Die Interpolationsformel von Lagrange

Größe: px
Ab Seite anzeigen:

Download "Die Interpolationsformel von Lagrange"

Transkript

1 Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten (x i,f i ), i =,...,n mit paarweise verschiedenen Stützstellen x i x j, für i j, gibt es genau ein Polynom π n P n mit π n (x i ) = f i, i =,...,n. Es gilt mit den Interpolationspolynomen π n = n f i L i i= L i := k i x x k x i x k, i =,...,n. Polynominterpolation (interpol2)

2 Die Interpolationsformel von Lagrange, Beispiel Gegeben seien für n = 2 : i 2 x i 3 f i 3 2 Als Interpolationspolynome ergeben sich L = (x )(x 3) ( )( 3), L = (x )(x 3) ( )( 3), L 2 = (x )(x ) (3 )(3 ), und damit π 2 = L +3 L +2 L 2 = 6 ( 5x2 +7x+6) P -4 L 3L -5 2L 2 Stuetzstellen Polynominterpolation (interpol3) 2

3 Die Interpolationsformel von Lagrange Beispiel: Exponentialfunktion Gegeben seien für n = 2 : i 2 x i f i e e e Als Interpolationspolynome ergeben sich L = und damit (x )(x ) ( )( ), L = (x + )(x ) ( + )( ), L 2 = (x + )(x ) ( + )( ), π 2 = e L +e L +e L 2 = e 2 (x2 x) (x 2 )+e 2 (x2 +x) ( = 2e + e ) ( e x ) x+ 2e = (cosh() )x 2 +sinh()x+ Polynominterpolation (interpol3a) 3

4 Die Interpolationsformel von Lagrange Beispiel: Exponentialfunktion 4 L 3 2 L L 2 Stützpunkte Π e x e *L e *L e *L 2 Stützstellen 2 2 Polynominterpolation (interpol4a) 4

5 Interpolationsfehler Die Stützwerte f i stammen oft von einer stetigen Funktion f, d.h. f i = f(x i ), i =,...,n. Gilt {x i : i =,...,n} [a,b], so lässt sich der Fehler f π n in der Maximumsnorm abschätzen als Hierbei ist f [a,b] := f L ([a,b]) := max x [a,b] f f π n [a,b] ω n+ [a,b] f (n+) [a,b]. (n+)! n ω n+ := (x x i ). Der Ausdruck ω n+ [a,b] hängt alleine von der Wahl der Stützstellen ab. i= Polynominterpolation (interpol) 5

6 Das Polynom ω n+ Äquidistante Stützstellen, n = 2 5 x Frage: Gibt es eine Knotenverteilung, so dass ω n+ [a,b] minimal wird? Polynominterpolation (interpol2) 6

7 Tschebyscheff Interpolation Für n N bezeichne T n das Tschebyscheffpolynom, T n := cos(narccosx), x [,]. Es gilt die 3-Term Rekursion T =, T = x, T n = 2xT n T n 2, n 2, = T n P n Nullstellen von T n sind die Tschebyscheffpunkte x (n+) i = cos ( ) 2i+ 2n+2 π, i =,...,n. Polynominterpolation (interpol3) 7

8 n = 3 Tschebyscheffpunkte n = n = 8 n=7 2 Polynominterpolation (interpol4) 8

9 Das Polynom ω n+ Tschebyscheffknoten, n = 2 5 x 7 ω 22,äqui [,] ω 22,cheb [,] z.b. n = 4 ω 4,äqui [,] ω 4,cheb [,] allgemein ω n+,cheb [,] = 2 n Polynominterpolation (interpol5) 9

10 Das Polynom ω n+ ω n+ ;[,] für verschiedene Stützstellen 2 ω ;[,] äquidistant nur in [,] nur in [,.5] [.5,] Anzahl Stützstellen...+ einige in [,5,.5] Tschebyscheff Polynominterpolation (interpol5a)

11 Äquidistante Punkte vs. Tschebyscheffpunkte 3 n = 9, Lagrange Polynom L L 9,äquidistant [,] =. 3, L 9,Tschebyscheff [,] =. Polynominterpolation (interpol7)

