Kernkompetenz Mathematik (Teil Analysis)
|
|
|
- Linda Sauer
- vor 8 Jahren
- Abrufe
Transkript
1 Beschreibung der Kernkompetenzen in Mathematik (Teil Analysis) Themen Mindestkompetenzen 1. Grundlagen 1.1 Aussagen und Aussageformen 1.2 Vollständige Induktion 1.3 Reelle Funktionen und Graphen 1.4 Bijektivität Unterschied zwischen Aussagen und Aussageformen definieren können Wahrheitswerte von Aussagen angeben können Zahlbereiche unterscheiden können mit (Absolut-)Beträgen, linearen und quadratischen Gleichungen rechnen können, dabei den Satz von Vieta, die Lösungsformeln und die quadratische Ergänzung wiedergeben und anwenden erklären können, welche Bedeutung Beweise in der Mathematik haben Vollständige Induktion als Beweisverfahren durchführen können auf Summen, rekursive Folgen und Teilbarkeitsbeziehungen anwenden können geometrische Summenformel kennen und anwenden können das Pascalsche Dreieck aufschreiben und auf Binome anwenden können den Bezug zu Binomialkoeffizienten kennen Funktionen definieren können Definitions- und Wertebereich berechnen /graphisch ermitteln können Symmetrie und (strenge) Monotonie bei einfachen Funktionen nachweisen können einfache Graphen skizzieren können Graphen, die durch Verschiebung, Spiegelung und / oder Streckung / Stauchung entstehen skizzieren können die Fachbegriffe injektiv, surjektiv und bijektiv definieren können Beziehung zwischen Monotonie und Injektivität angeben können Umkehrfunktionen bei einfachen Funktionen berechnen können I
2 2. Trigonometrie 2.1 Trigonometrie 2.2 Trigonometrische Funktionen 2.4 Die allgemeine Sinusfunktion 2.5 Zyklometrische Funktionen 2.6 Goniometrische Gleichungen trigonometrische Funktionen am Dreieck definieren können Aufgaben am Dreieck berechnen können Winkelmaße (Bogenmaß und Gradmaß) unterscheiden können Einfache Aufgaben mit dem Sinussatz berechnen können trigonometrische Funktionen am Einheitskreis definieren und darstellen können Graphen skizzieren können Symmetrie und Periodizität definieren und berechnen können allgemeine Schwingungen modellieren und darstellen können Arcusfunktionen definieren und graphisch darstellen können Additionstheoreme kennen und anwenden können goniometrische Gleichungen mit Substitutionen umformen und lösen können 3. Konvergenz von Folgen und Funktionen 3.1 Geometrisches Wachstum geometrisches Wachstum erkennen, definieren und berechnen können an einfachen Fraktalen anwenden können Konvergenz der geometrische Reihe nachweisen können periodische Dezimalzahlen berechnen können rekursive und explizite Folgen unterscheiden können 3.2 Definition und Eigenschaften der Konvergenz Konvergenz definieren können ( -Definition) Konvergenz anhand einer Grafik veranschaulichen können Konvergenzprinzipien kennen und anwenden können (z.b. Einschließungsprinzip, Vergleichsprinzip, Monotonieprinzip) Grenzwertsätze anwenden und formulieren können II
3 3.3 Divergenz Divergenz nachweisen können symbolisches Rechnen mit zwischen beschränkten und unbeschränkten Folgen unterscheiden können 3.4 Grenzwerte von Funktionen formale Definition, Sätze und Eigenschaften der Folgenkonvergenz n auf den Fall x x 0 übertragen können rechts- und linksseitige Grenzwerte definieren und berechnen können 3.5 Polynome und Horner- Schema 3.6 Rationale Funktionen 3.7 Stetigkeit und stetige Fortsetzung Polynome definieren und skizzieren können Polynome in Linearfaktoren und irreduzible quadratische Faktoren zerlegen können (Faktorisierung) Nullstellen mit Horner-Schema abspalten können. Verbindung von Horner-Schema und Polynomdivision beschreiben können rationale Funktionen definieren können Definitionslücken in Polstellen, hebbare Lücken und Sprungstellen unterscheiden können Graphen rationaler Funktionen skizzieren können kleine Kurvendiskussionen durchführen können (Definitionsbereich, Wertebereich, Nullstellen, Asymptotik, Graph) Stetigkeit (mit Hilfe des Grenzwertes) definieren können Funktionen auf stetige Fortsetzbarkeit untersuchen können einseitige Stetigkeit definieren und berechnen können. 