1 Euklidische Approximation

Größe: px
Ab Seite anzeigen:

Download "1 Euklidische Approximation"

Transkript

1 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n. (1.1) Problemstellung: Sei v V. Bestimme v N V mit v v N V = min w N V N v w N V. (1.2) Die Matrix ) A = ( φ n,φ k V n,k=1,...,n RN N ist symmetrisch und positiv definit. (1.3) Problem (1.1) ist eindeutig lösbar. Es gilt N v N = x n φ n, n=1 wobei x R N die eindeutige Lösung des linearen Gleichungssystems Ax = b ) mit b = ( v,φ k V k=1,...,n RN ist. C. Wieners: Einführung in die Numerische Mathematik 1

2 2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei L R N N eine normierte untere Dreiecksmatrix und b R N, d.h. diagl = I N und L[1 : n,n + 1] = 0 n für n = 1,...,N 1. Dann ist L regulär und das lineare Gleichungssystem Ly = b ist mit O(N 2 ) Operationen lösbar. Entsprech ist für eine reguläre obere Dreiecksmatrix R R N N (d.h. R[n,n] 0 für alle n und R[n + 1,1 : n] = 0 T n für n < N) das LGS Rx = y in O(N 2 ) Operationen lösbar. (2.2) Die normierten unteren Dreiecksmatrizen bilden eine Gruppe. Die regulären oberen Dreiecksmatrizen bilden eine Gruppe. (2.4) Wenn eine Matrix A R N N eine LR-Zerlegung A = LR mit einer normierten untere Dreiecksmatrix L und einer regulären obere Dreiecksmatrix R besitzt, dann ist A regulär und das LGS Ax = b ist mit O(N 2 ) Operationen lösbar. (2.5) Eine Matrix A R N N besitzt genau dann eine LR-Zerlegung von A, wenn alle Hauptuntermatrizen A[1 : n,1 : n] regulär sind. Die LR-Zerlegung ist eindeutig und lässt sich mit O(N 3 ) Operationen berechnen. N N N (2.6) Eine Matrix A R heißt strikt diagonal-dominant, falls A[n,n] > k=1, k n A[n, k] n. (2.7) Wenn A strikt diagonal dominant ist, dann existiert eine LR-Zerlegung. (2.8) Sei A R N N symmetrisch und positiv definit. Dann existiert genau eine Cholesky-Zerlegung A = LL T mit einer regulären unteren Dreiecksmatrix L. C. Wieners: Einführung in die Numerische Mathematik 2

3 LR- und Cholesky-Zerlegung function x = lr_solve(a,b) N = size(a,1); for n=1:n-1 A(n+1:N,n) = A(n+1:N,n) / A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); x = b; for n=2:n x(n) = x(n) - A(n,1:n-1) * x(1:n-1); for n=n:-1:1 x(n) = (x(n) - A(n,n+1:N) * x(n+1:n)) / A(n,n); return function x = cholesky_solve(a,b) N = size(a,1); for n=1:n A(n:N,n) = A(n:N,n) - A(n:N,1:n-1) * A(n,1:n-1) ; A(n:N,n) = A(n:N,n) / sqrt(a(n,n)); x = b for n=1:n x(n) = (x(n) - A(n,1:n-1) * x(1:n-1)) / A(n,n); for n=n:-1:1 x(n) = (x(n) - A(n+1:N,n) * x(n+1:n)) / A(n,n); return C. Wieners: Einführung in die Numerische Mathematik 3

4 2 Direkte Lösungsverfahren für lineare Gleichungen (2.9) Sei π S N eine Permutation. Dann heißt P π = ( e π 1 (1)... e π (N)) 1 R N N Permutationsmatrix zu π. Es gilt (P π A)[n,k] = A[π(n),k] und (AP π )[n,k] = A[n,π 1 (k)]. (2.10) Die Permutationsmatrizen in R N N bilden eine Gruppe. Es gilt P σ P π = P π σ und P π 1 = Pπ T. (2.11) Sei A R N N regulär. Dann existiert eine Permutationsmatrix P, so dass PA eine LR-Zerlegung PA = LR besitzt und für die Einträge L[m,n] 1 gilt. Sie lässt sich mit O(N 3 ) Operationen berechnen. Die Lösung von Ax = b berechnet sich aus Ly = Pb und Rx = y. Sei eine Vektornorm, und sei eine zugeordete Matrixnorm, d. h., Ax A x, x R N, A R M N. (2.12) Sei A R N N regulär, und sei A R N N so klein, dass A < A 1 1 gilt. Dann ist die Matrix à = A + A regulär. Sei b R N, b 0 N, b R N klein und b = b + b. Dann gilt für die Lösungen x R N von Ax = b und x R N von à x = b x κ(a) ( b x 1 κ(a) A + A ). b A A Dabei ist x = x x, x x der relative Fehler, und κ(a) = A A 1 die Kondition von A. C. Wieners: Einführung in die Numerische Mathematik 4

5 LR-Zerlegung mit Pivot-Suche function x = lr_pivot_solve(a,b) N = size(a,1); p = (1:N) ; for n = 1:N-1 [r,m] = max(abs(a(n:n,n))); m = m+n-1; if abs(a(m,n))<eps error( *** ERROR *** Matrix fast singulär ); if (m ~= n) A([n m],:) = A([m n],:); p([n m]) = p([m n]); A(n+1:N,n) = A(n+1:N,n) / A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); x = b(p); for n=2:n x(n) = x(n) - A(n,1:n-1) * x(1:n-1); for n=n:-1:1 x(n) = (x(n) - A(n,n+1:N) * x(n+1:n)) / A(n,n); return C. Wieners: Einführung in die Numerische Mathematik 5

6 2 Arithmetische Grundlagen (2.13) a) Eine Gleitkommazahlen zur Basis B {2, 3,...} der Mantissenlänge M und Exponentenlänge E ist die Menge { FL = ± B e M a m B m : e = e E 1 } + c k B k, a m,c k {0,1,...,B 1} m=1 k=0 b) Eine Gleitkommaarithmetik wird durch eine Abbildung fl: R FL mit fl(x) = x für x FL definiert. Sei bestimmt die Rundung: x y = { fl(x + y), x y = fl(x } y), etc. x fl(x) Die zugehörige Maschinengenauigkeit ist eps = sup : x FL. x (2.14) Sei f : R N R K eine differenzierbare Funktion und x R N. Dann heißt a) κabs kn = x n f k (x) absolute Konditionszahl. b) κrel kn = x n f k (x) xn f k (x) relative Konditionszahl. C. Wieners: Einführung in die Numerische Mathematik 6

7 2 Kondition und Stabilität (2.15) a) Ein Problem heißt sachgemäß gestellt, wenn es eindeutig lösbar ist und die Lösung stetig von den Daten abhängt. b) Die Kondition eines Problems ist eine Maß dafür, wie stark die Abhängigkeit der Lösung von Störungen in den Daten ist. c) Die Stabilität eines numerischen Algorithmus ist eine Maß dafür, wie stark die Daten- Abhängigkeit der numerischen Lösung im Vergeich zu der exakten Lösung ist. (2.16) Wir verwen für x R N und A R M N N x 1 = x[n], x 2 = x T x, x = max x[n] n=1 n=1,...,n Ax und die zugeordnete Operatornorm A p = sup p x 0N x p, d.h. M N A 1 = max A[m,n], A 2 = ρ(a T A), A = max A[m, n] n=1,...,n m=1 m=1,...,m n=1 mit Spekralradius ρ(a) = max{ λ : λ σ(a)} und Spektrum σ(a). C. Wieners: Einführung in die Numerische Mathematik 7

8 3 Ausgleichsrechnung Sei Q R N N orthogonal, d.h. Q T Q = I N. Dann ist κ 2 (Q) = 1. (3.1) Zu v R N und k n mit v[k] 2 + v[n] 2 > 0 existiert eine Givens-Rotation G R N N mit ( ) ( ) G[k,k] G[k,n] c s =, c G[n, k] G[n, n] s c 2 + s 2 = 1, und G[j][j] = 1 für j k,n und G[i][j] = 0 sonst, so dass en T Gv = 0 gilt: Für v[n] > v[k] setze τ = v[k] v[n], s = 1+τ 1 v[n], c = sτ, sonst setze τ = 2 v[k], c = 1+τ 1, s = cτ. 2 Es gilt G = c(e k ek T + e nen T ) + s(e k en T e n ek T ) + e j ej T. j k,n (2.10) Zu v R N, v 0 N, existiert eine Householder-Spiegelung H = I N 2 w T w ww T R N N mit w R N, w[1] = 1, so dass Hv = σe 1 mit σ R und Hw = w gilt: Falls v[1] > 0, setze σ = v 2, sonst setze σ = v 2. Dann definierte w = 1 v[1] σ (v σe 1). (3.3) Zu A R K N existiert eine QR-Zerlegung A = QR mit einer orthogonalen Matrix Q R K K und eine oberen Dreiecksmatrix R R K N, d.h. QQ T = I K und R[k + 1 : K,k] = 0 K k für k = 1,...,K. (3.4) Sei A R K N und b R K. Dann gilt: x R N minimiert Ax b 2 A T Ax = A T b. C. Wieners: Einführung in die Numerische Mathematik 8

9 Berechnung der Householder-Vektoren function [v,beta] = householder(y) N = length(y); s = y(2:n) * y(2:n); if N == 1 s = 0; ; v = [1;y(2:N)]; if s == 0 beta = 0; else mu = sqrt(y(1)^2 + s); if y(1) <= 0 v(1) = y(1) - mu; else v(1) = -s/(y(1) + mu); ; beta = 2*v(1)^2/(s + v(1)^2); v = v / v(1); ; return; C. Wieners: Einführung in die Numerische Mathematik 9

10 QR-Zerlegung [M,N] = size(a); for m = 1:min(N,M-1) [v,beta] = householder(a(m:m,m)); if beta ~= 0 w = beta * v * A(m:M,m:N); A(m:M,m:N) = A(m:M,m:N) - v * w; A(m+1:M,m) = v(2:m-m+1); ; ; for m = 1:min(N,M-1) v = [1;A(m+1:M,m)]; beta = 2 / (v * v); if beta ~= 2 b(m:m) = b(m:m) - beta*(v *b(m:m)) * v; ; ; for n=min(n,m):-1:1 x(n) = (b(n) - A(n,n+1:N) * x(n+1:n)) / A(n,n); ; C. Wieners: Einführung in die Numerische Mathematik 10

11 3 Ausgleichsrechnung (3.5) Zu A R K N mit R = rang(a) existiert eine Singulärwertzerlegung A = V ΣU T mit Matizen V = (v 1 v R ) R K R, U = (u 1, u R ) R N R, Σ = diag(σ 1,...,σ R ) R R R mit V T V = U T U = I R und den Singulärwerten σ 1,...,σ R > 0. Es gilt A = R σ r u r vr T r=1 und Ax = R σ r (vr T x)u r. r=1 (2.22) A + = UΣ 1 V T ist die Pseudo-Inverse. Es gilt A + = R σr 1 v r ur T und Ax = R σr 1 (ur T x)v r. r=1 r=1 (2.22) x = A + b löst die Normalengleichung A T Ax = A T b. (2.23) Sei A R K N und b R M. Dann gilt für die Tikhonov-Regularisierung mit α > 0: x R N minimiert Ax b α x 2 2 (A T A + αi N )x = A T b. (2.24) Es gilt lim α 0 (AT A + αi N ) 1 A T b = A + b. Diskrepanzprinzip: Sei b Bild(A), x = A + b und b δ eine Störung mit b b δ < δ < b 2. Dann existiert ein α = α(δ) > 0 mit Ax α b δ 2 = δ für x α = (A T A + αi N ) 1 A T b δ. Es gilt α(δ) 0 für δ 0. C. Wieners: Einführung in die Numerische Mathematik 11

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei L R N N eine normierte untere Dreiecksmatrix und b R N. Dann ist L invertierbar und das Lineare Gleichungssystem (LGS) Ly = b ist mit O(N 2

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei x = (x n ) n=1,...,n R N, A = (a m,n ) m=1,...,m, n=1,...,n R M,N. a) Sei 1 m n N. Dann ist x[m : n] = (x k ) k=m,...,n R 1+n m Teilvektor von x. b) Seien 1 m 1 m 2 M, 1 n 1 n 2 N. Dann ist A[m

Mehr

LR-Zerlegung. N = size(a,1); for n=1:n-1 A(n+1:N,n) = A(n+1:N,n)/A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); end;

LR-Zerlegung. N = size(a,1); for n=1:n-1 A(n+1:N,n) = A(n+1:N,n)/A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); end; LR-Zerlegung N = size(a,1); for n=1:n-1 A(n+1:N,n) = A(n+1:N,n)/A(n,n); A(n+1:N,n+1:N) = A(n+1:N,n+1:N) - A(n+1:N,n) * A(n,n+1:N); x = b; for n=2:n x(n) = x(n) - A(n,1:n-1) * x(1:n-1); for n=n:-1:1 x(n)

Mehr

1 Arithmetische Grundlagen

1 Arithmetische Grundlagen Am 4. Juni 1996 explodierte kurz nach dem Start die erste Ariane 5 Rakete durch einen Softwarefehler. Die Horizontalgeschwindigkeit wurde durch eine Gleitkommazahl v [ 10 308, 10 308 ] {0} [10 308,10 308

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen Sei A R invertierbar und b R. Löse Ax = b genau und effizient. Die LR-Zerlegung Wir berechnen eine Zerlegung A = LR mit L, R R und den folgen Eigenschaften:

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b])

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b]) Kapitel 3. Lineare Ausgleichsrechnung Problem: Löse A x = b, A R m n, b R m, wobei Rang(A) < Rang([A;b]) zugelassen ist, d.h. Ax = b ist nur im weitesten Sinne lösbar. 3.1 Lineares Ausgleichsproblem: Zu

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

1 Arithmetische Grundlagen

1 Arithmetische Grundlagen 1 Arithmetische Grundlagen Am 4. Juni 1996 explodierte kurz nach dem Start die erste Ariane 5 Rakete durch einen Softwarefehler. Die Horizontalgeschwindigkeit wurde durch eine Gleitkommazahl v [ 10 308,

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Vorlesungsskript HM-Numerik (SS 4): Kapitel Version: 9 Mai 4 Lineare Gleichungssysteme Gegeben: A R n n mit det(a) b R n Gesucht: x R n mit Ax = b Zeilenäquilibrierung Möchten zunächst die Kondition des

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 2 Beweise Sie folgende

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen 1 / 16 Vektorraum u R n, u = (u 1,..., u n ), u k R Euklidisches Skalarprodukt Euklidische Vektornorm (u, v) = u k v k u 2 = (u, u) = n u 2 k Vektoren u, v R n heißen orthogonal,

Mehr

Lineare Gleichungssysteme, Teil 2

Lineare Gleichungssysteme, Teil 2 Lineare Gleichungssysteme, Teil 2 11. Vorlesung 27.1.12 Lineare Gleichungssysteme Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse dieses Problems Stabilitätsanalyse

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n N } n=1,...,n.

Mehr

Lineare Algebra. 10. Übungsstunde. Steven Battilana.

Lineare Algebra. 10. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch November 3, 26 Erinnerung Gram-Schmidt Verfahren Sei V ein euklidischer/unitärer Vektorraum mit dim(v ) n < Gegeben: W span{v,...,

Mehr

Lineares Gleichungssystem

Lineares Gleichungssystem Lineares Gleichungssystem Ein System von m linearen Gleichungen in n Unbekannten besteht aus einer Menge von algebraischen Relationen der Form n a ij x j = b i, i =,...,m, j= wobei a ij R, i m, j n, die

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3. Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 20.12.13 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Singulärwertzerlegung Achim Schädle Übungsleiter: Lennart Jansen Tutoren: Marina Fischer, Kerstin Ignatzy, Narin Konar Pascal Kuhn, Nils Sänger, Tran Dinh

Mehr

EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2010

EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2010 Prof. Dr. O. Junge, P. Koltai, K. Tichmann Zentrum Mathematik - M3 Technische Universität München EINFÜHRUNG IN DIE NUMERIK - ÜBUNGSBLATT 3 Sommersemester 2 Tutorübungen T6 (Schur-Komplement) (a) Es sei

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei die Matrix 1 1 1 A = 3 3 3 2 2 2 (a) Bestimmen Sie Rang(A), Kern(A) und Bild(A). Ist A invertierbar? Geben Sie zwei verschiedene rechte Seiten b 1, b 2 an, so

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

QR Zerlegung mit Householder Transformationen. Numerische Mathematik1 WS 2011/12

QR Zerlegung mit Householder Transformationen. Numerische Mathematik1 WS 2011/12 QR Zerlegung mit Householder Transformationen Numerische Mathematik1 WS 0/1 Orthogonales Eliminieren /33 Sei x R n ein Vektor x = 0. Ziel: Ein orthogonales H R n;n bestimmen, sodass Hx = kxke 1 ; ein Vielfaches

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,...,255}, n = 1,...,N, m = 1,...,M. dig. Camera Realisierung

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

Matr. Nr.: Benutzter Taschenrechner (genaue Typenbezeichnung) : Name: Vorname: Unterschrift: VFr: A1: A2: A3: A4: A5: BP: Platz Nr.

Matr. Nr.: Benutzter Taschenrechner (genaue Typenbezeichnung) : Name: Vorname: Unterschrift: VFr: A1: A2: A3: A4: A5: BP: Platz Nr. Matr. Nr.: Platz Nr.: Klausur zur Numerischen Mathematik (für Elektrotechniker) Prof. Dr. Wolfgang Dahmen Samstag, 19. August 2017 Institut für Geometrie und Praktische Mathematik Hilfsmittel: dokumentenechtes

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

3 Eigenwertberechnung

3 Eigenwertberechnung 3 Eigenwertberechnung (3.) Definition Eine Matrix A R, heißt (obere) Block-Dreiecksmatrix, wenn ein n existiert, sodass A[n + :, : n] = 0 gilt, d.h.: A = ( ) A[ : n, : n] A[ : n,n + : ] 0 A[n + :,n + :

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen

Mehr

1 Fehleranalyse, Kondition, Stabilität

1 Fehleranalyse, Kondition, Stabilität Fehleranalyse, Kondition, Stabilität Fehlerquellen: Modellierungsfehler z.b. Ohmsches Gesetz u = Ri berücksichtigt nicht die Temperaturabhängigkeit des Widerstandes Messfehler z.b. digitaler Temperatursensor

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Kapitel 1: Fehleranalyse, Kondition, Stabilität

Kapitel 1: Fehleranalyse, Kondition, Stabilität Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 1: Fehleranalyse, Kondition, Stabilität Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik

Mehr

4 Lineare Ausgleichsrechnung

4 Lineare Ausgleichsrechnung Numerik I 15 4 Lineare Ausgleichsrechnung Die folgende Tabelle zeigt die Bevölkerungsentwicklung in den U.S.A. 19 191 192 193 194 75.995 91.972 15.711 123.23 131.669 195 196 197 198 199 15.697 179.323

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MNUM Mathematik: Numerische Methoden Herbstsemester 17 Dr Christoph Kirsch ZHAW Winterthur Aufgabe 1 : Lösung Semesterendprüfung Wir schreiben zuerst die Gleichungen f(x i ; a, a 1, a y i, i 1,,, 1, als

Mehr

Numerische Mathematik I für Ingenieure Multiple-Choice Klausuraufgaben Frühjahr 08

Numerische Mathematik I für Ingenieure Multiple-Choice Klausuraufgaben Frühjahr 08 Numerische Mathematik I für Ingenieure Multiple-Choice Klausuraufgaen Frühjahr 08 Hier einige Hinweise zu den MC-Aufgaen. Die Lösungen sollten nicht auswendig gelernt werden. Man sollte verstehen, warum

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 03.06.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren Lineare Ausgleichsprobleme

Mehr

Numerik für Informatiker und Bioinformatiker. Daniel Weiß

Numerik für Informatiker und Bioinformatiker. Daniel Weiß Numerik für Informatiker und Bioinformatiker Daniel Weiß SS 202 Folgende Literatur bildet die Grundlage dieser Vorlesung: P Deuflhard, A Hohmann, Numerische Mathematik, Eine algorithmisch orientierte Einführung,

Mehr

Multiplikationen und Divisionen Hauptarbeit des Algorithmus liegt somit in der Berechnung der LR-Zerlegung. (n 1)n(2n 1) 6. = n3 3 n2.

Multiplikationen und Divisionen Hauptarbeit des Algorithmus liegt somit in der Berechnung der LR-Zerlegung. (n 1)n(2n 1) 6. = n3 3 n2. KAPITEL LINEARE GLEICHUNGSSYSTEME 7 Rechenaufwand der LR-Zerlegung: A A : n Divisionen, n 2 Multiplikationen und Additionen A L, R: Also insgesamt n j= j2 + j = n3 3 n 3 Multiplikationen und Divisionen

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

5 Lineare Ausgleichsrechnung

5 Lineare Ausgleichsrechnung Numerische Mathematik 195 5 Lineare Ausgleichsrechnung 5.1 Die Normalgleichungen Das lineare Ausgleichsproblem (Kleinste-Quadrate-Problem): Gegeben sind A R m n und b R m. Gesucht ist ein Vektor x R n

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

Klausur DI/LA F 2006 LA : 1

Klausur DI/LA F 2006 LA : 1 Klausur DI/LA F 26 LA : Aufgabe (4+2=6 Punkte): Gegeben seien die Matrix A und der Vektor b mit λ A = λ und b = λ a) Bestimmen Sie die Werte λ R, für welche das Gleichungssystem Ax = b genau eine, keine

Mehr

Übungsblatt 12 Musterlösung

Übungsblatt 12 Musterlösung NumLinAlg WS56 Übungsblatt 2 Musterlösung Lösung 44 (QR-Algorithmus mit Wilkinson-Shift und Deflation) a)+b) Die QR-Iteration zur Berechnung aller Eigenwerte einer Matrix A kann wie folgt implementiert

Mehr

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik ................ Note Name Vorname 1 I II Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

Klausur zu Grundlagen der Computermathematik

Klausur zu Grundlagen der Computermathematik Prof. Dr. Klaus Höllig 14. Oktober 2010 Klausur zu Grundlagen der Computermathematik en Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. a Die Folge A

Mehr

1.4 Stabilität der Gauß-Elimination

1.4 Stabilität der Gauß-Elimination KAPIEL 1. LINEARE GLEICHUNGSSYSEME 18 1.4 Stabilität der Gauß-Elimination Bezeichne x die exakte Lösung von Ax = b bzw. ˆx die mit einem (zunächst beliebigen Algorithmus berechnete Näherungslösung (inklusive

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

Klausur zur Mathematik II (Modul: Lineare Algebra II)

