MATHEMATISCHE METHODEN DER PHYSIK 1
|
|
|
- Gottlob Bader
- vor 8 Jahren
- Abrufe
Transkript
1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom
2 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen Gewöhnlichen Differentialgleichungen mit Anfangsbedingungen Typ getrennte Variable Lineare DGL 1. Ordnung Homogene lineare DGL 2. Ordnung mit konstanten Koeffizienten Inhomogene lineare DGL 2. Ordnung mit konstanten Koeffizienten Allgemeine homogene lineare DGL 2. Ordnung Allgemeine lineare inhomogene DGL 2. Ordnung Potenzreihenentwicklung Komplexe Analysis 12 3 Lineare Algebra 13 1
3 Literatur [1] Arfken, George B. und Hans-Jurgen Weber: Mathematical methods for physicists. Elsevier Acad. Press, Amsterdam [u.a.], [2] Berendt, G. und E. Weimar: Mathematik für Physiker, Band 1. Physik-Verlag, [3] Berendt, G. und E. Weimar: Mathematik für Physiker, Band 2. Physik-Verlag, [4] Heinzle, Mark: Mathematische Methoden der Physik I, Skriptum. Sommersemester 2010, Version vom [5] Kamke, Erich: Differentialgleichungen Loesungsmethoden und Loesungen. Teubner, Stuttgart, [6] Lang, Christian B. und Norbert Pucker: Mathematische Methoden in der Physik. Elsevier - Spektrum Akademischer Verlag, [7] Marsden, J. E. und M. J. Hoffmamn: Basic Complex Analysis. Freeman and Company, [8] Neufeld, Helmut: Mathematische Methoden der Physik I, Skriptum. Somersemester 2008, Version vom
4 Kapitel 1 Lineare gewöhnliche Differentialgleichungen Eine Differentialgleichung (DGL) ist eine Gleichung, in der die Variable x, die gesuchte Funktion y(x) sowie deren Ableitungen vorkommen. Eine gewöhnliche Differentialgleichung in einer Variable x und einer gesuchten Funktion y(x) ist von der Form F (x, y, y, y,..., y (n) ) = 0 Die höchste auftretende (n-te) Ableitung heißt Ordnung der Differentialgleichung. Beispiel (Gewöhnliche Differentialgleichung erster Ordnung). (y ) 2 + y 2 = 1 Einen bedeutenden Spezialfall stellt die lineare gewöhnliche Differentialgleichung dar: sie ist linear in y, y, y,... Beispiel (Lineare gewöhnliche Differentialgleichung zweiter Ordnung). y + y = 0 (1.1) mit Lösung (c 1, c 2 Konstanten) y = c 1 cos x + c 2 sin x (1.2) Bemerkung (Notation). Motiviert von der physikalischen Anwendung heißt die Variable oft t (time) und die gesuchte Funktion x(t); die Ableitung nach t wird mit einem Punkt bezeichnet, ẋ(t). In dieser Schreibweise lauten die obige DGL (1.1) und ihre Lösung (1.2) ẍ + x = 0 x(t) = c 1 cos t + c 2 sin t Fragen, die im Zusammenhang mit DGL auftreten, sind insbesondere nach Existenz, Eindeutigkeit und Gesamtheit der Lösungen. 3
5 Ein Anfangswertproblem gibt Werte zu einer DGL ausschließlich an derselben Stelle vor, y(x 0 ), y (x 0 ),... bzw. x(t 0 ), ẋ(t 0 ),... Ein Randwertproblem gibt dagegen Werte an verschiedenen Stellen vor, z. B. (x 0 x 1 ) y(x 0 ), y(x 1 ) bzw. x(t 0 ), x(t 1 ) Beispiel (Randwertproblem). y + y = 0 y(0) = 0 y(1) = 0 Wir werden sehen, dass y(x) = 0 für alle x. Dieses Randwertproblem hat damit keine nichttriviale Lösung! Wir ändern unsere Fragestellung und wollen jetzt wissen, zu welchen Werten λ C es Lösungen y(x) gibt, die y + λy = 0 erfüllen, und wie alle diese λ n und y n (x) (für n = 1, 2, 3,...) lauten. Ein Beispiel für eine solche Situation liefert die Quantenmechanik (QM): Für welche Energiewerte hat die Schrödingergleichung eines Elektrons im Wasserstoffatom Lösungen? 1.1 Gewöhnlichen Differentialgleichungen mit Anfangsbedingungen Satz (Existenz- und Eindeutigkeitssatz (Peano, Picard-Lindelöf; ohne Beweis)). Sei y = f(x, y) Wenn f stetig im rechteckigen Gebiet G R 2 ist, sowie in G die Lipschitzbedingung erfüllt, so gibt es für jedes (x 0, y 0 ) G genau eine Lösung der DGL, die in einer Umgebung von x 0 definiert ist, y(x 0 ) = y 0 erfüllt und stetig von (x 0, y 0 ) abhängt. Definition (Lipschitzbedingung). Die Funktion f erfüllt im rechteckigen Gebiet G eine Lipschitzbedingung, wenn es ein N > 0 gibt, sodass für alle (x, y 1 ), (x, y 2 ) G f(x, y 2 ) f(x, y 1 ) N y 2 y 1 Bemerkung. Für uns genügt die schwächere Version für Existenz und Eindeutigkeit, dass f in einem rechteckigen Gebiet stetig sein und (bei festem x) eine beschränkte partielle Ableitung nach y haben soll, 4
6 d. h. f (x, y) y < N für N > 0 sein soll. Beispiel. y = y y(0) = 1 Voraussetzung des Eindeutigkeitssatzes mit y a, a > 0 erfüllt. f(x, y) = y ist stetig, f y = 1 2 y 1 2 a ist beschränkt, da a > 0. Also existiert eine eindeutige Lösung (siehe Übungen). Speziell für y + f(x)y = g(x) lautet der Existenz- und Eindeutigkeitssatz (EES): Wenn f(x), g(x) auf abgeschlossenen Intervall stetig, dann gibt es eine eindeutige Lösung, die die Anfangsbedingung y(x 0 ), x 0 I erfüllt. Schließlich für y = f(x, y, y ) ist der EES wie folgt: Wenn f stetig im zylindrischen Gebiet G = I K 2 (wo I R Intervall, K 2 R 2 Kreisscheibe) ist, und partielle Ableitungen nach y, y besitzt, so existiert eine eindeutige Lösung, die die Anfangsbedingung y(x 0 ) = η 0 y (x 0 ) = η 1 erfüllt Typ getrennte Variable y f(x) = g(y(x)) dy dx = f(x) g(y) g(y)dy = f(x)dx 5
Lineare gewöhnliche Differentialgleichungen und Randwertprobleme
Kapitel Lineare gewöhnliche Differentialgleichungen und Randwertprobleme Eine Differentialgleichung (DGL) ist eine Gleichung, in der die Variable x, die gesuchte Funktion y(x) sowie deren Ableitungen vorkommen.
6 Gewöhnliche Differentialgleichungen
6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige
1 Einführung, Terminologie und Einteilung
Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen
Trennung der Variablen, Aufgaben, Teil 1
Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g
Mathematische Methoden für Informatiker
Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen
Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.
Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:
4. Differentialgleichungen
4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter
Exakte Differentialgleichungen
Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.
unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
5. Vorlesung Wintersemester
5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode
32.8 Die lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten
3 Die lineare Differentialgleichung. Ordnung mit konstanten Koeffizienten 3.1 Lösungsbegriff für explizite Differentialgleichungen n-ter Ordnung 3. Das Anfangswertproblem für explizite Differentialgleichungen
Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.
Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ
Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...
................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik
DIFFERENTIALGLEICHUNGEN
DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung
1. Übungsblatt Aufgaben mit Lösungen
. Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht
6 Differentialgleichungen
88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya
Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................
ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS
ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung
12 Gewöhnliche Differentialgleichungen
12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit
Vorkurs Mathematik Übungen zu Differentialgleichungen
Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)
Mathematische Methoden der Physik I
Karl-Heinz otze Mathematische Methoden der Physik I Nachschrift des Vorlesungs-Manuskripts und A TEX-Satz von Simon Stützer Jena, November 2009 Inhaltsverzeichnis 9 Gewöhnliche Differentialgleichungen
2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB
Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4
5 Gewöhnliche Differentialgleichungen
5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und
Übungsaufgaben zu Mathematik III (ohne Lösungen)
Übungsaufgaben zu Mathematik III (ohne Lösungen) 1. Lösen Sie intuitiv (d.h. ohne spezielle Verfahren) die folgenden DGLn (allgemeine Lösung): = b) =! c) = d)!! = e at. Prüfen Sie, ob die gegebenen Funktionen
Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )
TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare
Angewandte Mathematik und Programmierung
Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 DGL Grundlage Klassifikation Anwendung von lin. Ggln. M. konst.
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel
Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität
Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder
DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/
Differentialgleichungen 2. Ordnung
Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei
Ü b u n g s b l a t t 11
Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte
Übungen zu Partielle Differentialgleichungen, WS 2016
Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,
Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt
Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik
y hom (x) = C e p(x) dx
Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)
Lineare Differenzen- und Differenzialgleichungen
Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen
Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators
Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten
Differentialgleichungen sind überall!
Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium
Gewöhnliche Differentialgleichungen Woche 1
Gewöhnliche Differentialgleichungen Woche Einführung. Modelle Eine gewöhnliche Differentialgleichung gibt eine Relation zwischen einer unbekannten Funktion und deren Ableitung(en). Nun kann man unendlich
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit
5 Potenzreihenansatz und spezielle Funktionen
5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten
Extremwerte von Funktionen mehrerer reeller Variabler
Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein
Kleine Formelsammlung zu Mathematik für Ingenieure IIA
Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................
16. EINIGE LÖSUNGSMETHODEN
134 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Differentialgleichungen
Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)
MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ ,
Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Prüfungsleistungen Mathematik für Physiker
3 Lineare Differentialgleichungen
3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,
Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test
Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1
9.4 Lineare gewöhnliche DGL
9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In
12. Differentialgleichungen (kurz)
12. Differentialgleichungen (kurz) [Literatur: Teschl05, Bd. 2, S. 171-197] 12.1. Wozu braucht man Differentialgleichungen? Am 28. Juli 2006 stürzte in Köln ein Kran samt Lastwagen um. Was war passiert?
Lösungen zu Mathematik I/II
Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx
Flüsse, Fixpunkte, Stabilität
1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher
Klausur zu Analysis II - Lösungen
Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 20/202 Mathematik für Anwender I Vorlesung 30 Gewöhnliche Differentialgleichungen mit getrennten Variablen Definition 30.. Eine Differentialgleichung der Form y = g(t)
4.7 Lineare Systeme 1. Ordnung
3. Die allgemeine Lösung der inhomogenen Differentialgleichung lautet damit yx = y hom x + y inh x = c x + c 2 x + 8 x + 4 xlnx2 4 xlnx = C x + C 2 x + 4 xlnx2 4 xlnx. Wir haben c 2 + 8 zu C 2 zusammengefasst.
14 Lineare Differenzengleichungen
308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis
Vorlesungen: 16.1. 2006 30.1. 2006 7 Differentialgleichungen Inhaltsverzeichnis 7 Differentialgleichungen 1 7.1 Differentialgleichungen 1. Ordnung...................... 2 7.1.1 Allgemeine Bemerkungen zu
Eigenwerte und Diagonalisierung
Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende
Prof. Dr. Rolf Linn
Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen
Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael
Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und
Kapitel 15: Differentialgleichungen
FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen
Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen
Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung
Differenzialgleichungen
Differenzialgleichungen Fakultät Grundlagen Februar 2016 Fakultät Grundlagen Differenzialgleichungen Übersicht Definitionen, Beispiele 1 Definitionen, Beispiele 2 Geometrische Deutung Numerik Einfache
Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen
Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.
Homogene lineare Differentialgleichung 1. Ordnung
Homogene lineare Differentialgleichung. Ordnung Sanddünen und Integralkurven E Ma Lubov Vassilevskaa E Ma Lubov Vassilevskaa E3 Ma Lubov Vassilevskaa Lineare DGL. Ordnung Definition: Eine Differenzialgleichung.
Charakteristikenmethode im Beispiel
Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)
18 Höhere Ableitungen und Taylorformel
8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a
Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem
Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2
Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Fortsetzung der komlexen Zahlen : 9. Radizieren und Potenzen a) Berechnen Sie (1+i) 20 und geben Sie das Resultat als Polarkoordinaten
3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z
R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des
Technische Universität München Zentrum Mathematik. Übungsblatt 12
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3
Formelanhang Mathematik II
Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)
Folgerungen aus dem Auflösungsatz
Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und
9. Übung zur Linearen Algebra II -
9. Übung zur Linearen Algebra II - en Kommentare an [email protected] FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).
Analysis I. 4. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein
Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015
Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion
Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.
Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen Kapitel 8.3 Anwendungen der partiellen Differentiation (Teil 1): Kettenregel und Linearisierung
Definition: Differenzierbare Funktionen
Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ
Gewöhnliche Differentialgleichungen Aufgaben, Teil 1
Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe
f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}
9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen
Fourier- und Laplace- Transformation
Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)
Teil III. Fourieranalysis
Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)
1 Funktionen und ihre Ableitungen
1 Funktionen und ihre Ableitungen 1.1 Funktionen Wir nennen eine Grösse y eine Funktion von x, wenn der Wert von y von demjenigen von x abhängt: Zu jedem x wird in eindeutiger Weise ein Wert von y zugeordnet.
Mathematischer Vorkurs für Physiker WS 2012/13
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+
Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016
Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)
FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK
FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:
18.2 Implizit definierte Funktionen
18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir
4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden
Kapitel 4 Das Dirichlet Prinzip Bevor wir uns der Lösung von Randwertproblemen mithilfe der eben entwickelten Techniken zuwenden, wollen wir uns einer Idee zur Lösung widmen, die einige Elemente dieser
3.2 Implizite Funktionen
3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite
Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik
Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :
