Weitere einfache Eigenschaften elementarer Funktionen
|
|
|
- Benedikt Wolf
- vor 9 Jahren
- Abrufe
Transkript
1 Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x a 1 n 1 n 1 x + a n) Verhalten von p(x) für x gegen ± Offenbar gilt: Für gerades n ist lim p(x) =, falls a n > 0, x ± lim p(x) =, falls a n < 0. x ± 1
2 Für ungerades n ist lim p(x) = ±, falls a n > 0, x ± lim p(x) =, falls a n < 0. x ± Ergänzung über Nullstellen Da Polynome stetige Funktionen sind, gilt also: Jedes Polynom ungeraden Grades hat mindestens eine Nullstelle. Der Fundamentalsatz der Algebra besagt: Jedes Polynom vom Grad n hat genau n Nullstellen, wenn man komplexe Nullstellen berücksichtigt und jede Nullstelle nach ihrer algebraischen Vielfachheit zählt. Aussage über R: Jedes Polynom vom Grad n hat höchstens n Nullstellen. 2
3 6.2 Exponentialfunktionen Potenzen mit beliebigen Exponenten Bei f(x) = x n mit n N ist x n eine Abkürzung für x x... x mit n gleichen Faktoren x. Wir haben bereits geschrieben: a x. Was bedeutet das für x R? Hinweis: Jetzt kommt eine Erzählung, dann eine Zusammenfassung und Rechenregeln. Für x N ist a x = a a a... a (a R) mit x gleichen Faktoren a R. Für x = 0 ist a 0 = 1 (a R \ {0}). Warnung: 0 0 wird manchmal verschieden festgelegt. Woran liegt das? Es gilt: 3
4 aber lim x 0 0x = 0, lim x 0 x0 = 1. Das ist kein Widerspruch in der Mathematik, aber ein Anlass zu verstärkter Vorsicht. Für x N, also x = 1, 2, 3,... ist a x = 1 a x a R \ {0}. Für 1 x N, also x = 1 2, 1 3, 1 4,... definiert man a x = a 1 n = n a { a 0 falls n gerade a R falls n ungerade Dabei ist n a diejenige reelle Zahl w, für die gilt: w n = a. Falls n gerade ist, wählt man w 0. Es gilt also: 4
5 Für ungerade n : w = n a w n = a, Für gerade n und a 0 : w = n a w 0, w n = a. Für Unsichere: Wenn man Wurzeln aus positiven Zahlen zieht, braucht man die Fallunterscheidung nicht. Die Wurzel ist dann immer positiv. Für x Q, also x = p q man zuerst den Bruch p q mit p, q Z, q 0, kürzt und definiert dann a p q = (a 1 q) p { a 0 falls q gerade a R falls q ungerade Für x R \ Q definiert man: a x = lim t x,t Q at a 0. (Bei den t, die gegen x gehen, kommen immer wieder t mit geradem Nenner vor!) Zusammenfassung: Damit haben wir a x jeweils für geeignete a definiert: Für x N, x = 0, x N, N, x Q, x R. 1 x 5
6 6.2.2 Rechenregeln für Potenzen (x y) z = x z y z ( x y )z = xz y z x y x z = x y+z x y = 1 x y x y x z = xy z Diese Regeln gelten x, y, z R, falls alle in der Gleichung auftretenden Ausdrücke eindeutig definiert sind Exponentialfunktionen Für jedes a > 0 ist damit definiert die Exponentialfunktion mit der Basis a. f : R R, f(x) = a x Für a = 1 ist diese Funktion uninteressant. 6
7 Oft schließt man daher a = 1 aus. Die Eulersche Zahl e 2, als Basis liefert die Exponentialfunktion f : R R, f(x) = e x (ohne Angabe einer Basis!) oder die e-funktion. Wir haben gelernt d dx ex = e x. Die Steigung, also das Wachstum der e-funktion ist also x R gleich e x, und für x = 0 ist e 0 = 1. Skizze! Anwendungen von Exponentialfunktionen: Wachstum Die Exponentialfunktion ist daher geeignet, ein Wachstum einer Größe zu beschreiben, das proportional ist zur bereits erreichten Größe. Beispiele: Wachstum einer Bevölkerung, 7