4. Differentialrechnung 4.1 Mittlere Änderungsrate 4.2 Differenzialquotient 4.3 Tangente den Differenzenquotienten einer Funktion definieren und berechnen können ihn als durchschnittliche Änderungsrate der Funktion interpretieren können Differentialquotient als Grenzwert des Differenzenquotienten erkennen differenzierbare Funktionen definieren können Ableitungen bei einfachen Funktionen berechnen können Potenzregel herleiten können Gegenbeispiele zur Differenzierbarkeit angeben können Steigung der Tangente als lokale Änderungsrate der Funktion interpretieren können Tangenten berechnen und grafisch darstellen können III
4 4.4 Ableitungsregeln 4.5 Kurvendiskussionen 4.6 Koeffizientenbestimmung numerische Näherungen berechnen können Tangenten geometrisch konstruieren können die Gleichung der Tangente analytisch herleiten können sprachlich zwischen Schnitt- und Berührpunkt unterscheiden können Funktionen mit den Ableitungsregeln (Summenregel, Produktregel, Quotientenregel und Kettenregel) differenzieren können Beweis der Ableitungsregeln mit den Grenzwertsätzen in Beziehung setzen können Ableitungen von Umkehrfunktionen berechnen können Erweiterung der Kurvendiskussion mit Differentialrechnung: strenge Monotonie und Krümmung mit Hilfe der ersten und zweiten Ableitung berechnen können hinreichende und notwendige Kriterien zur Bestimmung von Extremwerten und Wendepunkten nennen und anwenden können zwischen lokalen und globalen Extrema unterscheiden können Bedingungen erster und zweiter Ordnung (bei Extremwerten) anwenden können zwischen Wendepunkten und Sattelpunkten unterscheiden können beweisen können, dass jedes Polynom dritten Grades einen Wendepunkt hat Steckbriefaufgaben lösen können Anwendungen mathematisch modellieren können 5. Integralrechnung 5.1 Stammfunktion und Fläche 5.2 Integrationsmethoden Integralfunktionen zur unteren Grenze als Stammfunktion deuten können Stammfunktion einer integrierbaren Funktion definieren können Stammfunktionen elementarer Funktionen nennen können den Unterschied zwischen Fläche und Integral kennen Unbestimmte und bestimmte Integrale berechnen können Den Hauptsatz der Differential- und Integralrechnung kennen Einen Bestand durch Änderungsraten berechnen können die Methode partielle Integration kennen und anwenden können, dabei zwei Strategien unterscheiden können die Methode Integration durch Substitution anwenden können geeignete Substitutionen finden IV
5 5.3. Numerische Integration Flächeninhalt des Kreises berechnen können Partialbrüche zu rationalen Funktionen ansetzen können Rationale Funktionen durch einfache Partialbruchzerlegung integrieren können Riemannsche Ober-, Unter- und zentrierte Riemannsummen definieren und berechnen können die Trapezsummenformel als ein weiteres numerisches Beispiel kennen und anwenden können 5.4 Uneigentliche Integrale bei unbeschränkten Integranden oder unbeschränkten Integrationsbereichen die Konvergenz / Divergenz eines Integrals zeigen können 5.5 Integrierbarkeit Stetigkeit - Differenzierbarkeit den Begriff integrierbar definieren können wissen, dass integrierbar sein und Stammfunktion haben unabhängig voneinander sind und dies durch Beispiele belegen können wissen, dass jede stetige Funktion integrierbar ist und eine Stammfunktion hat 6. Exponential- und Logarithmusfunktion 6.1 Definition des natürlichen Logarithmus 6.2 Eulersche Exponentialfunktion 6.3 Anwendungen Den Logarithmus als Integral der Funktion 1/x definieren können Eigenschaften und Rechenregeln daraus ableiten können Integrale berechnen können, die mit dem Logarithmus zusammenhängen Die Eulersche Exponentialfunktion als Umkehrfunktion des Logarithmus definieren können Eigenschaften und Rechenregeln herleiten können beliebige Potenzen mit Hilfe der Eulerschen Basis e ausdrücken können lineares und exponentielles Wachstum vergleichen können Kurvendiskussionen für Exponential- und Logarithmusfunktionen durchführen können. 7. Anwendungen der Differentialrechnung [ Auswahl ] 7.1 Numerisches Lösen nichtlinearer Gleichungen Das Newton-Verfahren auf nichtlineare Gleichungen anwenden können Die Iteration des Newton-Verfahrens mit dem Tangentenbegriff herleiten können Vor- und Nachteile des Verfahrens kennen sicherer Umgang mit dem TR V
6 7.2 Der Banachsche Fixpunktsatz 7.3. Die Parabeliteration 7.4. Extremwertaufgaben mit Nebenbedingungen 7.5. Satz von Taylor Das allgemeine Iterationsverfahren erklären können Das Newton-Verfahren als Spezialfall erkennen Den Banachschen Fixpunktsatz nennen können, die Begriffe Kontraktion und Selbstabbildung definieren können einfache Kettenbrüche und Iterationen berechnen können Die Parabeliteration als Beispiel einer allgemeinen Iteration kennen Den Banachschen Fixpunktsatz auf die Parabeliteration anwenden können Nichtlineare Optimierungsprobleme mit Zielfunktion und Nebenbedingungen formulieren und lösen können Eine Reihe auf Konvergenz / Divergenz untersuchen können Das Quotientenkriterium anwenden können Potenzreihen (einfacher Funktionen) berechnen können Funktionen durch Taylorpolynome approximieren können Den Satz von Taylor kennen Den Konvergenzradius einer Taylorreihe berechnen können Bemerkung: Die Teilgebiete Analysis und Vektorrechnung werden am Studienkolleg Bochum im Verhältnis 3:1 unterrichtet. (Stand: Mai 2015) VI
Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.
ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen
ToDo-Liste für s Mathe-Abi 2009
ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares
Technische Mathematik
Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024
Mathematik Abitur Zusammenfassung Marius Buila
Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)
Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik
Jahrgang 10 Funktionen Funktionsbegriff - Definition - vielfältige Anwendungen - Umkehrbarkeit (intuitiv, Anwendungen) ganzrationale Funktionen Modellierung - Ablesen der Werte - Ungefähre Bestimmung der
Schulinternes Curriculum. Mathematik
Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen
Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10
Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel
ÜBERBLICK ÜBER DAS KURS-ANGEBOT
ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer
Elemente der Analysis I: Zusammenfassung und Formelsammlung
Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................
Zusammenfassung - Mathematik
Mathematik Seite 1 Zusammenfassung - Mathematik 09 October 2014 08:29 Version: 1.0.0 Studium: 1. Semester, Bachelor in Wirtschaftsinformatik Schule: Hochschule Luzern - Wirtschaft Author: Janik von Rotz
Vorlesung. Funktionen/Abbildungen 1
Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.
Die grau geschriebenen Inhalte sind verschiedenen Leitideen zugeordnet, und somit doppelt vertreten.
Kepler-Gymnasium Freudenstadt Mathematikcurriculum Klasse 9/10 Legende: Kerncurriculum: normale Darstellung Schulcurriculum: gelb hinterlegt Wahlberreich: blaugrau unterlegt und (geklammert) Die grau geschriebenen
Über den Autor 9 Einleitung 21
Inhaltsverzeichnis Über den Autor 9 Einleitung 21 Zu diesem Buch 21 Konventionen in diesem Buch 22 Wie Sie dieses Buch einsetzen 22 Törichte Annahmen über den Leser 22 Wie dieses Buch aufgebaut ist 23
Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben
Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für
2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.
2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es
2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also
Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx
Einführung in die Mathematik für Volks- und Betriebswirte
Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS
Mündliches Abitur in IViathematik
Mündliches Abitur in IViathematik Zusatzprüfung: Kurzvortrag mit Prüfungsgespräcti Ziele: Nachweis von fachlichem Wissen und der Fähigkeit, dies angemessen darzustellen erbringen fachlich überfachlich
Handreichungen zum Übergang an der Schnittstelle zwischen Klasse 9 und der Einführungsphase der gymnasialen Oberstufe
Handreichungen zum Übergang an der Schnittstelle zwischen Klasse 9 und der der gymnasialen Oberstufe Die knüpft weiterhin an die Standards für den mittleren Schulabschluss an und führt in Gebiete ein,
Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )
1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines
Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab
Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil
Serie 13: Online Test
D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.
5. MATHEMATIK, NATURWISSENSCHAFTEN UND ERNÄHRUNG 5.1 ANGEWANDTE MATHEMATIK
72 I. Jahrgang: 1. und 2. Semester: 5. MATHEMATIK, NATURWISSENSCHAFTEN UND ERNÄHRUNG 5.1 ANGEWANDTE MATHEMATIK Zahlen und Maße: - die Bezeichnungen, den Aufbau und die Eigenschaften der Zahlenmengen (N,
11.3 Komplexe Potenzreihen und weitere komplexe Funktionen
.3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt
Dirk Hachenberger Mathematik für Informatiker
Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort
STUDIENBEREICH MATHEMATIK MATHEMATIK LEHRPLAN DER GYMNASIALSTUDIEN. 1. Stundendotation pro Woche
Direction de l'instruction publique, de la culture et du sport Direktion für Erziehung, Kultur und Sport Service de l enseignement secondaire du deuxième degré Amt für Unterricht der Sekundarstufe 2 CANTON
LP Angewandte Mathematik ALW (Aufbaulehrgang wirtschaftliche Berufe)
5.1 ANGEWANDTE MATHEMATIK Ergänzende Bildungs- und Lehraufgabe zur Angewandten Mathematik Die Schülerin/Der Schüler - kennt die grundlegenden, allgemeinen mathematischen Strukturen; - kann selbständig
Mathematik für Techniker
Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe
Schulmathematik und Algorithmen der Computeralgebra
Schulmathematik und Algorithmen der Computeralgebra Prof. Dr. Wolfram Koepf Universität Kassel http://www.mathematik.uni-kassel.de/~koepf Tag der Mathematik 13. Dezember 2008 Universität Passau Überblick
a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n
Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen
Lehrplan für das Fach Mathematik mit einem Computer-Algebra-System (CAS) an allgemeinbildenden Gymnasien in Baden-Württemberg
Lehrplan für das Fach Mathematik mit einem Computer-Algebra-System (CAS) an allgemeinbildenden Gymnasien in Baden-Württemberg Klassenstufe 11 und Kursstufe Hinweise: Das CAS kann wahlweise ab Klassenstufe
Mathematik Grundlagenfach
Grundlagenfach UNTERRICHTSORGANISATION Anzahl Lektionen pro Semester Vorkurs 1. Semester 2. Semester 3. Semester 4. Semester 5. Semester 6. Semester Grundlagenfach 2 1 2 2 2 2 2 Schwerpunktfach Ergänzungsfach
Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis
Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die
Wirtschaftsmathematik für Dummies
Christoph Mayer, Sören Jensen, Suteika Bort, beborah Rumsey, Mark Ryan und Mary Jane Sterling Wirtschaftsmathematik für Dummies Herausaegeben Von Christoph Mayer, Sören Jensen und Suteika Bort WILEY- VCH
Mathematik als Kernfach in der Profiloberstufe an der MGS
Allgemeine Überlegungen o Zunächst werden nur die des Unterrichts festgelegt und somit Fragen der Sachkompetenz geklärt. Die übrigen Kompetenzen ergeben sich aus unserer Sicht in erster Linie aus der methodischen
ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN
ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.
Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)
Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich
Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann
Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden
MatheBasics Teil 1 Grundlagen der Mathematik
Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 1 Grundlagen der Mathematik Version 2016 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme,
Analysis. Merkur. Haarmann Wolpers. Verlag Rinteln
Haarmann Wolpers Analysis Merkur Verlag Rinteln Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap Die Verfasser: Hermann Haarmann
Index. Ecklösung 186 e-funktion siehe Exponentialfunktion
251 Index Abbildung 57 ABC-Formel 44 Abhängigkeit, lineare 161 Ableitung 99 Ableitung, gemischte 122 Ableitungsregel 99 Abszisse 59 Achse 59 Achsensymmetrie 71 Additionsmethode 144 Additivität 176 Adjunkte
Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =
Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.
Erfolg im Mathe-Abi 2014
Gruber I Neumann Erfolg im Mathe-Abi 2014 Prüfungsaufgaben Hessen Übungsbuch für den Grundkurs mit Tipps und Lösungen Vorwort Vorwort Dieses Übungsbuch ist speziell auf die Anforderungen des zentralen
Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005
Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen
Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10
Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen
Mathematik für die Allgemeine Fachhochschulreife
Dr. Kuno Füssel, Reinhard Jansen, Dr. William Middendorf, Dietmar Mrusek Mathematik für die Allgemeine Fachhochschulreife 14. Auflage Bestellnummer 0234 Die in diesem Produkt gemachten Angaben zu Unternehmen
1. Mathematik-Schularbeit 6. Klasse AHS
. Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und
Mathematik Berufskolleg zur Erlangung der Fachhochschulreife
Mathematik Berufskolleg zur Erlangung der Fachhochschulreife INHALTSVERZEICHNIS. GRUNDLAGEN. DAS KOORDINATENSYSTEM. DARSTELLUNG VON GERADEN. SEITENVERHÄLTNISSE IM RECHTWINKLIGEN DREIECK 4. WEITERE GERADENGLEICHUNGEN
Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt
Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )
Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben
Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum
Mathematik Grundlagenfach
Mathematik Grundlagenfach Allgemeine Bildungsziele Mathematikunterricht trägt zur Bildung der Schülerinnen und Schüler bei, indem besonders folgende Grunderfahrungen ermöglicht werden: soziale, kulturelle
Arithmetik/Algebra mit Zahlen und Symbolen umgehen
UNTERRICHTSVORHABEN 1 Arithmetik/Algebra mit Zahlen und Symbolen umgehen ggf. fächerverbindende Kooperation mit Thema: Umfang: 8 Wochen Jahrgangsstufe 9 Zehnerpotenzen/ Potenzschreibweise mit ganzzahligen
Lehrplan. Mathematik. Fachoberschule. Fachbereich Wirtschaft. Ministerium für Bildung, Kultur und Wissenschaft
Lehrplan Mathematik Fachoberschule Fachbereich Wirtschaft Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024 Saarbrücken Saarbrücken 2007
Schulcurriculum für das Fach Mathematik Jahrgangsstufen 9/10
Schulcurriculum für das Fach Mathematik Jahrgangsstufen 9/10 [Text eingeben] Seite 1 2 Operatoren Es gilt die vom BLASchA genehmigte Operatorenliste für die Sekundarstufe I für das Fach Deutsch Operatoren
Schulcurriculum idsb (Stand 10. September 2012)
lnternationale DEUTSCHE SCHULE BRÜSSEL Zertifiziert als Exzellente Deutsche Auslandsschule Schulcurriculum idsb (Stand 10. September 2012) Jahrgangstufe 5... 2 Jahrgangstufe 6... 5 Jahrgangstufe 7... 7
Mathematik. Schuljahr 1
Mathematik 1 Einjähriges Berufskolleg zum Erwerb der Fachhochschulreife Mathematik Schuljahr 1 2 Mathematik Vorbemerkungen Mathematik ist Teil der Allgemeinbildung. Mathematikunterricht soll den Schülerinnen
B e s c h l u s s r e i fer Ent wurf
1 von 15 B e s c h l u s s r e i fer Ent wurf Verordnung der Bundesministerin für Unterricht, Kunst und Kultur, mit der die Verordnung über den Lehrplan der Bildungsanstalt für Kindergartenpädagogik sowie
W. Schäfer/K. Georgi/G. Trippier. Mathematik-Vorkurs
W. Schäfer/K. Georgi/G. Trippier Mathematik-Vorkurs Mathematik- Vorkurs Übungs- und Arbeitsbuch für Studienanfänger Von Prof. Dr. rer. nat. habil. Wolfgang Schäfer Oberstudienrat Kurt Georgi und Doz. Dr.
Hausinternes Curriculum Alfred-Krupp-Schule
Hausinternes Curriculum Alfred-Krupp-Schule Jahrgangsstufe 5 Fach: Mathematik Version vom 12.11.2008 (Jan, Hö) Natürliche Zahlen Symmetrie Schätzen Rechnen Überschlagen Flächen Körper Ganze Zahlen - natürliche
Die reellen Lösungen der kubischen Gleichung
Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................
Luisenburg-Gymnasium Wunsiedel
Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig
Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y
Inhaltsverzeichnis. Seite 1: Matrizen. Seite 23: Funktionen. Seite 51: Integralrechnung. Seite 69: Binomialverteilung
Inhaltsverzeichnis Seite : Matrizen Seite : Funktionen Seite 5: Integralrechnung Seite 69: Binomialverteilung Seite 86: Statistik/Normalverteilung Seite 04: Vektoren Seite 40: Wachstum Lineare Algebra
Mathematik I Internationales Wirtschaftsingenieurwesen
Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:
TEST Basiswissen Mathematik für Ingenieurstudiengänge
TEST Basiswissen Mathematik für Ingenieurstudiengänge Erste Fassung März 2013 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium
Fachlehrplan Mathematik - Berufsmaturität Technik, Architektur, Life Sciences
Fachlehrplan Mathematik - Berufsmaturität Technik, Architektur, Life Sciences 1. Allgemeine Bildungsziele Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende Kenntnisse, Fähigkeiten
1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013
O. Alaya, R. Bauer K. Sanei Kashani, F. Kissling, B. Krinn, J. Schmid, T. Vassias. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den
MATHEMATIK. Bildungs- und Lehraufgabe:
MATHEMATIK Bildungs- und Lehraufgabe: Der Mathematikunterricht soll beitragen, dass Schülerinnen und Schülern ihrer Verantwortung für lebensbegleitendes Lernen besser nachkommen können. Dies geschieht
Das Mathematik-Abitur im Saarland
Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die
Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:
Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an
Ergänzungen zur Analysis I
537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.
Mathematik für Ökonomen
Springer-Lehrbuch Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab Bearbeitet von Wolfgang Kohn, Riza Öztürk 1. Auflage 2012. Taschenbuch. xv, 377 S. Paperback
Mathematik wirklich verstehen
Mathematik wirklich verstehen Eine Einführung in ihre Grundbegriffe und Denkweisen Von Arnold Kirsch 3. verbesserte Auflage Aulis Verlag Deubner & Co KG Köln Inhaltsverzeichnis Vorwort 11 Teil A Zahlen
Mathematik für Informatiker Band 2: Analysis und Statistik
Gerald Teschl Susanne Teschl Mathematik für Informatiker Band 2: Analysis und Statistik 2 Auflage Mit 02 Abbildungen 23 Gerald Teschl Universität Wien Fakultät für Mathematik Nordbergstraße 5 090 Wien,
Wirtschaftsmathematik.
y y = f(x) F1 F3 a F b x Wirtschaftsmathematik. Lösungen: Fragen zur Selbstkontrolle Betriebswirtschaftslehre (B.A.) Lösungen Lösungen Lektion 1 1. Grundlagen der Analysis 1.1 Arithmetische und algebraische
Abitur in Mathematik Operatoren. 2 Operatoren Anforderungen und Arbeitsaufträge in den Abiturprüfungen
2 Anforderungen und Arbeitsaufträge in den Abiturprüfungen Durch die in den Abituraufgaben verwendeten Arbeitsaufträge und Handlungsanweisungen oder auch genannt wie z. B. begründen, herleiten oder skizzieren
Zuammenfassung: Reelle Funktionen
Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,
22 Die trigonometrischen Funktionen und die Hyperbelfunktionen
22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die
MATHEMATIK & WIRTSCHAFT
MATHEMATIK & WIRTSCHAFT 2 MATHEMATIK & WIRTSCHAFT 2 MATHEMATIK & WIRTSCHAFT Timischl Prugger 2 Kompetenzliste Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Inhalts- und Handlungsbereiche des Kompetenzmodells
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Umgekehrte Kurvendiskussion
Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen
Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr.
Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr. 85478) Viele der im Kernlehrplan aufgeführten Kompetenzbereiche
Die Eulersche Zahl. Halbjährliche Verzinsung: (50%=0,5)... n- malige Verzinsung:
1 Die Eulersche Zahl Euler war als Mathematiker ein großer Experimentator. Er spielte mit Formeln so, wie ein Kind mit seinem Spielzeug und führte alle möglichen Substitutionen durch, bis er etwas Interessantes
Unterlagen für die Lehrkraft
Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung
Mathematik mit Simulationen lehren und lernen
Dieter Röß Mathematik mit Simulationen lehren und lernen Plus 2000 Beispiele aus der Physik De Gruyter Mathematics Subject Classification 2010: Primary: 97M20; Secondary: 97M50. Prof. Dr. Dieter Röß Fasanenweg
Stoffverteilungsplan für Einblicke Mathematik 10 für Rheinland-Pfalz
Stoffverteilungsplan für Einblicke Mathematik 10 für Rheinland-Pfalz Monat Training Eignungstest - Vorbereitung auf Eignungstests bei Vorstellungsgesprächen - Beispielaufgaben zum Trainieren 6-9 K2: Geeignete
Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript
Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Skript Dr. Johanna Dettweiler Institut für Analysis 20. Oktober 2009 Inhaltsverzeichnis Einleitung 7 1 Aussagen und Mengen 9 1.1 Aussagen:
Materialien/ Anregungen. Jahrgangsstufe 9: Thema Bezug zum Lehrbuch Ähnlichkeit Lernfeld: Gleiche Form andere Größe (Kapitel 1)
HARDTBERG GYMNASIUM DER STADT BONN Stand: Oktober 2014 Schulinternes Curriculum Mathematik Das schulinterne Curriculum folgt dem Kernlehrplan für das Gymnasium Sekundarstufe I (G8) in Nordrhein-Westfalen
Skalare Differentialgleichungen
Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen
DIFFERENTIALGLEICHUNGEN
DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung
Methodische Lösungswege zu 70364
Methodische Lösungswege zu 7036 1. Auflage 010. Taschenbuch. S. Paperback ISBN 978 3 8085 7039 5 Format (B x L): 17 x cm Gewicht: g schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de
Klausur Analysis II (SS 2005)
Klausur Analysis II (SS 5) Prof. Dr. J. Franke Abschlußklausur vom. Juli 5 Name, Vorname: Matrikelnummer: Gruppe, Tutor: Pseudonym: ir wünschen Ihnen viel Erfolg! Mit 5 Punkten oder mehr von 5 ist die
Lernzettel Mathe Inhaltsverzeichnis
Lernzettel Mathe Inhaltsverzeichnis Aufgabe 1 - Vollständige Induktion 2 Aufgabe 2 - Grenzwertbestimmung 2 Aufgabe 3 - Lin/Log 2 Aufgabe 4 - Barwert/Endwert 3 Aufgabe 5 - Maximalstellen, steigend/fallend
Mathematik. Jahrgangsstufe 11. Berufliche Gymnasien. 1. Auflage. Dr. Claus-Günter Frank und Harald Ziebarth unter Mitarbeit von Johannes Schornstein
Dr. Claus-Günter Frank und Harald Ziebarth unter Mitarbeit von Johannes Schornstein Mathematik Jahrgangsstufe Berufliche Gymnasien. Auflage Bestellnummer 526 Haben Sie Anregungen zu diesem Buch oder Fehler
Mathematik 9 Version 09/10
Verbalisieren Erläutern mathematischer Zusammenhänge und Kommunizieren Überprüfung und Bewertung von Problembearbeitungen Vergleichen und Bewerten von Lösungswegen und Problemlösungsstrategien (Funktionsplotter)