12 Äquidistante Punkte vs. Tschebyscheffpunkte f = /(+25x 2 ) n = 4 n = 6 n = Tschebyscheffpunkte: Konvergenz n = n = 2 n = Äquidistante Punkte: Randoszillationen Polynominterpolation (interpol8) 2

13 Äquidistante Punkte vs. Tschebyscheffpunkte Interpolationsfehler, f = /(+25x 2 ) n =, aequidistant.5.5 n = 2, aequidistant n = 3, aequidistant n =, Tschebyscheff n = 2, Tschebyscheff 2 x 3 2 n = 3, Tschebyscheff Polynominterpolation (interpol9) 3

14 Äquidistante Punkte vs. Tschebyscheffpunkte f = x 3/2 n = 4 n = 6 n = n =.2 n = 2 n = Polynominterpolation (interpol2) 4

15 Äquidistante Punkte vs. Tschebyscheffpunkte f = x n = n = n = 8 n = 6 n = 2 n = Polynominterpolation (interpol2a) 5

16 Äquidistante Punkte vs. Tschebyscheffpunkte Interpolationsfehler, f = x n =, aequidistant n = 2, aequidistant 5 5 x 4 n = 3, aequidistant n =, Tschebyscheff n = 2, Tschebyscheff n = 3, Tschebyscheff Polynominterpolation (interpol2b) 6

17 Interpolationsfehler und Lebesgue Konstanten Λ n Definiton Lebesgue Konstante Λ n : Λ n := max x [,] n L i i= Interpolationsfehler: f Π n f [,] CΛ n ω(f, n ) Hierbei bezeichnen L i die Lagrange-Interpolationspolynome, und ω(f, n ) den Stetigkeitsmodul von f. Dieser ist definiert als ω(f, δ) := sup f f(y) x y <δ mit ω(f, n ) L n falls f Lipschitz-stetig hinsichtlich der Konstanten L ist. Polynominterpolation (interpol2c) 7

18 Verhalten der Lebesgue-Konstanten für steigende Polynomordnung Äquidistant vs. Tschebyscheff Lebesgue Konstante äquidistant Tschebyscheff Anzahl Stützstellen.5 Lebesgue Konstante.4.3 Tschebyscheff (2/π)*log(n+)+ 2 3 Anzahl Stützstellen Λ n wächst logarithmisch für Tschebyscheffpunkte: Λ n 2 π ln(n+)+, Λ n wächst exponentiell für äquidistante Punkte: Λ n Ce n/2. Polynominterpolation (interpol5b) 8

19 Konvergenzverhalten für Tschebyscheffpunkte Interpolationsfehler f Π n [,] Fehler (logarithmisch) 5 /(+25x 2 ) x 3/2 x /2 5 5 Anzahl Stützstellen Interpolationsfehler hängt vom Stetigkeitsmodul ω(f, n ) des Interpolanden ab. Polynominterpolation (interpol2d) 9

20 Konvergenzverhalten für Tschebyscheffpunkte Interpolationspolynom für f = / ln x/2.5 Gerade Anzahl Stützstellen ln x/2 Π 5.5 Ungerade Anzahl Stützstellen ln x/2 Π Polynominterpolation (interpol2g) 2

21 Äquidistante Punkte vs. Tschebyscheffpunkte Interpolationsfehler, f = x 3/2 n =, aequidistant..5 5 n = 2, aequidistant 3 2 n = 3, aequidistant x n =, Tschebyscheff 3 2 x 3 2 n = 2, Tschebyscheff x 3 2 n = 3, Tschebyscheff Polynominterpolation (interpol2) 2

22 Weierstrassfunktion für Tschebyscheffpunkte w = k= ak cos(2πb k x) mit a = /2 und b = 3 2 Weierstrassfunktion w π 4 Fehler (logarithmisch) Anzahl Stützstellen Weierstrassfunktion nirgends differenzierbar. Interpolation für pathologische Funktionen nicht konvergent. Polynominterpolation (interpol2e) 22

23 Baryzentrische Lagrange Interpolation Ziel: Weitere Methode vom Aufwand relativ gering, aber numerisch stabil. Berechne das Lagrangesche Interpolationspolynom π n zu der Funktion f : [a,b] R zu den Stützstellen x j, j =,,...,n. Definiere die baryzentrischen Gewichte durch ω j := n k=;k j (x j x k ), j =,,...,n. Dann kann das Lagrangesche Interpolationspolynom durch π n := n j= n j= ω j x x j f(x j ) ω j x x j dargestellt werden. Polynominterpolation (interpol83) 23

24 Berechnung der baryzentrischen Gewichte Baryzentrische Gewichte für äquidistante Stützstellen. Seien [a,b] und x j = a+jh für j =,,...,n gegeben. Dann gilt ω j = ( ) j ( n j ). Baryzentrische Gewichte für Tschebyscheffpunkte. Seien x j = cos((2j+)π/(2n+ 2)) gegeben. Dann gilt der Ausdruck ( ) ω j = ( ) j 2j + sin 2n+2 π. Vorteil der baryzentrischen Interpolation. Die Berechnung der Gewichte benötigt O(n 2 )-Operationen, aber sie hängen von den Werten f(x j ) nicht ab. Wenn die Gewichte bekannt sind, geht die Berechnung des Interpolationspolynoms mit O(n)-Operationen. Polynominterpolation (interpol84) 24

25 Das Schema von Aitken und Neville Das gesuchte Polynom π n soll an einem Punkt x ausgewertet werden. Für k + paarweise verschiedene Indizes {i,...,i k } {,...,n} bezeichne P i...i k P k das Interpolationspolynom durch (x i,f i ),...,(x ik,f ik ). Es gilt: P i = f i, i =,...,n, P i...i k = (x x i )P i...i k (x x ik )P i...i k x ik x i. k = 2 Neville Schema für n = 2: x f = P P x f = P P 2 P 2 f 2 = P 2 x 2 Polynominterpolation (interpol5) 25

26 Das Schema von Aitken und Neville, Beispiel Gegeben seien für n = 2 : i 2 x i 3 f i 3 2 Neville Schema für die Berechnung von π 2 (2) = P 2 (2): x = P (2) = k = 2 P (2) = (2 ) 3 (2 ) = 5 x = P (2) = 3 P 2 (2) = (2 ) 2 (2 3) 3 3 = 5/2 x 2 = 3 P 2 (2) = 2 P 2 (2) = (2 ) 5/2 (2 3) 5 3 = /3 Polynominterpolation (interpol6) 26

27 Das Schema von Aitken und Neville Einfache Erweiterung um zusätzliche Punkte zusätzliches Wertepaar (x 3,f 3 ) := (4,3), berechne π 3 (2) = P 23 (2): k = 2 3 x = P (2) = P (2) = 5 x = P (2) = 3 P 2 (2) = /3 P 2 (2) = 5/2 P 23 (2) = 8/3 x 2 = 3 P 2 (2) = 2 P 23 (2) = 2 P 23 (2) = x 3 = 4 P 3 (2) = 3 Polynominterpolation (interpol7) 27

28 Die Newtonsche Interpolationsformel Idee: Darstellung des gesuchten Polynoms π n als π n = c +c (x x )+c 2 (x x )(x x )+...+c n (x x ) (x x n ) = n i= (x x k ). c i i k= Bestimmung der Koeffizienten c i, i =,...,n durch f = π n (x ) = c f = π n (x ) = c +c (x x ). n f n = π n (x n ) = c +c (x n x )+...+c n (x n x k ) k= Polynominterpolation (interpol8) 28

29 Newtonsche dividierte Differenzen Beobachtung: P i...i k P i...i k P k mit Nullstellen x i,...,x ik, mit f i...i k werde der führende Koeffizient bezeichnet. Es gilt f...i = c i, i =,...,n, und die Rekursionsformel f i...i k = f i...i k f i...i k x ik x i. k = 2 Differenzen Schema für n = 2: x f f x f f 2 f 2 x 2 f 2 Polynominterpolation (interpol9) 29

30 Newtonsche dividierte Differenzen, Beispiel Gegeben seien für n = 2 : i 2 x i 3 f i 3 2 Differenzen Schema: k = 2 x = f = x = f = 3 x 2 = 3 f 2 = 2 f = 3 = 2 f 2 = = /2 f 2 = /2 2 3 = 5/6 Auswertung mit dem Horner Schema: π 3 = f +(x x )[f +(x x )f 2 ] Polynominterpolation (interpol) 3