8 wenn keine äußeren Einflüsse oder strukturellen Verschiebungen entgegenwirken. Stichwort: Alterspyramide Wachstum einer Bakterienkultur bei guter Nährstoffversorgung und in einem genügend großen Behälter. Teichrosen: Teichrose aus dem Urlaub, tägliche Verdoppelung nach 49 Tagen ist der Gartenteich halb bedeckt. Wann ist der Teich ganz zugewachsen? Wachstumsverhalten der Exponentialfunktionen Jede Exponentialfunktion f(x) = a x mit a > 1 wächst für große x schneller als jedes Polynom p(x), das heißt: lim x p(x) a x = 0. Exponentielles Wachstum kann nicht längerfristig andauern! 8
9 6.2.6 Anwendungen der Exponentialfunktionen: Abnahme Es gilt: d dx e x = e x. Die Steigung, also hier die Abnahme der Funktion x e x ist also x R gleich e x. Die Exponentialfunktion ist daher geeignet, eine Abnahme einer Größe zu beschreiben, die proportional ist zur bereits erreichten Größe. Beispiele: Radioaktiver Zerfall: Übrigbleibende Masse radioaktiven Materials Luftdruck abhängig von der Höhe 6.3 Logarithmen Logarithmus als Umkehrung einer Exponentialfunktion Ist a > 0, a 1, so ist die Exponentialfunktion mit der Bais a: R R +, x a x 9
10 umkehrbar. Die Umkehrfunktion heißt Logarithmus zur Basis a, in Zeichen: log a x oder a log x. Es gilt also für a > 0, a 1: y = log a x x = a y. Der Logarithmus ist die Hochzahl (der Exponent)! Was ist log a a? Was ist log a 1? Man schreibt ln x := log e x. Also ist ln die Umkehrung der e-funktion Rechenregeln für Logarithmen Sei wieder a > 0, a 1. Wir schreiben a u = x, a v = y. Dann gilt: x, y > 0 und a u a v = a u+v log a (x y) = log a x + log a y, 10
11 a u a v = au v log a ( x y ) = log a x log a y, (a u ) y = a u y log a (x y ) = y log a x, und damit auch log a n x = 1 n log a x Ehemalige Anwendungen der Logarithmen Früher führte man Multiplikationen auf Additionen, Divisionen auf Subtraktionen und das Wurzelziehen auf Divisionen zurück. Dazu brauchte man Logarithmentafeln. Der Rechenschieber funktioniert, weil auf ihm logarithmische Maßstäbe angetragen sind Wachstumsverhalten der Logarithmen Ist a > 1, so wächst der Logarithmus log a monoton, aber es gilt für jede Potenz x p mit p > 0: lim x log a x x p = 0. 11
12 6.3.5 Wichtige Anwendung der Logarithmen Geg.: f(x) = a kx mit unbekanntem a(> 0!) und k. Man kennt für einen Wert x 0 ( 0!) den Funktionswert f(x 0 ). Dann ist also Was ist a? ln(f(x 0 )) = kx 0 ln a, k = ln(f(x 0)) (x 0 ) ln a. Ist a = e b, so ist also ist a nicht bestimmt. a kx = (e b ) kx = e bkx, Man wählt zum Beispiel a = e und erhält für f(x) = e kx : k = ln(f(x 0)) x 0. Exponentielles Wachstum lässt sich immer mit der e-funktion beschreiben! 12
13 (Gegebenenfalls muss man den Koeffizienen im Exponenten ändern.) Den Koeffizienten im Exponenten bestimmt man durch Logarithmieren Beispiel Eine Bakterienkultur verdoppelt bei guten Bedingungen ihre Masse alle zweieinhalb Stunden. Es werden 3 Gramm in einen Bioreaktor eingebracht. Wann enthält der Bioreaktor 2 Kilogramm der Bakterien? Exponentielles Wachstum: m(t) = m 0 e kt Dabei ist m(t) die Masse zum Zeitpunkt t, m 0 die Masse zum Zeitpunkt t = 0, k eine zu bestimmende Konstante, auch Wachstumskonstante genannt. Hier m 0 = 3 g. 2m 0 = m 0 e k 2,5h 2 = e k 2,5h 13
14 ln 2 = k 2, 5h k = ln 2 2, 5h Gesucht: t, so dass gilt: t ln 2 2kg = 3g e 2,5h t ln = 3 e 2,5h t = ln ln 2 2,5h ln = ln t ln 2 = e 2,5h = t ln 2 2, 5h 2, 5h ln 2 23, 452h Nach etwa Bakterien. Stunden enthält der Bioreaktor 2 kg 14
Mathematik für Wirtschaftswissenschaftler
Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel
Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.
