Funktionale Abhängigkeiten
|
|
|
- Claudia Heintze
- vor 9 Jahren
- Abrufe
Transkript
1 Funktionale Abhängigkeiten Lehrplan Die Lehrpläne für die allgemein bildenden Schulen finden Sie online unter: 5. Klasse (Funktionen) Beschreiben von Abhängigkeiten, die durch reelle Funktionen in einer Variablen erfassbar sind (mittels Termen, Tabellen und Graphen), Reflektieren über den Modellcharakter von Funktionen Beschreiben und Untersuchen von linearen und einfachen nichtlinearen Funktionen a (zb x, a x 2, ax 2 bx c, abschnittweise definierte Funktionen) Untersuchen von Formeln im Hinblick auf funktionale Aspekte, Beschreiben von direkten und indirekten Proportionalitäten mit Hilfe von Funktionen Arbeiten mit Funktionen in anwendungsorientierten Bereichen 6. Klasse (Reelle Funktionen) Definieren, Darstellen und Untersuchen von Potenzfunktionen, von Exponential- und Logarithmusfunktionen sowie von Winkelfunktionen (Bogenmaß) Untersuchen von Eigenschaften reeller Funktionen (Monotonie, globale und lokale Extremstellen, Symmetrie, Periodizität) und von Beziehungen zwischen Funktionen (Umkehrfunktionen) Beschreiben von Änderungen durch Änderungsmaße (absolute und relative Änderung, Differenzenquotient) Anwenden von Funktionen zur Beschreibung kontinuierlicher Prozesse, Vergleichen von Modellen, Erkennen der Grenzen von Modellbildungen Kennenlernen von Verallgemeinerungen des Funktionsbegriffs Verketten von Funktionen 7. Klasse (Differentialrechnung) Definieren des Differentialquotienten (Änderungsrate), ausgehend vom Differenzenquotienten (mittlere Änderungsrate), Deuten dieser Begriffe als Sekantensteigung bzw. Tangentensteigung, weiteres Deuten in außermathematischen Bereichen Kennen des Begriffes Ableitungsfunktion, Berechnen von Ableitungen elementarer Funktionen Deuten der zweiten Ableitung in inner-und außermathematischen Bereichen Anita Dorfmayr, 10/10/10 Seite 1/5
2 Herleiten von Differentiationsregeln zur Ableitung von Polynomfunktionen, Kennen weiterer Differentiationsregeln (sofern sie für Funktionsuntersuchungen verwendet werden) Untersuchen einfacher und im Hinblick auf Anwendungen sinnvoller Funktionen bezüglich Monotonie und Krümmungsverhalten, Ermitteln von Extrem- und Wendestellen Lösen von Extremwertaufgaben Präzisieren einiger Grundbegriffe und Methoden der Differentialrechnung (insbesondere des Begriffes Grenzwert) unter Einbeziehung des Begriffes Stetigkeit Kennenlernen weiterer Anwendungen der Differentialrechnung 8. Klasse (Integralrechnung, Dynamische Prozesse) Ermitteln von Stammfunktionen Definieren des bestimmten Integrals, Deuten einer Summe von sehr kleinen Produkten der Form f x x als Näherungswert des bestimmten Integrals Kennen des Zusammenhangs zwischen Differenzieren und Integrieren sowie des Hauptsatzes der Differential-und Integralrechnung Berechnen von bestimmten Integralen mit Hilfe von Stammfunktionen unter Verwendung elementarer Integrationsregeln Arbeiten mit verschiedenen Deutungen des Integrals (insbesondere Flächeninhalt, Volumen, physikalische Deutungen) Beschreiben von Systemen mit Hilfe von Wirkungsdiagrammen, Flussdiagrammen, Differenzengleichungen oder Differentialgleichungen Untersuchen des dynamischen Verhaltens von Systemen Lösen von einfachen Differentialgleichungen, insbesondere y =k y Anita Dorfmayr, 10/10/10 Seite 2/5