31 Vergleich Interpolationsfehler, f = /(+25x 2 ) Aitken Neville π 4 Div. Diff. und Horner π 4 Baryzentrische Darstellung π 4.8 f.8 f.8 f Aitken Neville π f x 4 Div. Diff. und Horner π f Baryzentrische Darstellung π f.5.5 Polynominterpolation (interpol72) 3

32 MinMax-Polynom vs. Tschebyscheff vs. äquidistant f = x, x [,2], n = Interpolationspolynom π Fehler π x 3 2 x MinMax Polynom Tschebyscheff äquidistant 2 MinMax Polynom Tschebyscheff äquidistant 2 2 Polynominterpolation (interpol46) 32

33 MinMax-Polynom vs. Tschebyscheff vs. äquidistant f = cos(x 2 ), x [,], n = Interpolationspolynom π 2 cos(x 2 ) MinMax Polynom Tschebyscheff äquidistant Fehler π 2 cos(x 2 ) MinMax Polynom Tschebyscheff äquidistant.5.5 Polynominterpolation (interpol47) 33

34 MinMax-Polynom vs. Tschebyscheff vs. äquidistant f = cos(x 2 ), x [,], n = Interpolationspolynom π 3 cos(x 2 ) MinMax Polynom Tschebyscheff äquidistant Fehler π 3 cos(x 2 ) MinMax Polynom Tschebyscheff äquidistant.5.5 Polynominterpolation (interpol48) 34

Inhalt Kapitel IV: Interpolation

Inhalt Kapitel IV: Interpolation Inhalt Kapitel IV: Interpolation IV Interpolation IV. Polynom-Interpolation IV. Spline-Interpolation Kapitel IV (InhaltIV) Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten

Mehr

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an

Mehr

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden,

Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden, Kapitel 3 Interpolation 31 Einführung Bemerkung 31 Motivation, Aufgabenstellung Gegeben seien eine Funktion f C([a,b]) und x i [a,b], i = 0,n, mit a x 0 < x 1 < < x n b (31) Die Interpolationsaufgabe besteht

Mehr

Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen

Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen Kapitel 4 Interpolation 4 Allgemeines Nähere Funktion/Daten durch einfache Funktionen (eg Polynome) an Brauchbar für: - Integration - Differentiation [zb f(x) sei durch Polynom p(x) approximiert, F(x)

Mehr

Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange.

Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Angewandte Mathematik Ing.-Wiss., HTWdS Dipl.-Math. Dm. Ovrutskiy Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Aufgabe 1 Approximieren Sie cos(x) auf [ /, /] an drei Stützstellen

Mehr

Numerische Integration und Differentiation

Numerische Integration und Differentiation Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische

Mehr

Interpolation. Kapitel 3

Interpolation. Kapitel 3 Kapitel 3 Interpolation Die Interpolation von Funktionen oder Daten ist ein häufig auftretendes Problem sowohl in der Mathematik als auch in vielen Anwendungen Das allgemeine Problem, die sogenannte Dateninterpolation,

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe

Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe 5 Themen Lagrange- Bézier-Kurven saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad n. saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad

Mehr

Interpolationsproblem. Interpolation. Interpolationsproblem. Interpolationsproblem. Gegeben seien eine Funktion. Φ (x; a 1,...

Interpolationsproblem. Interpolation. Interpolationsproblem. Interpolationsproblem. Gegeben seien eine Funktion. Φ (x; a 1,... sproblem Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute for Numerical Simulation Gegeben seien eine Funktion Φ (x; a 1,..., a n ) : R I R, die auf einem Intervall I erklärt

Mehr

NUMERISCHE MATHEMATIK II 1. (Studiengang Mathematik) Prof. Dr. Hans Babovsky. Institut für Mathematik. Technische Universität Ilmenau WS 2001/2002

NUMERISCHE MATHEMATIK II 1. (Studiengang Mathematik) Prof. Dr. Hans Babovsky. Institut für Mathematik. Technische Universität Ilmenau WS 2001/2002 NUMERISCHE MATHEMATIK II 1 (Studiengang Mathematik) Prof Dr Hans Babovsky Institut für Mathematik Technische Universität Ilmenau WS 2001/2002 1 Korrekturen, Kommentare und Verbesserungsvorschläge bitte

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 4. Differentialrechnung Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Konvergenz interpolierender Polynome

Konvergenz interpolierender Polynome Technische Universität Berlin Institut für Mathematik Konvergenz interpolierender Polynome Seminar Differentialgleichungen im Sommersemester 2012 bei Prof. Dr. Etienne Emmrich vorgelegt von David Breiter

Mehr

Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr.

Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Interpolation Nadine Losert Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Nachdem wir in den vorherigen Vorträgen verschiedene

Mehr

Γ = {(x, f(x)) : x R} R 2

Γ = {(x, f(x)) : x R} R 2 Numerik I. Version: 29.5.8 46 4 Interpolation 4.1 Einführung Nehmen wir an, dass eine Funktion f : R R eine physikalische Größe beschreibt und wir ihre Werte an n+1 verschiedenen Punkten x, x 1,...,x n

Mehr

3 Interpolation und Approximation

3 Interpolation und Approximation In dem ersten großen Kapitel beschäftigen wir uns mit der Frage, wie eine Reihe von Daten (z.b. aus physikalischen Messungen, experimentelle Beobachtungen, Börse, etc.) durch eine möglichst einfache Funktion

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 2014 Prof. Dr. Armin Iske Dr. Hanna Peywand Kiani Analysis II für Studierende der Ingenieurwissenschaften Blatt 3, Hausaufgaben Aufgabe 1: a) Es sei

Mehr

3.6 Approximationstheorie

3.6 Approximationstheorie 3.6 Approximationstheorie Bisher haben wir uns im Wesentlichen mit der Interpolation beschäftigt. Die Approximation ist weiter gefasst: wir suchen eine einfache Funktion p P (dabei ist der Funktionenraum

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Numerische Verfahren Übungen und Lösungen, Blatt 1

Numerische Verfahren Übungen und Lösungen, Blatt 1 Technische Universität Hamburg-Harburg Institut für Numerische Simulation, E-0 Dr. Jens-Peter M. Zemke Sommersemester 2008 Numerische Verfahren Übungen und Lösungen, Blatt Aufgabe : (Thema: relativer und

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

Klausur Numerische Methoden II Universität Siegen, Fachbereich Maschinenbau,

Klausur Numerische Methoden II Universität Siegen, Fachbereich Maschinenbau, Universität Siegen, Fachbereich Maschinenbau, 31.7.9 Name: Matrikelnummer: Aufgabe 1 (8 Punkte) Für die Abschätzung der Lebensdauer eines Wälzlagers wird die Bestimmungsgröße K gemäß der obenstehenden

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

[5], [0] v 4 = + λ 3

[5], [0] v 4 = + λ 3 Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

Polynome, Interpolation, Splines und Differentiation

Polynome, Interpolation, Splines und Differentiation Technische Universität Ilmenau Postfach 0 05 65 Fakultät für Mathematik D - 98684 Ilmenau und Naturwissenschaften Germany Institut für Mathematik Tel.: 03677/69 3267 http://www.tu-ilmenau.de/site/math/neundorf.html

Mehr

Approximation. E(N) N. Beachte: Der Wert für N = 32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt.

Approximation. E(N) N. Beachte: Der Wert für N = 32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt. Approximation Ziel: Approximation der Funktion f(x) = x mit Polynomen (global und stückweise) Experiment: Abhängigkeit des Approximationsfehlers E(N) (in der Maximumnorm) von der Anzahl der Freiheitsgrade

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Diplomvorprüfung HÖHERE MATHEMATIK I und II für Maschinenwesen und Chemie-Ingenieurwesen

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Diplomvorprüfung HÖHERE MATHEMATIK I und II für Maschinenwesen und Chemie-Ingenieurwesen ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum 2: Interpolation, Extrapolation, Splines Dr. C. Mordasini Max Planck Institute for Astronomy, Heidelberg Program: 1) Einführung 2) Direkte Methode 3) Dividierte Differenzmethode

Mehr

Repetitorium Mathe 1

Repetitorium Mathe 1 Übungsaufgaben Skript Repetitorium Mathe 1 WS 2014/15 25./26.01. und 31.01./01.02.2015 Inhaltsverzeichnis 1 Bruchrechnung 2 2 Zahlsysteme 2 3 Arithmetisches und geometrisches Mittel 2 4 Wachstum 2 5 Lineare

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Christian Nawroth, Erstellt mit L A TEX 23. Mai 2002 Inhaltsverzeichnis 1 Vollständige Induktion 2 1.1 Das Prinzip der Vollstandigen Induktion................

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Übungen zu Numerisches Programmieren

Übungen zu Numerisches Programmieren Technische Universität München SS 009 Institut für Informatik Prof. Dr. Thomas Huckle Michael Lieb, M. Sc. Dipl.-Tech. Math. Stefanie Schraufstetter Übungen zu Numerisches Programmieren 3. Programmieraufgabe

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Joachim Puls Sigmund Stintzing Numerik für Physiker

Joachim Puls Sigmund Stintzing Numerik für Physiker Ludwigs-Maximilians-Universität München Sektion Physik Joachim Puls Sigmund Stintzing Numerik für Physiker zweite, überarbeitete Ausgabe (2004) Sebastian Bauer, Stephan Maciej, Benjamin Rieff Wintersemester

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

1 Funktionen und ihre Ableitungen

1 Funktionen und ihre Ableitungen 1 Funktionen und ihre Ableitungen 1.1 Funktionen Wir nennen eine Grösse y eine Funktion von x, wenn der Wert von y von demjenigen von x abhängt: Zu jedem x wird in eindeutiger Weise ein Wert von y zugeordnet.

Mehr

Mathematik n 1

Mathematik n 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 0 Mathematik + Übung 6 Besprechung der Aufgaben ) - ) des Übungsblatts am jeweils ersten Übungstermin zwischen Montag, 7..0 und Donnerstag,

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Klausur zum Fach Mathematik 1 Teil 1

Klausur zum Fach Mathematik 1 Teil 1 (Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 06.07.202 Klausur zum Fach Mathematik Teil Bearbeitungszeit: 90 Minuten Hilfsmittel: ein (beidseitig)

Mehr

Polynominterpolation mit Matlab.

Polynominterpolation mit Matlab. Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) +...

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Weitere einfache Eigenschaften elementarer Funktionen

Weitere einfache Eigenschaften elementarer Funktionen Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x +... + a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x +...

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

Beispiel zu Umkehrfunktionen des Sinus

Beispiel zu Umkehrfunktionen des Sinus Beispiel zu Umkehrfunktionen des Sinus Die Funktion f : [ π, π ] [, ], x sin(x) besitzt die Umkehrfunktion f Arcsin (Hauptzweig des Arcussinus). Wir betrachten die beiden Funktionen g : [ 3 π, 5 π] [,

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 6 Februar 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Die Fläche T im R 3 sei gegeben als T : {x,y,z

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 2014 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske

Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 2014 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske Fchbereich Mthemtik der Universität Hmburg Dr. H. P. Kini Vorlesungsvertretung Anlysis II, H. P. Kini, SoSe 4 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske Qudrtur von f(x) uf [, 3] Mittelpunksregel,

Mehr

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts Integral- und Differentialrechnungen für USW Lösungen der Beispiele des. Übungsblatts. Flächeninhalt unter einer Kurve: (a) Das bestimmte Integral von y(x) x zwischen x und x ist x dx x + + x ( ) x / (b)

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Regulär variierende Funktionen

Regulär variierende Funktionen KAPITEL 4 Regulär variierende Funktionen Unser nächstes Ziel ist es, die Max-Anziehungsbereiche der Extremwertverteilungen zu beschreiben. Dies wird im nächsten Kapitel geschehen. Wir haben bereits gesehen,

Mehr

Klausur zur Vordiplom-Prüfung

Klausur zur Vordiplom-Prüfung Technische Universität Hamburg-Harburg SS 25 Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren 22. Juli 25 Sie haben 9 Minuten Zeit zum Bearbeiten der

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Klausur zur Vordiplom-Prüfung

Klausur zur Vordiplom-Prüfung Technische Universität Hamburg-Harburg WS 7/8 Institut für Numerische Simulation Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren 7. März 8 Sie haben 9 Minuten Zeit zum Bearbeiten

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Höhere Mathematik I/II

Höhere Mathematik I/II Markus Stroppel Höhere Mathematik I/II Z. Zusätze. Z.. Skalarprodukte in Funktionenräumen. Wir wollen an einigen Beispielen zeigen, dass es nützlich sein kann, Skalarprodukte auch in ganz allgemeinen (reellen)

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr