Differenzialgleichung
|
|
|
- Michaela Jaeger
- vor 7 Jahren
- Abrufe
Transkript
1 Differenzialgleichung Die Differenzialgleichung ist die kontinuierliche Variante der Differenzengleichung, die wir schon bei den Folgen und Reihen als rekursive Form ( n+1 = n + 5) kennengelernt haben. Sie besteht aus (oder ) und Termen, gemeinsam mit Zahlen (Beispiel: = x ) Beispiel 1: Die Differenzengleichung n+1 = n + 5 (mit 1 = 0) führt zu der arithmetischen Folge <0; 5; 10; 15; > Der Übergang zur kontinuierlichen Gleichung = d = 5 lässt sich folgendermaßen nachvollziehen: dx Zuerst schreibt man die Gleichung anders an: n+1 n = 5. Dann verändert man die linke Seite zu: n+1 n = Δ (n+1) n Δn (Differenz der Folgenglieder dividiert durch die Differenz der Indizes, die hier 1 ist) Nun kann man diese Darstellung durch den Grenzübergang Δn 0 (Δn geht gegen Null) in den kontinuierlichen Fall überführen: Δ lim Δn 0 = d = d (hier wird aus n die Variable x oder t) Δn dx dt Richtungsfeld: Die Lösung der Differenzialgleichung = k ergibt durch Integration ( dx = k dx) die Funktion =k x+d, die wir als lineare Funktion kennen. Mit k = 0,5 und dem Anfangswert (0)=0 ergibt sich (x) = 0,5 x Die Differenzialgleichung = 0,5 kann man so interpretieren, dass zu jedem Paar (x,) die Steigung = 0,5 zugeordnet wird. Das ergibt für jeden Gitterpunkt der Ebene einen kleinen Strich, der die Steigung angibt. Das sieht so aus: Daraus ergibt sich, dass die Lösungen der Differenzialgleichung die Geraden = 0,5x + d sein müssen. 3 davon wurden eingezeichnet. Das Richtungsfeld kann eine gute Hilfe sein für das Erraten der Lösung einer Differenzialgleichung. Differenzialgleichung Gurtner Seite 1
2 Lösung einer Differenzialgleichung 1.Ordnung (nur und und x sind vorhanden) durch die Methode: TRENNEN DER VARIABLEN Beispiel 2: Die Differenzialgleichung = x lässt sich auf folgende Art lösen: Zuerst wird die Leibnitz Schreibweise angewandt: = d d = dx dx x dann bringt man die Terme nach links und die x Terme nach rechts (mal dx und durch ) das ergibt: d = dx x nun wird integriert: d dx x ln = ln x + C und ent logarithmiert: = e ln x + C und umgeformt mit der Potenzregel = e ln x e C = k x (e C = k und e ln x = x) Die Lösung sind also Geraden durch den Ursprung mir einer beliebigen Steigung k Beispiel 3: Die Differenzialgleichung = (Die Steigung in jedem Punkt ist ein Zehntel des dortigen Werts 10 bzw. die momentane Änderungsrate der Werte ist 1/10 der Werte) lässt sich ebenso mit der TRENNUNG DER VARIABLEN lösen: Zuerst kommt die Leibnitz Schreibweise: d = dx 10 dann bringt man die Terme nach links und die x Terme nach rechts (mal dx und durch ) das ergibt: d = dx 10 nun wird integriert: d = dx 10 ln = x 10 + C und ent logarithmiert: = e x 10 + C und umgeformt mit der Potenzregel = e x/10 e C = k e x/10 (e C = k) Die allgemeine Lösung ist also eine Exponentialfunktion, die für das exponentielle Wachstum steht mit ca. 1/10 = 10% momentaner Zunahme, wobei die Konstante k noch beliebig gewählt werden kann. [Die Steigerung pro Zeiteinheit ergibt sich aus e 0.1 = 1,105 = 1+ p/100 p = 10,5%] Beispiel 4: Lösen Sie die Differenzialgleichung = 0,1 mit der Anfangsbedingung (0) = 1000 (die stündlichen Zuwächse von Bakterien sollen ca. 10% betragen, angefangen von 1000 Bakterien) Lösung: Mit der TRENNUNG DER VARIABLEN wie im Beispiel 3 kommt man auf die Gleichung der allgemeinen Lösung: = k e x/10. Durch Einsetzen der Anfangsbedingung entsteht die spezielle Lösung: = 1000 e x/10 Übungen: Lösen Sie die folgend Differenzialgleichungen mit TRENNEN DER VARIABLEN und machen Sie eine Skizze der Funktion (mit Unterstützung durch das Richtungsfeld) 1) = 2 2) = 2 3) = ² 4) = x 5) = x 6) = x² 7) = 0,2 ( 100) (beschränktes Grenzwachstum auf K=100) Differenzialgleichung Gurtner Seite 2
