammfunktionen: das unbestimmte Integral
Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung
Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung
Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =
Etwa mehr zu Exponential- und Logarithmusfunktion
Etwa mehr zu Exponential- und Logarithmusfunktion Will man einen Logarithmus definieren, so liegt es nahe, diesen als Umkehrfunktion zur Exponentialfunktion zu definieren. Solch eine kann es aber nicht
6 Differentialgleichungen
93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung
Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 9. Dezember 2017
Brückenkurs Mathematik Jörn Steuding (Uni Würzburg), 9. Dezember 2017 unser Programm 11. November: 1. Zahlen und einfache Gleichungen Zahlen, Rechengesetze, lineare u. quadratische Gleichungen, Dezimalbrüche,
Stetigkeit von Funktionen
Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte
Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2
Kapitel :»Rechnen«Übung.: Multiplizieren Sie die Terme so weit wie möglich aus. a /5 a 5 Versuchen Sie, vorteilhaft zu rechnen. Übung.2: Berechnen Sie 9% von 2573. c 3 c 4 b 5 c 4 ( b 2 c 2 ) (2x + 3)
Mathematik 1 für Bauingenieurwesen
Mathematik 1 für Bauingenieurwesen Name (bitte ausfüllen): Prüfung am 28.1.2019 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Wichtige Hinweise bevor Sie beginnen: Die Prüfung besteht aus vier Aufgaben
differenzierbare Funktionen
Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von
Mathematik für Wirtschaftswissenschaftler
Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel
6 Die Bedeutung der Ableitung
6 Die Bedeutung der Ableitung 24 6 Die Bedeutung der Ableitung Wir wollen in diesem Kapitel diskutieren, inwieweit man aus der Kenntnis der Ableitung Rückschlüsse über die Funktion f ziehen kann Zunächst
Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003
Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen
Klausur Mathematik I
Klausur Mathematik I (E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). September 7 (Hans-Georg Rück) Aufgabe (6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft Re(z) = und (z
FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.
FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f
Funktionen mehrerer Variabler
Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen
2. Mathematische Grundlagen
2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,
Funktionenfolgen, Potenzreihen, Exponentialfunktion
Kapitel 8 Funktionenfolgen, Potenzreihen, Exponentialfunktion Der in Definition 7. eingeführte Begriff einer Folge ist nicht auf die Betrachtung reeller Zahlen eingeschränkt und das Beispiel {a n } = {x
Skalare Differenzialgleichungen
3 Skalare Differenzialgleichungen Differenzialgleichungen stellen eine Beziehung her zwischen einer oder mehreren Funktionen und ihren Ableitungen. Da Ableitungen Veränderungen beschreiben, modellieren
Abitur 2010 Mathematik GK Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der
Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen
14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen E-Mail: [email protected], Internet: www.elearning-freiburg.de Einführung des Integrals 15
Aufgaben zu Ableitung und Integral der ln-funktion
Aufgaben zu Ableitung und Integral der ln-funktion. Bilden Sie von folgenden Funktionen jeweils die. Ableitung. a) f(x) = x+lnx b) f(x) = (lnx) c) f(x) = x(lnx) xlnx+x d) f(x) = e) f) x (lnx ) f(x) = x
18 Höhere Ableitungen und Taylorformel
8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a
Lösen von Differentialgleichungen durch Reihenentwicklung
Lösen von Differentialgleichungen durch Reihenentwicklung Thomas Wassong FB17 Mathematik Universität Kassel 30. April 2008 Einführung Reihen in der Mathematik Reihen zum Lösen von Differentialgleichungen
Erste Schularbeit Mathematik Klasse 8D WIKU am
Erste Schularbeit Mathematik Klasse 8D WIKU am 3.1.215 KORREKTUR UND KOMMENTAR Aufgabe 1. (2P) Parameter einer linearen Funktion bestimmen. Gegeben ist die Funktion f(x) = ax 4, wobei a R +. Bestimmen
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8
Beschränktheit, Monotonie & Symmetrie
Beschränktheit, Monotonie & Symmetrie ein Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch November 2015 Inhaltsverzeichnis
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
3 Differenzialrechnung
Differenzialrechnung 3 Differenzialrechnung 3.1 Ableitungsregeln Übersicht Beispiel Vorgehen Potenzfunktionen f(x) = x 4 f (x) = 4 x 3 f(x) = x f (x) = 1 x 0 = 1 f(x) = x Hochzahl f (x) = Hochzahl x Hochzahl
Kapitel 8 Einführung der Integralrechnung über Flächenmaße
8. Flächenmaße 8.1 Flächenmaßfunktionen zu nicht negativen Randfunktionen Wir wenden uns einem auf den ersten Blick neuen Thema zu, der Ermittlung des Flächenmaßes A von Flächen A, die vom nicht unterhalb
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
Ableitungs- und Stammfunktion*
Ableitungs- und Stammfunktion* Aufgabennummer: 1_57 Aufgabentyp: Typ 1 T Typ Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: AN 3.1 Es sei f eine Polynomfunktion und F eine ihrer Stammfunktionen.
Integralrechnung. Petra Grell, WS 2004/05
Integralrechnung Petra Grell, WS 2004/05 1 Einführung Bei den Rechenoperationen, die wir im Laufe der Zeit kennengelernt haben, kann man feststellen, dass es immer eine Umkehrung gibt: + : log a aˆ So
Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann
Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen
Taylorentwicklung von Funktionen einer Veränderlichen
Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der
Lösungen zu Aufgabenblatt 7P
Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0
3. DER NATÜRLICHE LOGARITHMUS
3. DER NATÜRLICHE LOGARITHMUS ln Der natürliche Logarithmus ln(x) betrachtet als Funktion in x, ist die Umkehrfunktion der Exponentialfunktion exp(x). Das bedeutet, für reelle Zahlen a und b gilt b = ln(a)
Selbsteinschätzungstest Auswertung und Lösung
Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor
Skript Analysis. sehr einfach. Erstellt: Von:
Skript Analysis sehr einfach Erstellt: 2017 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Funktionen... 3 2. Geraden... 6 3. Parabeln... 9 4. Quadratische Gleichungen... 11 5. Ableitungen...
Satz von Taylor Taylorreihen
Satz von Taylor Taylorreihen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion
Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I
Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also
1. Teil Repetitionen zum Thema (bisherige) Funktionen
Analysis-Aufgaben: Rationale Funktionen 2 1. Teil Repetitionen zum Thema (bisherige) Funktionen 1. Die folgenden Funktionen sind gegeben: f(x) = x 3 x 2, g(x) = x 4 + 4 (a) Bestimme die folgenden Funktionswerte/-
SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2
SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das
Mathematik 1 für Bauingenieure
Mathematik 1 für Bauingenieure Name (bitte ausfüllen): Prüfung am 3.3.2017 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Wichtige Hinweise bevor Sie beginnen: Die Prüfung besteht aus vier Aufgaben
Differentialrechnung
Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen
{, wenn n gerade ist,, wenn n ungerade ist.
11 GRENZWERTE VON FUNKTIONEN UND STETIGKEIT 60 Mit anderen Worten, es ist lim f(x) = b lim f (, a)(x) = b, x a x a wobei f (, a) die Einschränkung von f auf (, a) ist. Entsprechendes gilt für lim x a.
Erste Schularbeit Mathematik Klasse 8A G am
Erste Schularbeit Mathematik Klasse 8A G am 23.11.216 KORREKTUREN und HINWEISE Aufgabe 1. (2P) Funktionsklassen ihren Eigenschaften zuordnen. In der linken Tabelle sind vier Eigenschaften von Funktionen
Mathematik für Physiker, Informatiker und Ingenieure
Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG [email protected] http://www2.mathematik.uni-wuerzburg.de
Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen
Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Das hast du schon gelernt: Aufgabe : a) Definitionsbereich TIPP: Definitionsbereich Nenner darf nicht Null werden x 0 x
Arbeitsblatt 1. Ergebnisse: a) Schätzen:... b) Abzählen:... c) Berechnen: (unter Angabe der geometrischen Figuren)
Arbeitsblatt 1 Für das nächste Frequency-Festival pachtet der Veranstalter zusätzliche Fläche für die Besucherzelte beim benachbarten Landwirt. Zur Ermittlung des Pachtpreises muss die Fläche ausgemessen
Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich
7. Integralrechnung. Literatur: [SH, Kapitel 9]
7. Integralrechnung Literatur: [SH, Kapitel 9] 7.. Was sind Integrale? 7.2. Unbestimmte Integrale 7.3. Flächen und bestimmte Integrale 7.4. Eigenschaften und bestimmte Integrale 7.5. Partielle Integration
