Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Größe: px
Ab Seite anzeigen:

Download "Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte"

Transkript

1 Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a) = n Frage: Was ist ein vernünftiger Lösungsbegriff? Grundlagen der Numerik 153

2 Gaußsche Methode der kleinsten Fehlerquadrate Beispiel: Eine typische Problemstellung Geg.: m Meßpunkte: (t i, b i ) R 2, i = 1,..., m Annahme: Messungen liegt Gesetzmäßigkeit der Gestalt b(t) = ϕ(t; x 1,..., x n ) mit einer Modellfunktion ϕ und n unbekannten Parametern x i zugrunde. Um unvermeidliche Meßfehler auszugleichen, wird m > n gewählt. ( mehr Messungen als Parameter!) Grundlagen der Numerik 154

3 Gaußsche Methode der kleinsten Fehlerquadrate Folgerung: Das Gleichungssystem b i := b(t i ) = ϕ(t i ; x 1,..., x n ), i = 1,..., m, (LAP1) ist dann überbestimmt und wird i.allg. keine Lösung besitzen. Allgemeines Ausgleichsproblem: Minimierung der Fehlerquadratsumme m i=1 (b i ϕ(t i ; x 1,..., x n )) 2 min x 1,...,x n (LAP2) Grundlagen der Numerik 155

4 Gaußsche Methode der kleinsten Fehlerquadrate Spezialfall: Modellfunktion ϕ ist linear in den Komponenten von x = (x 1,..., x n ) T : ϕ(t; x 1,..., x n ) = a 1 (t)x 1 + a 2 (t)x a n (t)x n mit bekannten Funktionen a 1 (t),..., a n (t). Damit a 1 (t 1 )x 1 + a 2 (t 1 )x a n (t 1 )x n = b 1 a 1 (t 2 )x 1 + a 2 (t 2 )x a n (t 2 )x n = b 2. a 1 (t m )x 1 + a 2 (t m )x a n (t m )x n = b m Grundlagen der Numerik 156

5 Gaußsche Methode der kleinsten Fehlerquadrate oder kurz Ax = b, A R m,n, a ij = a j (t i ), b R m Lineares Ausgleichsproblem (LAP): Gegeben A R m,n und b R m mit m n. Finde x R n derart, dass Ax b 2 min x R n (LAP 3) Grundlagen der Numerik 157

6 Gaußsche Methode der kleinsten Fehlerquadrate Bemerkungen: 1. (LAP3) heißt auch lineares Quadratmittelproblem (engl. linear least squares problem) und wird kurz mit Ax = b geschrieben. 2. Die Auswahl der Quadrate bei der Minimierung stammt von Gauß aufgrund wahrscheinlichkeitstheoretischer Überlegungen. Von Gauß stammt auch die im folgenden beschriebene Methode, die er 1821 für die Berechnung der Bahn des Planetoiden Ceres entwickelt hat. 3. Ersetzt man die Euklidische Norm durch die Maximumnorm, so erhält man das Problem der sogenannten Tschebyscheffschen Ausgleichsrechnung. Grundlagen der Numerik 158

7 Gaußsche Methode der kleinsten Fehlerquadrate Beispiel: Ohmsches Gesetz: U = IR, U Spannung, I Stromstärke, R Ohmscher Widerstand. Vorgehen: Durch mehrere Messungen von I und U soll R bestimmt werden. Mit U i := U(I i ) = ϕ(i i ; R) = I i R, i = 1,..., m, berechnet sich R aus m i=1 (U i I i R) 2 min R R Grundlagen der Numerik 159

8 Gaußsche Methode der kleinsten Fehlerquadrate Interpretation: Gerade durch den Nullpunkt legen, die dem Verlauf der Messungen möglichst nahekommt. U I 1 I 2 I 3 I 4 I Grundlagen der Numerik 160

9 Normalgleichungen SATZ: Sei A R m,n, b R m, m n. Dann gilt 1. ξ R n ist genau dann eine Lösung von (LAP3), wenn ξ den sogenannten Normalgleichungen A T Aξ = A T b (LAP4) genügt. 2. (LAP3) besitzt genau dann eine eindeutige Lösung, wenn die Matrix A Vollrang besitzt, d.h. rg A = n. 3. Unter allen Lösungen von (LAP3) gibt es genau eine mit minimaler Euklidischer Norm. Grundlagen der Numerik 161