1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:
Zahlen und elementares Rechnen
und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3
FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.
FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f
Wirtschaftsmathematik: Mathematische Grundlagen
Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.
Funktionen. Mathematik-Repetitorium
Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2
x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.
SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten
Potenzen - Wurzeln - Logarithmen
Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl
3 Zahlen und Arithmetik
In diesem Kapitel werden Zahlen und einzelne Elemente aus dem Bereich der Arithmetik rekapituliert. Insbesondere werden die reellen Zahlen eingeführt und einige Rechenregeln wie Potenzrechnung und Logarithmieren
Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche
Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 Inhalt 1 Exponential- und Logarithmusfunktion Potenzen
lim Der Zwischenwertsatz besagt folgendes:
2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert
A5 Exponentialfunktion und Logarithmusfunktion
A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart
Gleichungen und Ungleichungen
Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung
Gleichungen und Ungleichungen
Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.
Gleichungen und Ungleichungen
Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.
Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014
Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen
Exponential und Logarithmusfunktion. Wachstum und Zerfall
Wachstum und Zerfall Erklärung exponentielles Wachstum (Zerfall): eine Anfangsgröße W 0 vervielfacht (verringert) sich in gleichen Zeitabschnitten mit einem gleichbleibenden Wachstumsfaktor q, der größer
Vorlesung. Mathematik 1. Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER / 30
Vorlesung Mathematik 1 Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER 2016 1 / 30 Vorlesung Mathematik 1 Prof. Dr. M Herty Diese Vorlesung: Mengen Reelle Zahlen Elementare Funktionen Anwendungsbeispiel:
Potenz- & Exponentialfunktionen
Potenz- & Exponentialfunktionen 4. Kapitel aus meinem ANALYSIS - Lehrgang MNprofil - MIttelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 24. Oktober 2011 Überblick über
Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION
Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Fassung vom 3 Dezember 2005 Mathematik für Humanbiologen und Biologen 39 3 Exponentialfunktion 3 Exponentialfunktion Wir betrachten als einführendes Beispiel
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen
Exponentielles Wachstum und Logarithmus
Eigenschaften der Exponentialfunktionen Die Funktion nennt man Exponentialfunktion mit der Basis a. Ist neben der Potenz noch ein Faktor im Funktionsterm vorhanden, spricht man von einer allgemeinen Exponentialfunktion:
Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion
1/22 Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 2/22 Inhalt Exponential- und Logarithmusfunktion
4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen
4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/
Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.
Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2017/18 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Mengen
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2018/19 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Mengen
Potenzen, Wurzeln, Logarithmen
KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................
Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst
Potenzen mit ganzzahligen Exponenten Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Man schreibt a n = b Dabei heißt a die Basis,
Volumen und Oberflächeninhalt der Kugel 10_01
Volumen und Oberflächeninhalt der Kugel 10_01 Alle Punkte (des dreidimensionalen Raums), die von einem Punkt M die gleiche Entfernung r besitzen, liegen auf einer Kugel mit Mittelpunkt M und Radiuslänge
Polynomiale Gleichungen
Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben
Grundkurs Mathematik II
Prof. Dr. H. Brenner Osnabrück SS 2017 Grundkurs Mathematik II Vorlesung 53 Die rationalen Exponentialfunktionen Zu einer positiven Zahl b K aus einem angeordenten Körper K haben wir in der 27. Vorlesung
= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen.
Gleichungen Eine Gleichung ist eine Aussage, in der die Gleichheit zweier Terme durch Mathematische Symbol ausgedrückt wird. Dies wird durch das Gleichheitssymbol = symbolisiert G : = T 2 Definitionsmenge
Nichtlineare Funktionen einer Variablen
Kap. 3 Nichtlineare Funktionen einer Variablen Bisher: f :R n R m X 1 X n Y 1 Y m =A X 1 X n Einfache Zuordnung (Matrix mit konstanten Koeffizienten) Jetzt: f :R R X Y =f(x) f darf komplizierte Form haben
2 Polynome und rationale Funktionen
Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine
Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen
2. Vorlesung im Brückenkurs Mathematik 2018 Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen Dr. Markus Herrich Markus Herrich Reelle Zahlen, Gleichungen und Ungleichungen 1 Die Menge der
(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz
(3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
49 Mathematik für Biologen, Biotechnologen und Biochemiker
49 Mathematik für Biologen, Biotechnologen und Biochemiker 43 Momentane Wachstumsrate, Zuwachsrate pro Zeiteinheit und die Verdoppelungszeit Jede Exponentialfunktion f(t) = c exp(t) ist durch die beiden
{, wenn n gerade ist,, wenn n ungerade ist.
11 GRENZWERTE VON FUNKTIONEN UND STETIGKEIT 60 Mit anderen Worten, es ist lim f(x) = b lim f (, a)(x) = b, x a x a wobei f (, a) die Einschränkung von f auf (, a) ist. Entsprechendes gilt für lim x a.
Exponential- u. Logarithmusfunktionen. Funktionen. Exponentialfunktion u. Logarithmusfunktionen. Los geht s Klick auf mich!
Exponential- u. Logarithmusfunktionen Los geht s Klick auf mich! Melanie Gräbner Inhalt Exponentialfunktion Euler sche Zahl Formel für Wachstum/Zerfallsfunktionen Logarithmen Logarithmusfunktionen Exponentialgleichung
Grundlagen komplexe Zahlen. natürliche Zahlen
Grundlagen komplexe Zahlen Die Zahlenbereichserweiterungen von den natürlichen Zahlen hin zu den reellen Zahlen waren dadurch motiviert, bestimmte Rechenoperationen uneingeschränkt ausführen zu können.
α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel
Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,
2. Funktionen einer Variablen
. Funktionen einer Variablen Literatur: [SH, Kapitel 4].1. Definitionen.. Typen von Funktionen..1. Lineare Funktionen... Quadratische Funktionen..3. Polynome..4. Potenzfunktionen..5. Exponentialfunktionen..6.
Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2
11 Spezielle Funktionen und ihre Eigenschaften
78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens Fläche des Kreissektors b = α α 2rπ A = 360 360 πr2 Das Bogenmaß
Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können:
Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet ein negativer Eponent? Wie kann man den Grad einer Wurzel noch darstellen? Wie werden Potenzen potenziert? Was bewirkt
10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =
2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist
3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log
Logarithmen 1. 5 3 = 125 ist gleichbedeutend mit 5 log(125) = 3. Formen Sie nach diesem Muster um. a) 2 5 = 32 b) 10 4 = 10 000 c) 7 0 = 1 d) 3 2 = 1/9 e) 10 3 = 0.001 f) 5 1/2 = 5 g) 6 log(216) = 3 h)
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist
Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.
(4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist
2. Mathematische Grundlagen
2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,
Die Umkehrung des Potenzierens ist das Logarithmieren.
Die Umkehrung des Potenzierens ist das Logarithmieren. Gilt a x = b, a,b > 0, a 1, so heißt x der Logarithmus von b zur Basis a. Bezeichnung: x = log a (b). Manchmal lassen wir die Angabe der Basis auch
Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Exponentialfunktionen und Logarithmen Inhalt:. Zinsrechnung. Exponential- und Logaritmusfunktionen
WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II
Die WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II Polynome nur zu addieren, multiplizieren oder dividieren ist auf die Dauer langweilig. Polynome können mehr. Zum Beispiel ist es manchmal gar
Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2 Inhaltsverzeichnis 1 Translationen 2 2 Skalierungen 4 3 Die
MATHEMATIK G9 LÖSEN VON GLEICHUNGEN
MATHEMATIK G9 LÖSEN VON GLEICHUNGEN Viele mathematische (und naturwissenschaftliche) Probleme lassen sich dadurch lösen, dass man eine Gleichung (oder auch mehrere) aufstellt und diese dann löst. Wir werden
Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016
Vorlesung Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Inhalt Polynome, Algebraische Strukturen Vektorrechnung Lineare Algebra Elementare
Sätze über ganzrationale Funktionen
Sätze über ganzrationale Funktionen 1. Sind alle Koeffizienten a i ganzzahlig und ist x 0 eine ganzzahlige Nullstelle, so ist x 0 ein Teiler von a 0. 2. Haben alle Koeffizienten dasselbe Vorzeichen, so
Faktorisierung von Polynomen
Faktorisierung von Polynomen Ein Polynom p vom Grad n besitzt, einschließlich Vielfachheiten, genau n komplexe Nullstellen z k und lässt sich somit als Produkt der entsprechenden Linearfaktoren schreiben:
1 Lineare Gleichungssysteme und Matrizen
1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe
Vorkurs: Diskrete Mathematik Teil I. 27. September 2010
Vorkurs: Diskrete Mathematik Teil I 27. September 2010 Steven Köhler [email protected] mathe.stevenkoehler.de 2 Inhaltsverzeichnis Teil I Mengen Zahlenbereiche Bruchrechnung Wurzeln, Potenzen & Logarithmen
2.4 Exponential - und Logarithmus - Funktionen
25.05.20 2.4 Eponential - und Logarithmus - Funktionen Mit Hilfe der Potenz a t definiert man eine weitere Funktionsart, indem man statt der Basis den Eponenten durch die Variable ersetzt: Für a ε R >
Einiges über komplexe Zahlen
Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht
Abitur 2010 Mathematik GK Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der
VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018
Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}
1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1.
Maturavorbereitung GF Mathematik Kurzaufgaben 1 Mengenlehre Aufgabe 1.1 Gegeben sind die Mengen A = {1, 2, 3} und B = {2, 3, 6, 8}. Bestimme A B. Aufgabe 1.2 Gegeben sind die Mengen A = {1, 2, 3} und B
V. Claus, Juli 2005 Einführung in die Informatik II 45
Um die Größenordnung einer reellwertigen oder ganzzahligen Funktion zu beschreiben, verwenden wir die so genannten Landau-Symbole (nach dem deutschen Mathematiker Edmund Landau, 1877-1938). Hierbei werden
Ganzrationale Funktionen
Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade
gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind
Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl
Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form
3. Polynome 3.1 Definition und Grundlagen Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0,
Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49
Kapitel 6 Funktionen Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch die Wertemenge Teilmengen
Exponentialfunktionen, Eulersche Zahl, Logarithmen
Exponentialfunktionen, Eulersche Zahl, Logarithmen Jörn Loviscach Versionsstand: 16. November 2009, 19:01 1 Exponentialfunktionen Eine Funktion der Art x 7 3 x heißt Exponentialfunktion [exponential function].
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 4 Injektive und surjektive Abbildungen Definition 4.1. Es seien L und M Mengen und es sei eine Abbildung. Dann heißt F F
Abbildung 14: Winkel im Bogenmaß
Mathematik für Naturwissenschaftler I. (7) Trigonometrische Funktionen (in R): Trigonometrische Funktionen wie sin x und cos x stehen üblicherweise in Zusammenhang mit Winkeln. Während im Alltag Winkel
Potenzen, Wurzeln & Logarithmen
Potenzen, Wurzeln & Logarithmen 4. Kapitel aus meinem ALGEBRA - Lehrgang Sprachprofil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 22. November 2011 Überblick über die bisherigen
Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen
Inhaltsübersicht Kapitel 4: Die Macht des Imaginären: Komplexe Zahlen Definition und erste Eigenschaften komplexer Zahlen Die Polardarstellung komplexer Zahlen Polynome im Komplexen Exponentialfunktion
Vortragsübung am 25. April 2014
Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende
2 Rechentechniken. 2.1 Potenzen und Wurzeln. Übersicht
2 Rechentechniken Übersicht 2.1 Potenzen und Wurzeln.............................................. 7 2.2 Lösen linearer Gleichungssysteme..................................... 8 2.3 Polynome.........................................................