3 Grundkompetenz-Katalog Der Grundkompetenz-Katalog ist nach wie vor in Überarbeitung. Folgende Auszüge beziehen sich auf den aktuellen Stand. Den vollständigen Grundkompetenz-Katalog und aktuelle Informationen zum Projekt, Pilottest-Angaben und freigegebene Aufgaben finden Sie online unter: Funktionale Abhängigkeiten Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften Die Begriffe Funktion und reelle Funktion kennen, Beispiele sowie Gegenbeispiele angeben und erklären Verbal, tabellarisch, grafisch oder durch eine Gleichung (Formel) gegebene Zusammenhänge als Funktionen betrachten ; zwischen diesen Darstellungsformen wechseln Aus Tabellen, Graphen1 und Gleichungen (Formeln) Werte(paare) ermitteln Eigenschaften von Funktionen erkennen, benennen und im Kontext deuten : Monotonie, Monotoniewechsel (lokale Extrema), Wendepunkte, Polstellen, Periodizität, Symmetrie, Schnittpunkte mit den Achsen Einen Überblick über die wichtigsten Typen mathematischer Funktionen geben, ihre Eigenschaften vergleichen Formeln als Darstellung von Funktionen interpretieren und den Funktionstyp zuordnen Durch Gleichungen (Formeln) gegebene Funktionen mit mehreren Veränderlichen im Kontext deuten, Funktionswerte ermitteln Die Verwendung der Funktion als konstruktives Modell (z. B. Tarife, Zinseszinsen), als erklärendes Modell (z. B. Angebot und Nachfrage, Kosten) und als beschreibendes Modell (z. B. als Trendfunktion) erkennen und zwischen diesen Modelltypen unterscheiden Lineare Funktion f x =k x d Den typischen Verlauf des Graphen kennen Die Wirkung der Parameter k und d kennen und die Parameter in unterschiedlichen Kontexten deuten Charakteristische Eigenschaften kennen und im Kontext deuten : f x 1 =f x k,f x 2 f x 1 x 2 x 1 =k=f ' x Die Angemessenheit einer Beschreibung mittels linearer Funktion bewerten Den Schnittpunkt zweier linearer Funktionsgraphen ermitteln und im jeweiligen Kontext deuten Anita Dorfmayr, 10/10/10 Seite 3/5
4 Direkte Proportionalität als lineare Funktion vom Typ f x =k x Potenzfunktion mit f x =a x z b, z Z oder mit Die typischen Verläufe der Graphen kennen 1 f x =a x 2 b Die Wirkung der Parameter a und b kennen und die Parameter im Kontext deuten Indirekte Proportionalität als Potenzfunktion vom Typ f x = a x (bzw. f x =a x 1 ) Polynomfunktion f x = i=0 a i x i n Typische Verläufe von Graphen in Abhängigkeit vom Grad der Polynomfunktion kennen Den Zusammenhang zwischen dem Grad der Polynomfunktion und der Anzahl der Null-, Extrem- und Wendestellen wissen Exponentialfunktion f x =a b x mit a,b R bzw. f x =a e x Die typischen Verläufe der Graphen kennen Die Wirkung der Parameter a und b (bzw. el) kennen und die Parameter in unterschiedlichen Kontexten deuten Charakteristische Eigenschaften (f(x+1) = b f(x); [ex] = ex) kennen und im Kontext deuten Die Begriffe Halbwertszeit und Verdoppelungszeit kennen, die entsprechenden Werte berechnen und im Kontext deuten Die Angemessenheit einer Beschreibung mittels Exponentialfunktion bewerten Lineare Funktion und Exponentialfunktion strukturell vergleichen Allgemeine Sinusfunktion f x =a sin b x c Den typischen Verlauf des Graphen kennen Die Wirkung der Parameter a, b und c kennen und die Parameter im Kontext deuten Wissen, dass die Funktion cos ein Spezialfall der allgemeinen Sinusfunktion ist und dass gilt: [sin x ]'=cos x,[sin x ]''= sin x Analysis Änderungsmaße Absolute und relative (prozentuelle) Änderungsmaße unterscheiden und angemessen verwenden Den Zusammenhang Differenzenquotient (mittlere Änderungsrate) Anita Dorfmayr, 10/10/10 Seite 4/5
5 Differentialquotient ( momentane Änderungsrate) auf der Grundlage eines intuitiven Grenzwertbegriffes kennen und damit (verbal und auch in formaler Schreibweise) Den Differenzen- und Differentialquotienten in verschiedenen Kontexten deuten und entsprechende Sachverhalte durch den Differenzen- bzw. Differentialquotienten Das systemdynamische Verhalten von Größen durch Differenzengleichungen beschreiben bzw. diese im Kontext deuten Regeln für das Differenzieren Einfache Regeln des Differenzierens kennen und anwenden : Potenzregel, Summenregel, Regeln für [k f x ]' und [f k x ]' Ableitungsfunktion / Stammfunktion Den Begriff Ableitungsfunktion / Stammfunktion kennen Den Zusammenhang zwischen Funktion und Ableitungsfunktion (bzw. Funktion und Stammfunktion) in deren grafischer Darstellung erkennen und Eigenschaften von Funktionen mit Hilfe der Ableitung(sfunktion) : Monotonie, lokale Extrema, Links- und Rechtskrümmung, Wendestellen Summation und Integral Den Begriff des bestimmten Integrals als Grenzwert einer Summe von Produkten deuten und Das bestimmte Integral in verschiedenen Kontexten deuten und entsprechende Sachverhalte durch Integrale Anita Dorfmayr, 10/10/10 Seite 5/5
Polynomfunktion Typische Verläufe von Graphen in Abhängigkeit vom Grad der Polynomfunktion (er)kennen Zwischen tabellarischen und grafischen
AG AG 1 AG 1.1 AG 1.2 AG 2 AG 2.1 AG 2.2 AG 2.3 AG 2.4 AG 2.5 AG 3 AG 3.1 AG 3.2 AG 3.3 AG 3.4 AG 3.5 AG 4 AG 4.1 AG 4.2 Inhaltsbereich Algebra und Geometrie Grundbegriffe der Algebra Wissen über die Zahlenmengen
Grundkompetenzkatalog. Mathematik
Grundkompetenzkatalog Mathematik AG - Algebra und Geometrie AG 1.1 AG 1.2 AG 2.1 AG 2.2 AG 2.3 AG 2.4 AG 2.5 AG 3.1 AG 3.2 AG 3.3 Wissen über Zahlenmengen N, Z, Q, R, C verständig einsetzen Wissen über
Grundkompetenzen (Mathematik Oberstufe)
Grundkompetenzen (Mathematik Oberstufe) AG: Algebra und Geometrie (14 Deskriptoren) FA: Funktionale Abhängigkeiten (35 Deskriptoren) AN: Analysis (11 Deskriptoren) WS: Wahrscheinlichkeit und Statistik
Grundkompetenzen vs. Lehrplan
Grundkompetenzen vs. Lehrplan eine Gegenüberstellung am Beispiel Analysis AG-Tagung St. Pölten, 11.11.2009 Grundlagen Lehrplan Grundkompetenzen Notendefinition Mit GENÜGEND sind Leistungen zu beurteilen,
Mathematik, G und RG - Themenbereiche für die mündliche Reifeprüfung
Mathematik, G und RG, Themenbereiche RP, Seite 1 von 6 Mathematik, G und RG - Themenbereiche für die mündliche Reifeprüfung 1. Grundbegriffe der Algebra Wissen über die Zahlenmengen N, Z, Q, R, C verständig
Edgar Neuherz Michael Wanz MATHEMATIK. Aufgabensammlung mit vollständigen Lösungen INFORMATIONEN. Reifeprüfungstermine, Kompetenzkatalog
Edgar Neuherz Michael Wanz MATHEMATIK Aufgabensammlung mit vollständigen Lösungen INFORMATIONEN Reifeprüfungstermine, Kompetenzkatalog INFORMATIONEN Reifeprüfungstermine, Kompetenzkatalog Schuljahr 2017/18
Wesentliche Bereiche für den Gegenstand Mathematik
Wesentliche Bereiche für den Gegenstand Mathematik Semesterbezeichnungen laut Lehrplan: 6. Klasse Wintersemester: 3. Semester 6. Klasse Sommersemester: 4. Semester 7. Klasse Wintersemester: 5. Semester
Leistungsbeurteilung aus Mathematik 7. Klasse
Leistungsbeurteilung aus Mathematik 7. Klasse Für die Leistungsbeurteilung wird ein Punktesystem herangezogen. Die Semesterpunktezahl setzt sich wie folgt zusammen: a) ca. 65% der erreichten Punkte bei
Mathematik Themenbereiche für die mündliche Reifeprüfung 2017/18
Mathematik, Themenbereiche RP 17/18, Seite 1 von 6 Mathematik Themenbereiche für die mündliche Reifeprüfung 2017/18 1. Zahlenbereiche und algebraische Gleichungen Wissen über die Zahlenmengen N, Z, Q,
Leistungsbeurteilung aus Mathematik 5. Klasse
Leistungsbeurteilung aus Mathematik 5. Klasse Folgende Komponenten werden zur Leistungsfeststellung herangezogen: 1. Schularbeiten: Es werden zwei zweistündige Schularbeiten geschrieben. Die Beurteilung
Aktualisierte Grundkompetenzen zu den Inhaltsbereichen Algebra und Geometrie und Funktionale Abhängigkeiten sowie zur Beschreibenden Statistik
Aktualisierte Grundkompetenzen zu den Inhaltsbereichen Algebra und Geometrie und Funktionale Abhängigkeiten sowie zur Beschreibenden Statistik Aufgrund der Erfahrungen bei der Aufgabenentwicklung, beim
Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung
Dimensionen Mathematik 7 GK Grundkompetenzen für die neue Reifeprüfung Inhaltsverzeichnis Buchkapitel Inhaltsbereiche Seite Komplexe Zahlen Algebra und Geometrie Grundbegriffe der Algebra (Un-)Gleichungen
MATHEMATIK. Einleitung
MATHEMATIK Einleitung Der Anforderungskatalog geht von Schultypen mit drei Wochenstunden in jeder Schulstufe aus. Die kursiv gesetzten Inhalte sind für alle Schulstufen mit mehr als drei Wochenstunden
Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl:
Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: 401546 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen
Inhaltsbereich Algebra und Geometrie (AG)
https://www.bifie.at/system/files/dl/srdp_ma_konzept_2013-03-11.pdf Inhaltsbereich Algebra und Geometrie (AG) AG 1 Grundbegriffe der Algebra AG 1.1 Wissen über die Zahlenmengen N, Z, Q, R, C verständig
Ein roter Faden durch die Schulanalysis mit CAS
Ein roter Faden durch die Schulanalysis mit CAS AG-Tagung Mathematik St.Pölten 23.10.2008 Josef Lechner ( [email protected] ) BG/BRG Amstetten Beispiel 1: Eine typische Reifeprüfungsaufgabe Um den Punkt B(0/b)
Themenpools für die mündliche Reifeprüfung aus Mathematik 2018
Themenpools für die mündliche Reifeprüfung aus Mathematik 2018 Bei allen Themenpools werden das Wissen über Zahlenbereiche und der grundlegende Umgang mit Termen, Formeln, Gleichungen und Funktionen vorausgesetzt.
2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner
. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können
Grundkompetenzen. für die standardisierte schriftliche Reifeprüfung in Mathematik. 2) Inhaltsbereich Funktionale Abhängigkeiten (FA)
Grundkompetenzen für die standardisierte schriftliche Reifeprüfung in Mathematik 1) Inhaltsbereich Algebra und Geometrie (AG) Grundbegriffe der Algebra (Un-)Gleichungen und Gleichungssysteme Vektoren Trigonometrie
Bezüge zu den Bildungsstandards
Differentialrechnung Kinga Szűcs FSU Jena Fakultät für Mathematik und Informatik Abteilung Didaktik In Anlehnung an Prof. Dr. Bernd Zimmermanns Seminarpräsentationen Inhalt Bezüge zu den Bildungsstandards
Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17
Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen von den natürlichen Zahlen zu den ganzen,
Grundkompetenzen für die standardisierte schriftliche Reifeprüfung in Mathematik
Grundkompetenzen für die standardisierte schriftliche Reifeprüfung in Mathematik Die Formulierung der Grundkompetenzen (GK) bezieht sich auf den Stand von März 2013 (Die standardisierte schriftliche Reifeprüfung
Grundkompetenzen für die schriftliche SRP in Mathematik (Maturajahr 2018)
Grundkompetenzen für die schriftliche SRP in Mathematik (Maturajahr 2018) Quelle: bifie, https://www.bifie.at/node/1442 (Stand 16.02.2016) AG AG 1 AG 1.1 AG 1.2 Inhaltsbereich Algebra und Geometrie Grundbegriffe
Themenpools für die mündliche Reifeprüfung aus Mathematik
Themenpools für die mündliche Reifeprüfung aus Mathematik 2012 2016 Bei allen Themenpools werden das Wissen über Zahlenbereiche und der grundlegende Umgang mit Termen, Formeln, Gleichungen und Funktionen
Ernst Klett Verlag GmbH, Stuttgart 2017 Alle Rechte vorbehalten Von dieser Druckvorlage ist die Vervielfältigung für den eigenen Unterrichtsgebrauch
Ernst Klett Verlag GmbH, Stuttgart 2017 Alle Rechte vorbehalten Von dieser Druckvorlage ist die Vervielfältigung für den eigenen Unterrichtsgebrauch gestattet. Seite 1 Ernst Klett Verlag GmbH, Stuttgart
Grundkompetenzen für die standardisierte schriftliche Reifeprüfung in Mathematik
Grundkompetenzen für die standardisierte schriftliche Reifeprüfung in Mathematik Die Formulierung der Grundkompetenzen (GK) bezieht sich auf den Stand von März 2013 (Die standardisierte schriftliche Reifeprüfung
KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012)
Lehrbuch: Elemente der Mathematik 10 KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Thema Inhalte Kompetenzen Zeit in Stunden Buchseiten Bemerkungen Modellieren
Themenbereiche für die mündliche Reifeprüfung aus Mathematik. für das Schuljahr 2017/18
Themenbereiche für die mündliche Reifeprüfung aus Mathematik für das Schuljahr 2017/18 Die Themenbereiche wurden mit 6.11.2017 beschlossen und gelten für alle 8. Klassen. 1. Zahlen und Rechengesetze, Potenzen,