Klausur zur Mathematik II (Modul: Lineare Algebra II) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Wintersemester 0/04 Klausur zur Mathematik II (Modul: Lineare Algebra II) 05.0.04 Sie haben 60 Minuten Zeit zum

Mehr

Aufwand und Komplexität Vorlesung vom Komplexität und Effizienz

Aufwand und Komplexität Vorlesung vom Komplexität und Effizienz Aufwand und Komplexität Vorlesung vom 15.12.17 Komplexität und Effizienz Aufwand: Anzahl dominanter Operationen (worst-case). Beispiel. Landau-Symbol O(n). Beispiel. Definition: Aufwand eines Algorithmus.

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 21 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,,255}, n = 1,,N, m = 1,,M dig Camera Realisierung von B η ist

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung Matrixzerlegungen. 6. Vorlesung 170004 Numerische Methoden I Clemens Brand QR- QR- 2. April 2009 Gliederung Elimination faktorisiert A = L R QR- QR- QR- QR- Eine Zusammenfassung der Folien 6 14 der letzten

Mehr

Gaußsche Ausgleichsrechnung

Gaußsche Ausgleichsrechnung Kapitel 6 Gaußsche Ausgleichsrechnung 6. Gaußsche Methode der kleinsten Fehlerquadrate Die Gaußsche Methode der kleinsten Fehlerquadrate wurde 89 von C.F. Gauß in dem Aufsatz Theorie der Bewegung der Himmelkörper

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

MAV-NUM Applied Numerics Frühlingssemester Serie 4. (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix

MAV-NUM Applied Numerics Frühlingssemester Serie 4. (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix MAV-NUM Applied Numerics Frühlingssemester 08 Dr. Evelyne Knapp ZHAW Winterthur Serie 4 Aufgabe (LR Zerlegung Theorie): (a) Berechnen Sie per Hand die LR-Zerlegung der Matrix 3 0 0 0 (b) Lösen Sie mit

Mehr

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse

Mehr

D-ITET, D-MATL Numerische Methoden FS 2014 Dr. R.Käppeli M. Sprecher. Musterlösung 4

D-ITET, D-MATL Numerische Methoden FS 2014 Dr. R.Käppeli M. Sprecher. Musterlösung 4 D-ITET, D-MATL Numerische Methoden FS 2014 Dr. R.Käppeli M. Sprecher Musterlösung 4 1. a) function L = cholesky_dec(a); function L = cholesky_dec(a); Purpose: Cholesky-Zerlegung einer symmetrischen positiv

Mehr

4.2.5 Das Cholesky-Verfahren

4.2.5 Das Cholesky-Verfahren S. Ulbrich: Mathematik IV für Elektrotechnik, Mathematik III für Informatik 34 4.2.5 Das Cholesky-Verfahren Für allgemeine invertierbare Matrizen kann das Gauß-Verfahren ohne Pivotsuche zusammenbrechen

Mehr

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia-

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia- 3.. Jetzt: Eliminiere 1. und 2. wie folgt u 2 + 2u 1 = h 2 f 1 + α }{{} bekannt Nun: Au = b mit A R n,n, b R n, u R n und A hat die Gestalt 2 1 1 2 1 A =......... =: tridiag( 1, 2, 1)...... 1 1 2 Analog

Mehr

Numerisches Programmieren

Numerisches Programmieren Informatics V - Scientific Computing Numerisches Programmieren Tutorübung 3 Jürgen Bräckle, Christoph Riesinger 16. Mai 2013 Tutorübung 3, 16. Mai 2013 1 Gauß-Elimination und Pivotsuche LR-Zerlegung QR-Zerlegung

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Musterlösung Serie 21

Musterlösung Serie 21 D-MATH Lineare Algebra II FS 09 Prof. Richard Pink Musterlösung Serie Positiv-Definitheit und Singulärwertzerlegung. Welche der folgenden drei reellen symmetrischen Matrizen sind positiv definit? A : 6

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2 D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)

Mehr