10 Normalgleichungen Bemerkung: Geometrisch besagen die Normalgleichungen gerade, daß Ax b eine Normale auf R(A) R m (R(A) - Bildraum von A) ist. Es gilt nämlich für alle w R n : Ax b, Aw = A T (Ax b), w = 0. R m b Ax Ax b R(A) Grundlagen der Numerik 162

11 Numerische Lösung der Normalgleichungen Voraussetzung: LAP eindeutig lösbar, d.h. rg(a) = n. Beobachtung: Normalgleichungsmatrix G = A T A ist symmetrisch und positiv definit: 1. G T = (A T A) T = A T A = G 2. x T Gx = x T A T Ax = (Ax) T (Ax) 0 x R n, 3. x T Gx = 0 Ax = 0 x = 0 (rg(a) = n) Zur Lösung der Normalgleichungen bietet sich daher das Cholesky-Verfahren an. Grundlagen der Numerik 163

12 Numerische Lösung der Normalgleichungen Cholesky-Faktorisierung zur Lösung der Normalgleichungen: S1: G = A T A, h = A T b (Normalgleichungen Gx = h) S2: G = LL T (Cholesky-Faktorisierung) S3: Lc = h, L T x = c (Vor /Rückwärtseinsetzen) Aufwand: 1 2 n2 m opms für G = A T A (Symmetrie!) 1 6 n3 opms für G = LL T Grundlagen der Numerik 164

13 Numerische Lösung der Normalgleichungen Beobachtung: Die Anwendung des Normalgleichungsverfahrens mittels Cholesky-Faktorisierung wird beeinträchtigt durch z.t. schlechte Stabilität. Ursachen: 1. Berechnung der Skalarprodukte bei Matrizenmultiplikation 2. Schlechte Kondition von A T A. Die Matrix A T A ist i.allg. wesentlich schlechter konditioniert als A. Da bei praktischen Problemen der Ausgleichsrechnung i.allg. schon A sehr schlecht konditioniert ist, kann diese weitere Verschlechterung nicht ohne weiteres hingenommen werden. Frage: Gibt es Verfahren, die diese Nachteile nicht besitzen? Grundlagen der Numerik 165

14 Orthogonalisierungsverfahren Wiederholung: Q R m,m orthogonal: Q T Q = QQ T = I. Wichtige Eigenschaften: 1. Q 2 = λ max (Q T Q) = λ max (I) = 1 2. Qx 2 2 = xt Q T Qx = x T x = x 2 2 Norminvarianz orthogonaler Transformationen. Wichtigste Verfahrensklasse zur Lösung von Quadratmittelproblemen beruht auf einer QR-Faktorisierung von A. Grundlagen der Numerik 166

15 Orthogonalisierungsverfahren DEF.: Sei A R m,n mit m n. Exstieren eine orthogonale Matrix Q R m,m und eine Matrix R = R 1 R m,n, 0 wobei R 1 R n,n eine obere Dreiecksmatrix ist, so daß A = QR gilt, so nennt man diese Darstellung A = QR eine QR- Faktorisierung von A. Bemerkung: QR-Faktorisierung besitzt große praktische Bedeutung wegen ihrer sehr guten Stabilitätseigenschaften. Grundlagen der Numerik 167

16 Orthogonalisierungsverfahren Annahme: Die Matrix A R m,n, m n, sei mit einer orthogonalen Matrix Q R m,m auf Dreiecksgestalt.... R 1 Q T A = = 0 0 mit oberer Dreiecksmatrix R 1 gebracht. Als Alternative zur Lösung der Normalgleichungen kann dann die Lösung des LAP wie folgt bestimmt werden: Grundlagen der Numerik 168

17 Orthogonalisierungsverfahren Ax b 2 2 = (Ax b)t (Ax b) = (Ax b) T QQ T (Ax b) = [Q T (Ax b)] T [Q T (Ax b)] = Q T (Ax b) 2 2 = ( R1 x b 1 b 2 = R 1 x b b ) 2 Die zweite Norm hängt nicht von x ab. Das Minimum wird also genau dann angenommen, wenn die erste Norm minimal wird. Wegen rg(r 1 ) = rg(a) = n ist R 1 invertierbar und damit wird die erste Norm für x = R 1 1 b Null. Die zweite Norm verschwindet i.allg. nicht, es gilt also Ax b 2 = b Grundlagen der Numerik 169

18 Orthogonalisierungsverfahren SATZ: Sei A R m,n, m n, rg(a) = n, b R m. Sei Q R m,m eine orthogonale Matrix mit Q T A = R = R 1 und Q T b = 0 b 1, mit b 1 R n, b 2 R m n und R 1 R n,n eine obere (invertierbare) Dreiecksmatrix. Dann ist die Lösung des LAP gegeben durch b 2 x = R 1 1 b 1. Grundlagen der Numerik 170