Thema: Thema 1: Zahlenmengen, Mengen
Thema: Inhalt und Handlung Thema 1: Zahlenmengen, Mengen Vernetzung und Anwendung Zahlenbereiche von natürliche Zahlen bis komplexe Zahlen beschreiben und darstellen Rechengesetze formulieren und begründen
Schulinterner Stoffverteilungsplan Mathematik. auf der Basis des Schulbuchs EdM (Schroedel) Einführungsphase (G9) Arbeitsfassung Stand
Seite 1 Gymnasium Neu Wulmstorf r Stoffverteilungsplan Mathematik auf der Basis des Schulbuchs EdM (Schroedel) Einführungsphase (G9) Arbeitsfassung Stand 26.04.2018 Vorbemerkung: Da der Kompetenzerwerb
Schulinternes Curriculum 11 Jg. (Einführungsphase) Thema Kompetenzen Methoden Fachspezifische
Fachbereich MATHEMATIK GYMNASIUM ISERNHAGEN Schulinternes Curriculum 11 Jg. (Einführungsphase) Thema Kompetenzen Methoden Fachspezifische Kriterien Funktionen Potenzfunktionen - Mit natürlichen Exponenten
Mathematische Grundkompetenzen für die srp in der AHS
Mathematische Grundkompetenzen für die srp in der AHS mit Nummerierung Stand: April 2012 (bifie-plattform) In der nachfolgenden Tabelle sind die Grundkompetenzen der SRP-M den Schulstufen zugeordnet. Sie
Stoffverteilungsplan Sek II
Klasse 11 (3-stündig) Stoffverteilungsplan Sek II Analysis - Differenzialrechnung Inhalte Hinweise Schulbuch Funktionen - Begriff der Funktion 12-15 - Symmetrien 22-24 - Verhalten im Unendlichen 20-21
Themenbereiche für die mündliche Reifeprüfung aus Mathematik. für das Schuljahr 2015/16. Klassen 8a,b,c
Themenbereiche für die mündliche Reifeprüfung aus Mathematik für das Schuljahr 2015/16 Klassen 8a,b,c 1. Zahlen und Rechengesetze, Potenzen, Wurzeln, Logarithmen Interpretieren von Termen, Formeln, Beträgen
Grundkompetenzen im gemeinsamen Kern
1 Zahlen und Maße 1.1 mit natürlichen, ganzen, rationalen und reellen Zahlen rechnen, ihre Beziehungen argumentieren und auf der Zahlengeraden veranschaulichen 1.2 Zahlen in Fest- und Gleitkommadarstellung
Monat Kompetenzbereich und Kompetenzen lt. Lehrplan Kapitel und Abschnitte im Buch
Jahresplanung zu Thema Mathematik 6 In der vorliegenden Jahresplanung sind neben den Kapiteln und Abschnitten aus Thema Mathematik 6 alle Kompetenzbereiche und Kompetenzen aus dem fachlichen Teil des Lehrplans
Unterrichtssequenz zum E-Book+ Mathematik verstehen 5
Unterrichtssequenz zum E-Book+ Lineare Funktionen Lernziele Lineare Funktionen der Form f(x) = k x + d und deren Graphen kennen Charakteristische Eigenschaften einer linearen Funktion kennen und interpretieren
Johannes-Althusius-Gymnasium Emden
Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche Mathematisch argumentieren
Themenbereiche für die mündliche Reifeprüfung aus Mathematik. für das Schuljahr 2014/15
Themenbereiche für die mündliche Reifeprüfung aus Mathematik für das Schuljahr 2014/15 Die Themenbereiche wurden bei der Fachkonferenz am 22.10.2014 beschlossen und gelten für alle 8. Klassen. I Algebra
FOLGEN, REIHEN, GRENZWERTE, FUNKTIONEN. Dr. Kinga Szűcs FSU Jena Fakultät für Mathematik und Informatik Abteilung Didaktik
FOLGEN, REIHEN, GRENZWERTE, FUNKTIONEN Dr. Kinga Szűcs FSU Jena Fakultät für Mathematik und Informatik Abteilung Didaktik 01.12.2011 INHALT Bezüge zu den Bildungsstandards Bezüge zum Thüringer Lehrplan
Grundkompetenzen. Grundbegriffe der Algebra
Grundkompetenzen Grundbegriffe der Algebra AG 1.1 Wissen über die Zahlenmengen N, Z, Q, R, C verständig einsetzen AG 1.2 Wissen über algebraische Begriffe angemessen einsetzen : Variable, Terme, Formeln,
1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11
Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel
Hauscurriculum Q1 Analysis II Grundkurs März 2017
Hauscurriculum Q1 Analysis II Grundkurs März 2017 Übersicht: verbindlich: 1 3 sowie ein weiteres aus den n 4 6, durch Erlass festgelegt; Es können innerhalb dieser im Erlass Schwerpunkte ausgewiesen werden.