3 8) Eine Bevölkerung hat zu Beginn 2500 Personen Einwohner. Die jährliche Zunahme beträgt 100 Personen. Zeigen Sie, dass dadurch die Differenzialgleichung = 100 entsteht und lösen Sie diese. 9) Eine Bevölkerung hat zu Beginn 2500 Personen Einwohner. Die jährliche Zunahme beträgt 4%. Zeigen Sie, dass durch Lösung der Differenzialgleichung = ln(1,04) die Exponentialfunktion (t) = ,04 t entsteht. 10) Das Wachstum auf eine Grenze zu nennt man auch beschränktes exponentielles Wachstum. Die momentane Änderungsrate ist dabei =a (G ) mit der Grenzgröße G, auf die das Wachstum hinsteuert, mit der Geschwindigkeit, die durch a modelliert wird. Bestimmen Sie für die Angabe: Ein Baum hat zum Zeitpunkt 0 die Höhe 1,2 Meter und nach 2 Jahren die Höhe 1,8 Meter. Bestimmen Sie die allgemeine Lösung der Differenzialgleichung und mit den Angaben die Parameter a und G. Wie groß wird der Baum in 20 Jahren sein? 11) Das Newton sche Abkühlungsgesetz dt dt = k (T T U) [T ist die aktuelle Temperatur, T U ist die Umgebungstemperatur, t ist die Zeit] beschreibt die Abkühlung oder Erwärmung von Gegenständen, die langfristig die Umgebungstemperatur erreichen. Ein makabres Beispiel ist dazu: Ein Mensch hat die Körpertemperatur von 37 C, stirbt und kühlt langsam auf Umgebungstemperatur von 20 C ab. Nach einer Stunde ist er um 1 C kühler geworden. Lösen Sie die Differenzialgleichung allgemein und erstellen Sie mit den Angabedaten die spezielle Temperaturfunktion. Wann wird der Körper die Temperatur 22 C erreicht haben? Logistisches Wachstumsgesetz als Beispiel für die Notwendigkeit der Integrationsregeln: Die Differenzialgleichung für das logistische Wachstumsgesetz ist =a (G ). Die momentane Änderungsrate ist direkt proportional dem Abstand der momentanen Wachstumshöhe von der Grenze G und direkt proportional der momentanen Wachstumshöhe. a ist der Proportionalitätsfaktor, der die Geschwindigkeit des Wachstums bestimmt. Wir werden zuerst die Differenzialgleichung allgemein lösen und die entstehende Funktion auf das Problem: Welt Bevölkerungszahl am war 7,39 Milliarden Menschen und im Jahre 2000 waren es 6,13 Milliarden Menschen. Es wird erwartet, dass wir auf etwa maximal 11 Milliarden Menschen anwachsen. Wie viele Menschen werden es mit logistischem Wachstum im Jahre 2030 sein? Lösung: Differenzialgleichung mit Leibniz Schreibweise: Trennen der Variablen: d d (G ) = a dx d dx = a (G ) Integration: = a dx (G ) Nebenrechnung: Partialbruchzerlegung des linken Bruchs: 1 = A + B (G ) (G ) mal gemeinsamen Nenner 1 = A () + B (G ) =0 1 = A 0 + B (G 0) B=1/G =G 1 = A G + B (G G) A=1/G 1 = 1/G + 1/G (G ) (G ) 1/G + 1/G = a dx (G ) 1/G ln G + 1/G ln = a x + C multipliziert mit G und Zusammenfassen der Logarithmen ergibt: ln( ent logarithmieren ergibt: = G eagx C 2 mit (G ) ausmultipliziert ergibt: = G e agx C 2 e agx C 2 G )= agx + C1 Differenzialgleichung Gurtner Seite 3
4 auf zusammengefasst ergibt: (1+ e agx C 2) = G e agx C 2 = G eagx C 2 dividiert man durch e agx, so ergibt sich: = (x) = G C 2 (C 2 + e agx ) (1+ e agx C 2 ) Mit der Anfangsbedingung (0) = 0 ergibt sich: G 0 0 +(G 0 ) e agx Logistisches Wachstum mit Startwert 0, Grenzwert G und a Mit dieser Funktion lässt sich das Weltbevölkerungswachstum so einfangen: für 2000 gilt: t=0 (0) = 0 = 6,13 (16) = = 7,39 G = ,13 7,39 = a = 0, ,13+(11 6,13) e a Damit lässt sich berechnen: 11 6,13 (30) = = 8,34 Milliarden Menschen im Jahre ,13+(11 6,13) e a Die logistische Weltbevölkerungswachstumsfunktion sieht so aus und gilt fast exakt ab 1950 (= 50) Differenzialgleichung 2. Ordnung Aus der Kraftgleichung für die Federkraft: F = k Schwingungsgleichung (k ist die Federkonstante, Δ = die Auslenkung von der Ruhelage) lässt sich die Differenzialgleichung 2.Ordnung herleiten: m = k (Kraft F = Masse m mal Beschleunigung ) Diese Differenzialgleichung löst man mit dem unbestimmten Ansatz: = A e λ t und bekommt eine komplexe Lösung, die man in die Form = A cos( k t) + B sin( k t) bringt m m Die zwei Parameter A und B kann man durch die Anfangsbedingungen (0)= und (0) =. in die spezielle Lösungsform bringen. Beispiel: m=20, k=5, (0)=4 und (0)=0 (t) = 4 cos(2t) Differenzialgleichung Gurtner Seite 4
5 Lösungen: 1) d = 2 dx =2x+C lineare Funktion 2) d/ = 2 dx = C e 2x exponentielle Funktion 3) d/² = dx = 1 x+c Hperbel 4) d/ = x dx = C e x²/2 Gauß sche Normalverteilung 5) d= x dx ²/2 = x²/2 + C Kreis 6) d 100 = 0,2 dx =100 + C e 0,2 x Beschränktes Wachstum gegen 100 von oben oder unten 7) d/ = 1/x² dx = C e 1/x Beschränktes Wachstum gegen C (hier C=2) 8) = 100x+2500 lineares Wachstum 9) d/ = ln(1,04) dx = ,04 x 10) = 5 3,8 e 0, t (20) = 4,3 m 11) T= e t Grenzwachstum auf 20 C, nach 35 Std. sind 22 C erreicht Differenzialgleichung Gurtner Seite 5
Analysis: exp. und beschränktes Wachstum Analysis
Analysis Wahlteilaufgaben zu exponentiellem und beschränktem Wachstum inkl Differenzialgleichungen Gymnasium ab J1 Alexander Schwarz wwwmathe-aufgabencom Februar 2014 1 Aufgabe 1 Zu Beginn eines Experimentes
4. Differentialgleichungen
4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter
Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α
Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.
K2 - Klausur Nr. 2 Wachstumsvorgänge modellieren mit der Exponentialfunktion Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x
Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen
Lösung zur Übung 19 SS 2012
Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die
DIFFERENTIALGLEICHUNGEN
DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung
Aufgaben zu Kapitel 14
Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt
Funktionale Abhängigkeiten
Funktionale Abhängigkeiten Lehrplan Die Lehrpläne für die allgemein bildenden Schulen finden Sie online unter: http://www.bmukk.gv.at/schulen/unterricht/lp/lp_abs.xml 5. Klasse (Funktionen) Beschreiben
Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)
Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben
12 Gewöhnliche Differentialgleichungen
12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit
Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya
Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................
Nach der Theorie der Partialbruchzerlegung kann der Bruch auf der linken Seite in Teilbrüche zerlegt werden: = + =
ist ( 6.4 Logistisches Wachstum Ein Nachteil des Modells vom beschränkten Wachstum besteht darin, dass für kleine t die Funktion ungefähr linear statt exponentiell wächst. Diese chwäche wird durch das
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
Teil 2. Ganzrationale und Gebrochen rationale Funktionen. Unbestimmte Integrale und Stammfunktionen auch mit Substitution
Teil Ganzrationale und Gebrochen rationale Funktionen ANALYSIS Einführung in die Integralrechnung Unbestimmte Integrale und Stammfunktionen auch mit Substitution Kurze Theorie und dann Viel Praxis Datei
Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )
1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines
Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem
Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies
13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01
. Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:
Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder
DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/
18 Höhere Ableitungen und Taylorformel
8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a
Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis
Thema aus dem Bereich Analysis - 3.9 Differentialrechnung I Inhaltsverzeichnis 1 Differentialrechnung I 5.06.009 Theorie+Übungen 1 Stetigkeit Wir werden unsere Untersuchungen in der Differential- und Integralrechnung
Zentrale Klassenarbeit 2003
Zentrale Klassenarbeit 2003 Tipps ab Seite 21, Lösungen ab Seite 31 ZK Mathematik 2003 1. Aufgabe (8 Punkte) [ b 3 a) Vereinfache so weit wie möglich b) Löse die Gleichung 3 2x 3 x = 6. b5 : an 2 c 2n
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel
Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,
Differentialgleichung.
Kapitel 6 Differentialgleichungen erster Ordnung 0.7.0 Beispiel 6.: Durch Verzinsung wächst ein Kapital Kx im Laufe der Zeit x. Der Zuwachs K zum Zeitpunkt x im kleinen Zeitraum x ist proportional zum
4.3 Anwendungen auf Differentialgleichungen
7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,
9. Vorlesung Wintersemester
9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen
Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/
Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/10 2.3.2010 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:
Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Korrekturheft zur Probeklausur März 2014.
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Korrekturheft zur Probeklausur März 2014 Teil-1-Aufgaben Aufgabe 1 Gleichung interpretieren + y = 24 = 2y Ein Punkt ist genau dann
1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α
Grundwissen athematik 0.Klasse Gymnasium SOB.Kreiszahl..Kreis α Länge des Kreisbogens b r 360 α Fläche des Kreissektors A r 360 Das Bogenmaß b eines Winkels α ist die Länge der zugehörigen Bogenlänge b
Einfache Differentialgleichungen
Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.
Kapitel 15: Differentialgleichungen
FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen
Partielle Ableitungen & Tangentialebenen. Folie 1
Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung
Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab.
40 8. Anwendungen der Differentialrechnung Beispiele aus der Phsik: Momentangeschwindigkeit Die Bewegung eines Massenpunktes wird mathematisch durch die zugrundeliegende Weg- Zeitfunktion beschrieben,
Lösen linearer Gleichungssysteme
Lösen linearer Gleichungssysteme W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Die beschriebenen Verfahren 2 2 Einsetzungsverfahren 3 3 Additions-/Subtraktionsverfahren 5 4 Gleichsetzungsverfahren 8
V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,
Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen
Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt
Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung
6. Erzwungene Schwingungen
6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen
Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57
Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5
UND MOSES SPRACH AUCH DIESE GEBOTE
UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und
Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:
Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
Urs Wyder, 4057 Basel Funktionen. f x x x x 2
Urs Wyder, 4057 Basel [email protected] Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4
Analysis: Klausur Analysis
Analysis Klausur zur Integralrechnung Stammfunktionsberechnung, Flächenberechnung, Rotationsvolumen, Funktionen zu Änderungsraten (Bearbeitungszeit: 9 Minuten) Gymnasium J1 Aleander Schwarz www.mathe-aufgaben.com
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe
F u n k t i o n e n Gleichungssysteme
F u n k t i o n e n Gleichungssysteme Diese Skizze ist aus Leonardo da Vincis Tagebuch aus dem Jahre 149 und zeigt wie sehr sich Leonardo für Proportionen am Menschen interessierte. Ob er den Text von
Gleichungen und Gleichungssysteme 5. Klasse
Gleichungen und Gleichungssysteme 5. Klasse Andrea Berger, Martina Graner, Nadine Pacher Inhaltlichen Grundlagen zur standardisierten schriftlichen Reifeprüfung Inhaltsbereich Algebra und Geometrie (AG)
Berufsreifprüfung Mathematik
BRP Mathematik VHS Floridsdorf 08.10.2011 Seite 1/3 Berufsreifprüfung Mathematik Volkshochschule Floridsdorf / Herbsttermin 2011 1. Ein Brückenbogen besteht aus zwei Parabeln zweiter Ordnung (siehe Skizze).
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
Formelanhang Mathematik II
Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)
WBK Bonn Abendrealschule Mathematik Lernzielkontrolle II
17.1.015 Aufgabe 1: Basiswissen x² 15x + 15 100 15 x 15 65 4 1 0 0 15 x 15 x ± x 0 x 65 wurzel 4 5 5 a) Lösen Sie folgende quadratische Gleichung: x² -15x 100 x²-15x -100 0 b) Der Durchmesser eines Kreises
x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.
SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten
Ü b u n g s b l a t t 11
Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte
Vorbereitungskurs Mathematik
Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...
Das Mathematikabitur. Abiturvorbereitung Infini. Autor: Claus Deser Abiturvorbereitung Mathematik 1
Das Mathematikabitur Abiturvorbereitung Infini Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was ist eine Funktion? Welche Funktionen kennen wir? Welche Eigenschaften von Funktionen sind
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen
Vorkurs Mathematik für Informatiker 3 Logarithmen
3 Logarithmen Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 3: Logarithmen 1 Logarithmen: Definition Definition: Zu x > 0 und b > 0, b 1 sei der Logarithmus von x zur Basis b folgende
Grundlagen zur Wheatstone'schen Brückenschaltung
Grundlagen zur Wheatstone'schen Brückenschaltung Stand: 14.07.2012 Herleitung der Brückengleichung Die Brückenschaltung besteht aus zwei parallelgeschalteten Spannungsteilern. Beide Spannungsteiler werden
Lösungen (Hinweis: Ich habe nur da gerundet, wo es nicht anders möglich war. Ansonsten habe ich die genauen Werte benutzt.)
Übungsaufgaben Aufgabe 1 Ein Waldstück weist heute (2009) einen Holzbestand von 7300 m³ auf. Auf welchen Wert wächst der Holzbestand innerhalb von 6 Jahren (bis 2015), wenn er jedes Jahr um 3,2 % zunimmt?
K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte
K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5
Vorkurs Mathematik Übungen zu Differentialgleichungen
Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)
Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04.
Gegeben sei eine Funktion f(). Differenzialrechnung Differenzenquotient f() 197 Wegener Math/5_Differenzial Mittwoch 04.04.2007 18:38:45 1 Differenzenquotient Gesucht ist die Tangente an der Stelle, wobei
a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:
Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend
Mathematische Methoden für Informatiker
Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen
Rationale Zahlen Kurzfragen. 26. Juni 2012
Rationale Zahlen Kurzfragen 26. Juni 2012 Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... ) in einer Menge M abgeschlossen? Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... )
Relationen / Lineare Funktionen
Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine
Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur
Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach Logistisches Wachstum am Beispiel einer Hefekultur 16.04.2012 Inhaltsverzeichnis 1.0 Vorwort...3 2.0 Logistisches Wachstum allgemein...4 2.1
Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.
Begleitmaterial zum Modul Bruchgleichungen Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.. Führe eine entsprechende Konstruktion selbst
FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.
MATHEMATIK Schönbuch-Gymnasium Holzgerlingen Seite 1/5 Ähnliche Figuren - Strahlensätze Figuren zentrisch strecken Eigenschaften der zentrischen Streckung kennen und Zentrische Streckung anwenden Strahlensätze
Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%
Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen
Rekursionen (Teschl/Teschl 8.1-8.2)
Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied
2010-03-08 Klausur 3 Kurs 12Ph3g Physik
00-03-08 Klausur 3 Kurs Ph3g Physik Lösung Ein Federpendel mit der Federkonstante D=50 N schwingt mit derselben Frequenz wie ein m Fadenpendel der Länge 30 cm. Die Feder sei masselos. Die Auslenkung des
Die Exponentialfunktion Kap Aufgaben zu exponentiellem Wachstum und Zerfall
1 von 5 19.11.2013 12:23 Doc-Stand: 11/19/2013 12:18:48 Die Exponentialfunktion Kap.6.3 - Aufgaben zu exponentiellem Wachstum und Zerfall Bei allen Aufgaben wird exponentielles Wachstum bzw. exponentieller
4. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen
Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen
Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch
3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log
Logarithmen 1. 5 3 = 125 ist gleichbedeutend mit 5 log(125) = 3. Formen Sie nach diesem Muster um. a) 2 5 = 32 b) 10 4 = 10 000 c) 7 0 = 1 d) 3 2 = 1/9 e) 10 3 = 0.001 f) 5 1/2 = 5 g) 6 log(216) = 3 h)
Kapitel VI. Euklidische Geometrie
Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und
A n a l y s i s Differentialgleichungen
A n a l y s i s Differentialgleichungen Edward Lorenz (*97 in West Haven, Connecticut) der Meteorologe. Er studierte Wettermodelle auf dem Computer. Dabei stellte er fest, dass sehr kleine Änderungen in
Der Lehrling Jürgen soll täglich für den Biernachschub für die Kollegen auf der Baustelle sorgen.
Aufgabe 1: Der Lehrling Jürgen soll täglich für den Biernachschub für die Kollegen auf der Baustelle sorgen. Normalerweise wird der sehr günstige Getränkehändler bevorzugt, bei dem eine Kiste Bier (20
Die Harmonische Reihe
Die Harmonische Reihe Wie stellt sich Determinismus in der Mathematik dar? Wie stellt man Daten dar? Wie findet man das Resultat von unendlich vielen Schritten? Mehrere Wege können zu demselben Ziel führen
EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376
EigenMath Howto EigenMath ist ein kleines Programm, das als 'Taschenrechner' für die Mathematik der Oberstufe verwendet werden kann. Es ist viel weniger mächtig als die großen Brüder Sage, Maxima, Axiom
fwg Kreissektoren und Bogenmaß Mittelpunktswinkel : Das Bogenmaß eines Winkels ist die Länge des zugehörigen Kreisbogens im Einheitskreis ( ): M 10.
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des
Gleichungsarten. Quadratische Gleichungen
Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:
Lineare Gleichungssysteme Basis
Lineare Gleichungssysteme Basis Graphische Lösung von Gleichungen Regel Gegeben sind zwei Gleichungen von zwei Funktionen. Die Lösung dieses Systems ist gleich dem Schnittpunkt beider Graphen. Verlaufen
Folgen und Grenzwerte
Wintersemester 2015/201 Folgen und Grenzwerte von Sven Grützmacher Dieser Vortrag wurde für den (von der Fachschaft organisierten) Vorkurs für die Studienanfänger an der Fakultät für Mathematik und Informatik
Exponentielles Wachstum
Exponentielles Wachstum ein (Kurz-)Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 16. Februar 2016 Inhaltsverzeichnis
10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)
10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω
3. DER NATÜRLICHE LOGARITHMUS
3. DER NATÜRLICHE LOGARITHMUS ln Der natürliche Logarithmus ln(x) betrachtet als Funktion in x, ist die Umkehrfunktion der Exponentialfunktion exp(x). Das bedeutet, für reelle Zahlen a und b gilt b = ln(a)
Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe
Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe Halbjahr 10. 1 Schwerpunkt Inhaltsbezogene Prozessbezogene Arithmetik/Algebra Zahlenmengen (LS10 Kap. I) Angabe von Zahlenmengen mit der Intervall-
8.3 Lösen von Gleichungen mit dem Newton-Verfahren
09.2.202 8.3 Lösen von Gleichungen mit dem Newton-Verfahren Beispiel: + 2 e Diese Gleichung kann nicht nach aufgelöst werden, da die beiden nicht zusammengefasst werden können. e - - 2 0 Die gesuchten
K2 MATHEMATIK KLAUSUR 3
K2 MATHEMATIK KLAUSUR 3 NACHTERMIN 2..23 Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max 3 5 5 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 4 4 3 Punkte WT Ana a b c Summe P. (max 8 4 3