19 Householder-Orthogonalisierung Frage: Wie findet man die QR Zerlegung? Dazu werden vor allem zwei Methoden genutzt die Householder Orthogonalisierung und die Givens Faktorisierung. Hier: Householder Orthogonalisierung Jetzt: Orthogonale Matrix Q als Produkt elementarer orthogonaler Transformationsmatrizen (Householder-Matrizen) konstruieren. Q = Q 1 Q 2 Q p Grundlagen der Numerik 171

20 Householder-Orthogonalisierung DEF.: Eine Matrix Q R m,m der Gestalt bzw. Q = I 2 vvt v T v, v Rm, v 0 Q = I 2ww T, w R m mit w 2 = 1 heißt Householder-Matrix (Householder-Spiegelung). Grundlagen der Numerik 172

21 Householder-Orthogonalisierung Eigenschaften: 1. Q T = I 2(vv T ) T / v 2 2 QT = Q, d.h. Q ist symmetrisch. 2. Q T Q = Q 2 = (I 2ww T )(I 2ww T ) = I 4ww T + 4w(w T w)w T = I, d.h., Q ist orthogonal und involutorisch (Q 2 = I). DEF.: Die Signum Funktion ist wie folgt definiert: sign(x) = { 1, x 0 1, x < 0. Grundlagen der Numerik 173

22 Householder-Orthogonalisierung LEMMA: Sei x = (x 1,..., x m ) T R m \ {0}, v := x ρe 1 mit ρ = sign(x 1 ) x 2. Dann ist durch Q = I 2 vvt v T v = I vvt γ mit γ = vt v 2 eine Householdermatrix gegeben mit Qx = ρe 1 = (ρ, 0,..., 0) T, d.h., der Vektor x wird auf ein Vielfaches des ersten Einheitsvektors transformiert. Grundlagen der Numerik 174

23 Householder-Orthogonalisierung Ziel: Analog zu Gauß Verfahren A schrittweise (spaltenweise) auf obere Dreiecksgestalt bringen. Bezeichnung: A (1) := A, a (1) k k-te Spalte von A(1) Voraussetzung: rg(a) = n a (1) 1 0 Grundlagen der Numerik 175

24 Householder-Orthogonalisierung 1. Schritt: Transformation der ersten Spalte a (1) 1 von A (1) in ein Vielfaches von e 1. Mit v (1) = a (1) 1 ρ (1) e 1 ρ (1) = sign(a (1) 11 ) a(1) 1 2 γ (1) = v(1)t v (1) 2 und Q 1 = I v(1) v (1)T γ (1) erhalten wir Grundlagen der Numerik 176

25 Householder-Orthogonalisierung A (2) = Q 1 A (1) = a (2) 11 a (2) 12 a (2) 1n 0 a (2) 22 a (2) 2n... 0 a (2) m2 a (2) mn mit a (2) 11 = ρ(1). Die Spalten a (2) j, j = 2,..., n, von A(2) ergeben sich nach a (2) j = Q 1 a (1) j = (I v(1) v (1)T )a (1) γ (1) j =: a (1) j β (1) j v(1) Beachte: Q 1 wird nicht explizit gebildet, es wird nur mit v (1) gearbeitet. Grundlagen der Numerik 177

26 2. Schritt: Die Restmatrix a (2) 22 a (2) 2n.. a (2) m2 a (2) mn wird jetzt analog weitertransformiert. Festlegung: v (2) 1 = 0, wobei v (2) = (v (2) 1,..., v(2) m )T. Dann ändert die Anwendung von Q 2 = I v(2) v (2)T γ (2) auf A (2) die erste Zeile und Spalte nicht mehr. Grundlagen der Numerik 178

27 Householder-Orthogonalisierung Nach dem k-ten Schritt ist die Ausgangsmatrix A bis auf eine Restmatrix T (k+1) R m k,n k auf obere Dreiecksgestalt gebracht: A (k+1) = T (k+1) 0 Der Gesamtprozeß für k = 1, 2,..., p = min(m 1, n) wird als Householder-Faktorisierung von A bezeichnet. Grundlagen der Numerik 179

28 Householder-Orthogonalisierung Damit gilt Mit R = A (p+1) = Q p A (p) = Q p Q p 1 Q 2 Q 1 A. Q T = Q p Q p 1 Q 2 Q 1 bzw Q = Q 1 Q 2 Q p 1 Q p erhalten wir unsere angestrebte Faktorisierung A = QR. Grundlagen der Numerik 180

29 Householder-Orthogonalisierung Zusammenfassung: Lösung eines LAP mittels Householder Faktorisierung 1. A = QR, QR-Zerlegung mit Householder-Spiegelungen 2. Transformation von b: Q T b = (b 1, b 2 ) T mit b 1 R n, b 2 R m n 3. Auflösung des gestaffelten Systems R 1 x = b 1 Grundlagen der Numerik 181

30 Householder-Orthogonalisierung Aufwand: n 2 m opms falls m n 2 3 n3 opms falls m n Vergleich mit Cholesky-Verfahren für A T Ax = A T b n 2 m/2 opms falls m n 2 3 n3 opms falls m n Für m n ist Aufwand vergleichbar, für m n bei Householder ungefähr doppelter Aufwand, dafür aber Stabilitätsvorteile. Grundlagen der Numerik 182

Gaußsche Ausgleichsrechnung

Gaußsche Ausgleichsrechnung Kapitel 6 Gaußsche Ausgleichsrechnung 6. Gaußsche Methode der kleinsten Fehlerquadrate Die Gaußsche Methode der kleinsten Fehlerquadrate wurde 89 von C.F. Gauß in dem Aufsatz Theorie der Bewegung der Himmelkörper

Mehr

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b])

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b]) Kapitel 3. Lineare Ausgleichsrechnung Problem: Löse A x = b, A R m n, b R m, wobei Rang(A) < Rang([A;b]) zugelassen ist, d.h. Ax = b ist nur im weitesten Sinne lösbar. 3.1 Lineares Ausgleichsproblem: Zu

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 03.06.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren Lineare Ausgleichsprobleme

Mehr

Ausgleichsrechnung: Methode der kleinsten Quadrate

Ausgleichsrechnung: Methode der kleinsten Quadrate kleinsten Quadrate Historische Bemerkung In der Neujahrsnacht 1801 entdeckte Giuseppe Piazzi den Zwergplaneten Ceres in der Lücke zwischen Mars und Jupiter. Allerdings verlor man Ceres danach wieder aus

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Vorlesungsskript HM-Numerik (SS 4): Kapitel Version: 9 Mai 4 Lineare Gleichungssysteme Gegeben: A R n n mit det(a) b R n Gesucht: x R n mit Ax = b Zeilenäquilibrierung Möchten zunächst die Kondition des

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Höhere Ableitungen Interpolationsbedingungen d k Φ dx k (x j) = y (k) j, ( j =,,..., n; k =,,..., c j ) bestimmen das Hermite Interpolationspolynom Φ Π r mit r + = n ( + c j ). j= 2 Lineare Gleichungssysteme

Mehr

Lineare Algebra. 10. Übungsstunde. Steven Battilana.

Lineare Algebra. 10. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch November 3, 26 Erinnerung Gram-Schmidt Verfahren Sei V ein euklidischer/unitärer Vektorraum mit dim(v ) n < Gegeben: W span{v,...,

Mehr

Nichtlineare Ausgleichsrechnung

Nichtlineare Ausgleichsrechnung 10. Großübung Nichtlineare Ausgleichsrechnung Allgemeines Problem: Wir betrachten ein nichtlineares System F : R n R m mit (m > n, d.h. das System ist überbestimmt und F i (x g(t i ; x g i! 0 i 1,.., m.

Mehr

4 Lineare Ausgleichsrechnung

4 Lineare Ausgleichsrechnung Numerik I 15 4 Lineare Ausgleichsrechnung Die folgende Tabelle zeigt die Bevölkerungsentwicklung in den U.S.A. 19 191 192 193 194 75.995 91.972 15.711 123.23 131.669 195 196 197 198 199 15.697 179.323

Mehr

QR Zerlegung mit Householder Transformationen. Numerische Mathematik1 WS 2011/12

QR Zerlegung mit Householder Transformationen. Numerische Mathematik1 WS 2011/12 QR Zerlegung mit Householder Transformationen Numerische Mathematik1 WS 0/1 Orthogonales Eliminieren /33 Sei x R n ein Vektor x = 0. Ziel: Ein orthogonales H R n;n bestimmen, sodass Hx = kxke 1 ; ein Vielfaches

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

Lineare Ausgleichsproblems

Lineare Ausgleichsproblems Lineare Ausgleichsproblems Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Department of Mathematics Lineare Ausgleichsproblems p. /7 Lineare Ausgleichsprobleme In (fast) allen Wissenschaftsbereichen