Ziele der Analysis, Aspekte und Grundvorstellungen... Funktionen
Inhaltsverzeichnis 1 Ziele der Analysis, Aspekte und Grundvorstellungen... 1 1.1 Ziele, Standards, Kompetenzen... 1 1.2 Allgemeine Ziele des Analysisunterrichts... 4 1.2.1 Pragmatischer Gesichtspunkt...
Leistungsbeurteilung aus Mathematik 6. Klasse
Leistungsbeurteilung aus Mathematik 6. Klasse Die Semesternote aus Mathematik setzt sich aus zwei großen Teilen zusammen: a) Leistungen bei den Schularbeiten b) Erbrachte Leistungen in der Mitarbeit In
Curriculum für das Fach: Mathematik
Curriculum für das Fach: Mathematik Prinzipien der Unterrichtsgestaltung und Bewertung. Prinzipien der Unterrichtsgestaltung. Ziel des Mathematikunterrichts ist, die Kollegiatinnen und Kollegiaten auf
Mathematik verstehen 5
JAHRESPLANUNG Mathematik verstehen 5 Grundkompetenzen für die 9. Schulstufe (1. und 2. Semester) Jahresplanung (9. Schulstufe) 5. Klasse AHS (1. und 2. Semester) Grundkompetenzen für die 9. Schulstufe
Leistungsbeurteilung aus Mathematik 7. Klasse
Leistungsbeurteilung aus Mathematik 7. Klasse Die Semesternote aus Mathematik setzt sich aus zwei großen Teilen zusammen: a) Leistungen bei den Schularbeiten b) Erbrachte Leistungen in der Mitarbeit In
Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe
Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe Halbjahr 10. 1 Schwerpunkt Inhaltsbezogene Prozessbezogene Arithmetik/Algebra Zahlenmengen (LS10 Kap. I) Angabe von Zahlenmengen mit der Intervall-
Leistungsbeurteilung aus Mathematik 8. Klasse
Leistungsbeurteilung aus Mathematik 8. Klasse Die Semesternote aus Mathematik setzt sich aus zwei großen Teilen zusammen: a) Leistungen bei den Schularbeiten b) Erbrachte Leistungen in der Mitarbeit In
MATHEMATIK. Einleitung
MATHEMATIK Einleitung Der Anforderungskatalog geht von Schultypen mit drei Wochenstunden in jeder Schulstufe aus. Die kursiv gesetzten Inhalte sind für alle Schulstufen mit mehr als drei Wochenstunden
Leistungsbeurteilung aus Mathematik 6. Klasse
Leistungsbeurteilung aus Mathematik 6. Klasse Folgende Komponenten werden zur Leistungsfeststellung herangezogen: 1. Schularbeiten: Es werden zwei zweistündige Schularbeiten geschrieben. Die Beurteilung
Jahresplan Mathematik 6. Klasse AHS
Jahresplan Mathematik 6. Klasse HS Schulbuchreihe Lösungswege 6 (Freiler, Marsik, Olf, Wittberger) Zeitliche Planung Stundenanzahl 3-4 Wochenstunden in Klammern stehen geschätzte Stundenanzahlen Zeitlicher
1. Mathematik-Schularbeit 6. Klasse AHS
. Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und
Kernkompetenz Mathematik (Teil Analysis)
Beschreibung der Kernkompetenzen in Mathematik (Teil Analysis) Themen Mindestkompetenzen 1. Grundlagen 1.1 Aussagen und Aussageformen 1.2 Vollständige Induktion 1.3 Reelle Funktionen und Graphen 1.4 Bijektivität
Leistungsbeurteilung aus Mathematik 8. Klasse
Leistungsbeurteilung aus Mathematik 8. Klasse Folgende Komponenten werden zur Leistungsfeststellung herangezogen: 1. Schularbeiten: Es werden zwei dreistündige Schularbeiten geschrieben. Die Beurteilung
Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Lambacher Schweizer Einführungsphase Klettbuch
Lambacher Schweizer Im Lambacher Schweizer sind Kompetenzbereiche und Inhaltsfelder innerhalb aller Kapitel eng miteinander verwoben. So werden in den Aufgaben immer wieder Fähigkeiten der sechs Kompetenzbereiche
Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1
Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Lehrplan: M 11.1.1 Graphen gebrochen-rationaler Funktionen M 11.1.2 Lokales Differenzieren Passende Kapitel im Schulbuch Fokus Mathematik 11:
Thema. Zeit in Wochen. Bleib fit im Umgang mit Termen und Gleichungen. Bleib fit im Umgang mit quadratischen Funktionen. 1.
Stoffverteilungsplan Einführungsphase NRW Die Übersicht enthält die inhaltsbezogenen Kompetenzen des immer noch gültigen Lehrplans von 1999 für die Einführungsphase und die durch die Schulzeitverkürzung
Schulinternes Curriculum Mathematik EF. Kompetenzerwartungen bzgl. der Kenntnisse, Fähigkeiten und Fertigkeiten und Reflexionsfähigkeit. Kap.
I I.1 - I.6 untersuchen die Eigenschaften von linearen und quadratischen Funktionen (Wiederholung SI) Potenzfunktionen Ganzrationalen Funktionen können Gleichungen linearer und quadratischer Funktionen
ISBN
1 Zeitraum Ziele / Inhalte (Sach- und Methodenkompetenz) Klassenarbeit Analysis Grenzwerte 1. Die explizite und rekursive Beschreibung von Zahlenfolgen verstehen und Eigenschaften von Zahlenfolgen kennen
Abitur 2017 Mathematik Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.
Die Lernlandkarte sollte den Lernenden ständig vor Augen sein!
Lernlandkarten...... sind Visualisierungen von gedanklichen Strukturen... enthalten Stichworte, Bilder, Skizzen, Grafiken, kurze Texte... verdeutlichen Beziehungen und Vernetzungen durch beschriftete Pfeile...
Mathematische Grundkompetenzen im gemeinsamen Kern gültig ab den Matura-Prüfungsterminen 2017/2018
Mathematische Grundkompetenzen im gemeinsamen Kern 1 Stand: 9.1.2017 Mathematische Grundkompetenzen im gemeinsamen Kern gültig ab den Matura-Prüfungsterminen 2017/2018 1 Zahlen und Maße 1.1 1.2 1.3 1.4
2. Mathematik-Schularbeit für die 6. Klasse Autor: Gottfried Gurtner
2. Mathematik-Schularbeit für die 6. Klasse Autor: Gottfried Gurtner Arbeitszeit: 100 Minuten Lernstoff: Mathematische Grundkompetenzen: AG2.1, AG2.2, AG2.3 FA1.1, FA1.5, FA1.6, FA1.7, FA1.9 FA2.1, FA2.2,
2. Inhaltsbereich Funktionale Abhängigkeiten (FA)
2. Inhaltsbereich Funktionale Abhängigkeiten (FA) FA 1.1 FA 1.2 FA 1.3 FA 1.4 FA 1.5 FA 1.6 FA 1.7 FA 1.8 FA 1.9 FA 2.1 FA 2.2 FA 2.3 FA 2.4 FA 2.5 FA 2.6 FA 3.1 FA 3.2 Für gegebene Zusammenhänge entscheiden
Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich
Leistungsbeurteilung aus Mathematik 7. Klasse
Leistungsbeurteilung aus Mathematik 7. Klasse Folgende Komponenten werden zur Leistungsfeststellung herangezogen: 1. Schularbeiten: Es werden zwei zweistündige Schularbeiten geschrieben. Die Beurteilung
Abitur 2017 Mathematik Infinitesimalrechnung II
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben
Abitur 2010 Mathematik GK Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der
Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a
. Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------
Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung
Dimensionen Mathematik 5 GK Grundkompetenzen für die neue Reifeprüfung Inhaltsverzeichnis Buchkapitel Inhaltsbereiche Seite Zahlen und Rechengesetze Algebra und Geometrie 3 Grundbegriffe der Algebra Funktionen
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
MATHEMATIK. Einleitung
MATHEMATIK Einleitung Der Anforderungskatalog geht von Schultypen mit drei Wochenstunden in jeder Schulstufe aus. Die kursiv gesetzten Inhalte sind für alle Schulstufen mit mehr als drei Wochenstunden
Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik
Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik Unterrichtsinhalte Funktionale Zusammenhänge Ausbildungsabschnitt I, 50Stunden Lineare Funktionen
Stoffverteilungsplan Mathematik Klasse 10 auf der Grundlage des Bildungsplans 2016 Lambacher Schweizer 10 ISBN
1 In der Arbeitsfassung des Bildungsplans 2016 wird betont, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener
Analysis.
Analysis www.schulmathe.npage.de Inhaltsverzeichnis 1 Zahlenfolgen 4 1.1 Bildungsvorschriften für Zahlenfolgen..................... 5 1.2 Monotonie von Zahlenfolgen.......................... 5 1.3 Arithmetische
LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser
nsivsr i, LEISTUNGSKURS GESAMTBAND Mathematisches Unterrichtswerk für das Gymnasium Ausgabe A bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser unter Mitwirkung von Jürgen
ABI-CHECKLISTE. FiNALE Prüfungstraining MATHEMATIK. trifft zu. FiNALE- Seiten. erledigt. nicht zu. A Differenzialrechnung
ABI-CHECKLISTE A Differenzialrechnung A1 Potenz-, Sinus- und Kosinusfunktion, Exponential- und Logarithmusfunktionen ableiten. A2 einfache Funktionen mit der Summenund Faktorregel und sammengesetzte Funktionen
Einführungsphase. Kapitel I: Funktionen. Arithmetik/ Algebra
Einführungsphase prozessbezogene Kompetenzen Die SuS sollen... inhaltliche Kompetenzen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I: - Realsituationen in ein mathematisches Modell
Operatoren. Operatoren. angeben, nennen
angeben, nennen I Objekte, Sachverhalte, Begriffe, Daten ohne nähere en, Begründungen und ohne Darstellung von Lösungsansätzen oder Lösungswegen aufzählen anwenden I - II Einen bekannten Sachverhalt, eine
Mathematik zum Studieneinstieg
Gabriele Adams Hermann-Josef Kruse Diethelm Sippel Udo Pfeiffer Mathematik zum Studieneinstieg Grundwissen der Analysis für Wirtschaftswissenschaftler, Ingenieure, Naturwissenschaftler und Informatiker
marienschule euskirchen
Schulinternes Curriculum Mathematik Sekundarstufe II Einführungsphase (ab Schuljahr 2014/2015) Lehrbuch: Bigalke/Köhler Mathematik Sekundarstufe II, Cornelsen Verlag GTR: TI-82 Stats 1/8 ca. 8 UE sbezogene
Inhaltsverzeichnis. 1. Anwendungen der Analysis... 1
Inhaltsverzeichnis 1. Anwendungen der Analysis................ 1 1.1 Folgen und Reihen................................. 2 1.2 Funktionen... 9 1.3 Grenzwerte von Funktionen und Stetigkeit............ 18
Geben Sie an, welche dieser vier Funktionen im gesamten Definitionsbereich monoton steigend sind, und begründen Sie Ihre Entscheidung!
Aufgabe 3 Funktionen vergleichen Gegeben sind vier reelle Funktionen f, g, h und i mit den nachstehenden Funktionsgleichungen: f() = 3 mit g() = 3 mit h() = 3 mit i() = sin(3) mit Geben Sie an, welche
2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks
2.1.2 Konkretisierte Unterrichtsv auf der Basis des Lehrwerks Einführungsphase 1 Buch: Bigalke, Dr. A., Köhler, Dr. N.: Mathematik Gymnasiale Oberstufe Nordrhein-Westfalen Einführungsphase, Berlin 2014,
Kapitel 5: Differentialrechnung
Kapitel 5: Differentialrechnung Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 1 / 23 Gliederung 1 Grundbegriffe 2 Abbildungen
Themenpool Matura Schuljahr 2017/18
Themenpool Matura Schuljahr 2017/18 Mathematik: 12 Wochenstunden (6.-8. Klasse) 1. Reelle Funktionen (Darstellung und Eigenschaften) die Definition der Funktion als eindeutige Zuordnung nennen entscheiden,
Inhaltsverzeichnis. 3 Folgen Achilles und die Schildkröte Grundbegriffe Fraktale... 49
Inhaltsverzeichnis 1 Analytische Geometrie: Geraden 8 1.1 Lineare Gleichungen........................ 8 1.2 Die Hauptform einer linearen Gleichung............. 8 1.3 Wertetabellen............................
Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: , Seite 1 von 7
Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: 25.11.2014, Seite 1 von 7 Unterrichtswerk: Elemente der Mathematik, Niedersachsen, 10. Schuljahr, Schroedel,