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

LINEARE AUSGLEICHSPROBLEME

LINEARE AUSGLEICHSPROBLEME 5 LINEARE AUSGLEICHSPROBLEME Beispiel 51 Bestiung eines unbekannten Widerstands x aus Messungen für die Strostärke t und die Spannung b Angenoen,esliegen Messungen (b i,t i, i =1,,,it 1, t b x Abb 51:

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei L R N N eine normierte untere Dreiecksmatrix und b R N. Dann ist L invertierbar und das Lineare Gleichungssystem (LGS) Ly = b ist mit O(N 2

Mehr

5 Lineare Ausgleichsrechnung

5 Lineare Ausgleichsrechnung Numerische Mathematik 195 5 Lineare Ausgleichsrechnung 5.1 Die Normalgleichungen Das lineare Ausgleichsproblem (Kleinste-Quadrate-Problem): Gegeben sind A R m n und b R m. Gesucht ist ein Vektor x R n

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung: Woche vom (Lin.Alg. Übungsaufgaben 12. Übung: Woche vom 16. 1.-20. 1. 2017 (Lin.Alg. I): Heft Ü 3: 2.1.11; 2.1.8; 2.1.17; 2.2.1; 2.2.3; 1.1.1; 1.1.4; Hinweis 1: 3. Test (Integration, analyt. Geom.) ist seit 9.1. freigeschalten

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

6. Groÿübung. 1 QR-Zerlegung. 2 Givens-Rotationen. Grundaufgabe

6. Groÿübung. 1 QR-Zerlegung. 2 Givens-Rotationen. Grundaufgabe 6. Groÿüung 1 QR-Zerlegung Als QR-Zerlegung wird die Zerlegung A QR der Matrix A R m n in die rechte oere Dreiecksmatrix R R m n und die orthogonale Matrix Q R m m ezeichnet. Die Lösung des Gleichungssystems

Mehr

Lineares Gleichungssystem

Lineares Gleichungssystem Lineares Gleichungssystem Ein System von m linearen Gleichungen in n Unbekannten besteht aus einer Menge von algebraischen Relationen der Form n a ij x j = b i, i =,...,m, j= wobei a ij R, i m, j n, die

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

7. Großübung. Ax =QRx = b Rx =Q 1 b = Q T b. Wir behandeln im Folgenden zwei Verfahren zur Erzeugung der QR-Zerlegung:

7. Großübung. Ax =QRx = b Rx =Q 1 b = Q T b. Wir behandeln im Folgenden zwei Verfahren zur Erzeugung der QR-Zerlegung: 7. Großüung 1 QR-Zerlegung Als QR-Zerlegung wird die Zerlegung A QR der Matrix A R m n in die rechte oere Dreiecksmatrix R R m n und die orthogonale Matrix Q R m m ezeichnet. Die Lösung des Gleichungssystems

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

6.1 Motivation: Gauss sche Methode der kleinsten Quadrate

6.1 Motivation: Gauss sche Methode der kleinsten Quadrate 6 Ausgleichsrechnung Bisher untersuchten wir Verfahren für Lösung linearer Gleichungssteme Ax b mit quadratischer Matrix A In vielen Anwendungen tritt das Problem auf, lineare Gleichungssysteme zu lösen,

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 6.8.005 1 Aufgabe N1 Gegeben seien A = 5-10 -5-10 8-10 -5-10 13 R 3 3 und b = a) Überprüfen Sie, ob die Matrix A positiv definit ist. b) Bestimmen

Mehr

Lernbuch Lineare Algebra und Analytische Geometrie, 2. Auflage 2012

Lernbuch Lineare Algebra und Analytische Geometrie, 2. Auflage 2012 Lernbuch Lineare Algebra und Analytische Geometrie, 2 Auflage 22 Korrekturen 8 statt y M lies y N 2 statt m + n = m +(n )=m +(n ) lies m + n = m +(n ) 2 statt #P(M) lies #P (M) 4 7 statt Beispiel c) lies

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 2 Beweise Sie folgende

Mehr

Lineare Ausgleichsprobleme

Lineare Ausgleichsprobleme Kapitel Lineare Ausgleichsprobleme Einführung Bemerkung Aufgabenstellung, Motivation Bei linearen Ausgleichsproblemen handeltes sichebenfalls um Bestapproximations Probleme Allerdingsist hier keine Funktion

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Beispiel: Feder Masse System festes Ende Feder k 1 Masse m 1 k 2 m 2 k 3 m 3 k 4 festes Ende u 0 = 0 Federkraft y 1 Verschiebung u 1 y 2 u 2 y 3 u 3 y 4 u 4 = 0 Grundlagen der

Mehr

Lineare Abbildungen. Heinrich Voss. Hamburg University of Technology Department of Mathematics. Lineare Abbildungen p.

Lineare Abbildungen. Heinrich Voss. Hamburg University of Technology Department of Mathematics. Lineare Abbildungen p. Lineare Abbildungen Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Department of Mathematics Lineare Abbildungen p. /95 Basiswechsel Es seien V, W endlichdimensionale Vektorräume und

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 2014 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 91 91a) Sei A eine n n-matrix Das Gleichungssystem Ax

Mehr

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6 Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik Dr. Thomas Zehrt Vektorräume und Rang einer Matrix Inhaltsverzeichnis Lineare Unabhängigkeit. Äquivalente Definition.............................

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

5 Lineare Ausgleichsrechnung

5 Lineare Ausgleichsrechnung Numerik 199 5 Lineare Ausgleichsrechnung 5.1 Die Normalgleichungen 5.2 Singulärwertzerlegung 5.3 Pseudoinverse 5.4 Orthogonale Matrizen und QR-Zerlegung 5.5 Kondition des Ausgleichsproblems 5.6 Ausgleichspolynome

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 12 8. Juni 2010 Kapitel 10. Lineare Gleichungssysteme (Fortsetzung) Umformung auf obere Dreiecksgestalt Determinantenberechnung mit dem Gauß-Verfahren

Mehr

Über- und unterbestimmte Systeme

Über- und unterbestimmte Systeme Über- und unterbestimmte Systeme Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,

Mehr

Linear Systems and Least Squares

Linear Systems and Least Squares Linear Systems and Least Squares Vortragender: Gelin Jiofack Nguedong Betreuer: Prof. Dr. Joachim Weickert Proseminar: Matrixmethoden in Datenanalyse und Mustererkennung Wintersemester 2015/2016 18. November

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3. Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 204 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung Matrixzerlegungen. 6. Vorlesung 170004 Numerische Methoden I Clemens Brand QR- QR- 2. April 2009 Gliederung Elimination faktorisiert A = L R QR- QR- QR- QR- Eine Zusammenfassung der Folien 6 14 der letzten

Mehr

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4 Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

Kapitel 1. Matrizen und lineare Gleichungssysteme. 1.1 Matrizenkalkül (Vektorraum M(n,m); Matrixmultiplikation;

Kapitel 1. Matrizen und lineare Gleichungssysteme. 1.1 Matrizenkalkül (Vektorraum M(n,m); Matrixmultiplikation; Kapitel 1 Matrizen und lineare Gleichungssysteme 11 Matrizenkalkül (Vektorraum M(n,m; Matrixmultiplikation; Transposition; Spalten- und Zeilenvektoren Matrizen sind im Prinzip schon bei der schematischen

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y 1 = a 11 x 1 + a 12 x 2 + a 13 x3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x3... Koeffizienten a ij i - te Gleichung

Mehr

4. Großübung. Lösung linearer Gleichungssysteme

4. Großübung. Lösung linearer Gleichungssysteme 4. Großübung Lösung linearer Gleichungssysteme Gesucht x, x, x 3, x 4 R, sodass gilt. mit A R 4 4, x R 4, b R 4 x x + 3x 3 + x 4 = 5 6x 3x 7x x 4 = 5 4x + 4x + 5x 3 5x 4 = 3 8x + x + x 3 + x 4 = 8 3 x

Mehr

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

Cramersche Regel. Satz 2.26

Cramersche Regel. Satz 2.26 ramersche Regel Satz 6 Es sei A R n n eine quadratische Matrix mit det(a) 6= Für das LGS Ax = b sei A j := (a,,a j, b, a j+,,a n ), also die Matrix, die entsteht, wenn in A die j-te Spalte durch den Vektor

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 11 1. Juni 2010 Rechenregeln für Determinanten Satz 62. (Determinanten von Dreiecksmatrizen) Es sei A eine obere oder untere n n-dreiecksmatrix.

Mehr

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23 Kapitel 5 Eigenwerte 5. Definition und Beispiele Wir sehen uns ein System dreier schwingender Kugeln der Massen m, m und m 3 an, die durch Federn aneinander gekoppelt sein sollen. m k m k 3 m 3 x ( t x

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr