Algebra für Informationssystemtechniker
|
|
|
- Cathrin Bachmeier
- vor 6 Jahren
- Abrufe
Transkript
1 Algebra für Informationssystemtechniker Prof. Dr. Fachrichtung Mathematik Institut für Algebra baumann
2 9. Vorlesung Halbgruppe Monoid Gruppe (2-stellige) Operationen assoziativ, kommutativ neutrale Elemente inverse Elemente Kürzungsregeln Lösbarkeit von Gleichungen Methode: Folgerungen aus einem Axiomensystem herleiten Auf Beispiele, die das Axiomensystem erfüllen, treffen auch alle Folgerungen zu.
3 Halbgruppen Es sei H eine nichtleere Menge und eine assoziative Operation auf H, d.h. es gilt: a, b, c H : a (b c) = (a b) c Dann nennt man (H, ) eine Halbgruppe. H heißt Ordnung der Halbgruppe (H, ). Eine Halbgruppe (H, ) wird kommutative Halbgruppe genannt, wenn gilt: a, b H : a b = b a
4 Monoide e H heißt neutrales Element in einer Halbgruppe (H, ), wenn gilt: a H : e a = a e = a Es sei (H, ) eine Halbgruppe mit einem neutralen Element. Dann nennt man (H, ) ein Monoid. Eine Halbgruppe enthält höchstens ein neutrales Element. Ein Monoid enthält genau ein neutrales Element.
5 Beispiele (Z, ) ist keine Halbgruppe. (2Z, ) ist eine kommutative Halbgruppe. (Z, ) ist ein kommutatives Monoid mit e = 1. (N, +) ist eine kommutatives Monoid mit e = 0. (R n n, ) ist ein Monoid mit e = E n. (Z n, +) ist ein kommutatives Monoid mit e = 0. (Z n, ) ist ein kommutatives Monoid mit e = 1. Freies Monoid über dem Alphabet Σ, ε bezeichnet das leere Wort: (Σ, ) ist ein Monoid mit e = ε.
6 Unterhalbgruppen Es sei (H, ) eine Halbgruppe und U H. U heißt Unterhalbgruppe von H, wenn U mit der Verknüpfung von H eine Halbgruppe bildet, d.h. wenn gilt: a, b U a b U H ist eine (triviale) Unterhalbgruppe von (H, ). Der Durchschnitt von Unterhalbgruppen von (H, ) ist eine Unterhalbgruppe von (H, ) oder.
7 Invertierbare Elemente in Halbgruppen Es sei (H, ) ein Monoid mit dem neutralen Element e. Ein Element a H heißt invertierbar, wenn ein b H mit existiert. a b = b a = e Für jedes a H existiert höchstens ein Element b H mit a b = b a = e. Ist a H invertierbar, dann existiert genau ein Element b H mit a b = b a = e. Dieses Element b wird auch mit a 1 bezeichnet und das Inverse von a genannt.
8 Gruppen Es sei (H, ) ein Monoid mit dem neutralen Element e. H bezeichnet die Menge der invertierbaren Elemente von H. Es gilt: (1) e H und e 1 = e (2) a H a 1 H und (a 1 ) 1 = a (3) a, b H a b H und (a b) 1 = b 1 a 1 Für jedes Monoid (H, ) ist die Menge H eine Unterhalbgruppe von (H, ). (Diese Unterhalbgruppe ist sogar eine Gruppe.) Ein Monoid (H, ) heißt Gruppe, wenn H = H gilt. Beispiele für abelsche Gruppen: (Z, +), (R, +), (C, +), (R \ {0}, ), (C \ {0}, ), (Z n, +), (Z p \ {0}, ) (p prim)
9 Gruppen Eine Gruppe ist eine Algebra (G;, 1, e) vom Typ (2, 1, 0) mit: (1) a (b c) = (a b) c für alle a, b, c G (2) g e = g = e g für alle g G (3) g g 1 = g 1 g = e für alle g G G ist die Trägermenge der Gruppe., 1, e sind die Symbole für die fundamentalen Operationen. Der Typ (2, 1, 0) gibt an, dass eine 2-stellige Operation, 1 eine 1-stellige und e eine 0-stellige Operation bezeichnet. Man nennt e das neutrale Element der Gruppe und g 1 das zu g inverse Element.
10 Untergruppen Eine Teilmenge U einer Gruppe (G;, 1, e), die das neutrale Element enthält (d.h. e U) und die gegen die Operationen und 1 abgeschlossen ist (d.h. a, b G a b G für alle a, b G und a G a 1 G für alle a G) nennt man eine Untergruppe der Gruppe (G;, 1, e). Schreibweise: U G Jede Untergruppe ist mit den eingeschränkten Operationen selbst eine Gruppe. Jede Gruppe (G;, 1, e) mit G > 1 hat mindestens zwei Untergruppen: U = {e} und U = G Diese Untergruppen nennt man auch triviale Untergruppen.
11 Eigenschaften von Gruppen In jeder Gruppe (G, ) gelten die Kürzungsregeln: a, x 1, x 2 G : a x 1 = a x 2 x 1 = x 2 a, y 1, y 2 G : y 1 a = y 2 a y 1 = y 2 In jeder Gruppe (G, ) sind alle Gleichungen a x = b und y a = b mit a, b G eindeutig lösbar. Jede endliche Halbgruppe, in der die Kürzungsregeln gelten, ist eine Gruppe.
Klassische Algebra. Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n a 1 x + a 0 = 0 (a 0,...
Klassische Algebra Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n 1 + + a 1 x + a 0 = 0 (a 0,..., a n 1 Q) Formeln für n {1, 2, 3, 4} sind bekannt. Abel, Galois: Für n N mit
Mathematische Methoden für Informatiker
Prof. Dr. www.math.tu-dresden.de/ baumann 13.07.2018 Klassische Algebra Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n 1 + + a 1 x + a 0 = 0 (a 0,..., a n 1 Q) Formeln für n
Allgemeine Algebren. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden
Allgemeine Algebren Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Operationen Eine Operation auf einer Menge A ist eine Abbildung f : A n A. A n ist dabei
3 Allgemeine Algebren
Grundlagen der Mathematik für Informatiker 1 3 Allgemeine Algebren Definition 3.1 Für eine Menge A nennen wir eine n-stellige Funktion ω : A n A eine n-äre algebraische Operation. Bemerkung zum Fall n
Operationen. auch durch. ausgedrückt. ist die Trägermenge der Operation. Mathematik I für Informatiker Algebren p.1/21
Operationen Eine Operation auf einer Menge ist eine Abbildung ist dabei die Menge aller -Tupel mit Einträgen aus. Man nennt auch durch die Stelligkeit der Operation ; dies wird ausgedrückt. Die Menge ist
15. Gruppen, Ringe und Körper
Chr.Nelius: Lineare Algebra II (SS2005) 1 15. Gruppen, Ringe und Körper A) Mengen mit Verknüpfungen (15.1) DEF: Eine Verknüpfung (oder Rechenoperation) auf einer nichtleeren Menge M ordnet je zwei Elementen
Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz
Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige
Vortragsskript Einführung in die Algebra
Vortragsskript Einführung in die Algebra TeamTUM - Das Wettbewerbsteam Mathematik Technische Universität München Fakultät für Mathematik Vortragender: Vu Phan Thanh Datum: 26.11.12 iii Inhaltsverzeichnis
Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Algebraische Strukturen
Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Algebraische Strukturen Verknüpfungen Satz x, y, z N x + (y + z) = (x + y) + z x + y = y + x x (y z) = (x y) z 1
SS 2017 Torsten Schreiber
14 Wenn man mindestens einen Operator mit einer definierten Menge in Verbindung setzt, dann fällt es unter dem Bereich der Strukturen. Bei der kleinsten möglichen Struktur handelt es sich um eine. Eine
Elemente der Algebra
Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)
2.1 Eigenschaften und Beispiele von Gruppen Untergruppen Homomorphismen... 25
2 Gruppen Übersicht 2.1 Eigenschaften und Beispiele von Gruppen............................. 17 2.2 Untergruppen...................................................... 21 2.3 Homomorphismen..................................................
Vorlesung 6: Gruppen und Homomorphismen
Vorlesung 6: Gruppen und Homomorphismen Gabriele Link 11.11.2013 Gabriele Link Vorlesung 6: Gruppen und Homomorphismen 1 Erinnerung: Verknüpfung Gegeben sei eine Menge M. Eine (innere) Verknüpfung auf
1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe
1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12
1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe
1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12
Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge)
15 Übung: Teilmengen seien Mengen. Zu zeigen ist: wenn Beweis: dann auch Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) für alle
Tutorium: Diskrete Mathematik
Tutorium: Diskrete Mathematik Steven Köhler [email protected] mathe.stevenkoehler.de 2 I Eine algebraische Struktur ist ein Paar A; (f i ) ; bestehend aus einer nichtleeren Menge A, der TrÄagermenge
2. Teil: Diskrete Strukturen
2. Teil: Diskrete Strukturen Kenntnis der Zahlenbereiche N, Z, Q, R, C setzen wir voraus. Axiomatische Einführung von N über Peano-Axiome. Z aus N leicht abzuleiten. Wie wird Q definiert? R ist der erste
Mathematische Methoden für Informatiker
Prof. Dr. www.math.tu-dresden.de/ baumann 24.10.2017 24. Vorlesung Kongruenzrelationen in Gruppen Faktorgruppe nach einer Kongruenzrelation R Normalteiler in Gruppen Faktorgruppe nach einem Normalteiler
Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)
Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar
5. Gruppen, Ringe, Körper
5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus
Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen
Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)
1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,
Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel
Thema: Die Einheitengruppe des Restklassenrings /n
RWTH Aachen Lehrstuhl D für Mathematik Betreuer: Prof. U. Schoenwaelder Hausaufsatz zur Vorlesung Algebra I im WS 99/00 Thema: Die Einheitengruppe des Restklassenrings /n Vorgelegt von Sascha Haarkötter
Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,
Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge
2.1. GRUPPEN Definition (Gruppoide, Halbgruppen, Monoide, Gruppen)
21 GRUPPEN 37 21 Gruppen Wir führen jetzt eine Hierarchie von algebraischen Strukturen ein, die für die weiteren Überlegungen sehr wichtig sind Dabei betrachten wir zunächst diejenigen, die aus einer Menge
Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung
Vorlesung Algebra I Christian Lehn Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen 5 1.1. Vorkenntnisse Gruppen 1. Einleitung Definition. Es sei G eine Menge. Eine Verknüpfung auf G ist eine Abbildung :
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Skriptum EINFÜHRUNG IN DIE ALGEBRA
Skriptum EINFÜHRUNG IN DIE ALGEBRA 1 Günter Lettl SS 2016 1. Algebraische Grundbegriffe 1.1 Verknüpfungen Definition 1. Es sei M eine nicht leere Menge. a) Eine Verknüpfung (oder (binäre) Operation) auf
3. Algebra und Begriffsverbände. Algebraische Strukturen
3. Algebra und Begriffsverbände Algebraische Strukturen Def.: Eine n-stellige (n-äre) [algebraische] Operation [auch: Verknüpfung] auf einer Menge A ist eine Abbildung f : A n A. Der Spezialfall n = 0:
Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar).
Algebra 1 Mengen 1.1 Operationen A Anzahl der Elemente von A (Mächtigkeit, Betrag, Kardinalität) (A) Potenzmenge von X ( (A) = 2 A ) A B wenn jedes Element von A auch Element von B ist. A = B (A B und
Lineare Algebra 6. Übungsblatt
Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der
4: Algebraische Strukturen / Gruppen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,
Axiomatische Beschreibung der ganzen Zahlen
Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz [email protected] 0055282 Claudia Hemmelmeir JKU Linz [email protected] 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen
Mathematik für Physiker, Informatiker und Ingenieure
Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG [email protected] http://www2.mathematik.uni-wuerzburg.de
Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe
2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.12.2013 Alexander Lytchak 1 / 15 Motivation Für das Verständis affiner Teilräume eines Vektorraums sind Translationen
Halbgruppen, Gruppen, Ringe
Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die
Vorlesung Diskrete Strukturen Gruppe und Ring
Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in
Grundlagen der theoretischen Informatik
Grundlagen der theoretischen Informatik Kurt Sieber Fakultät IV, Department ETI Universität Siegen SS 2013 Vorlesung vom 09.04.2013 Inhalt der Vorlesung Teil I: Automaten und formale Sprachen (Kurt Sieber)
4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper
4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element
Tutorium: Diskrete Mathematik. Vorbereitung der ersten Abschlussklausur Teil 1
Tutorium: Diskrete Mathematik Vorbereitung der ersten Abschlussklausur Teil 1 Steven Köhler [email protected] mathe.stevenkoehler.de 2 3 Algebraische Strukturen I Eine algebraische Struktur ist ein
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 2 Beispiele für Gruppen Aus der Vorlesung Mathematik I sind schon viele kommutative Gruppen bekannt. Zunächst gibt es die additiven
1 Algebraische Grundbegriffe
1 Algebraische Grundbegriffe Eine Algebra besteht aus einer Trägermenge S sowie eineroder mehreren Operationen. Eine Operation ist dabei eine k-stellige Abbildung, d.h. es gilt für eine Operation f f S
Mathematik für Informatiker I,
Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für
C: Algebraische Strukturen
C: Algebraische Strukturen Algebra: Rechnen. Menge mit Verknüpfungen: (N 0, +), (R, +, ), (P(X),, ), (R n n, +, ) Informatik: Boolsche Algebren Relationenalgebra (Datenbanken) Computeralgebra 29 Gruppen
Teilbarkeitslehre und Restklassenarithmetik
Vorlesung Teilbarkeitslehre und Restklassenarithmetik.1 Gruppentheorie WiewirinVorlesung2gesehenhaben,hatdieMengeZmitderAdditiongewisse Eigenschaften. Wir fassen nun bestimmte Eigenschaften zusammen und
01. Gruppen, Ringe, Körper
01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert
Gruppe. Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist:
Gruppe Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist: : G G G, d.h. jedem Elementepaar (a, b): a, b G ist ein Element a b G zugeordnet. Gruppe 1-1 Gruppe
1 Algebraische Strukturen
Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen
1 Algebraische Strukturen
1 Algebraische Strukturen 1.1 Innere Verknüpfungen 1.1.1 Grundbegriffe und Beispiele In der Analysis wie auch in der linearen Algebra kommen verschiedene Arten von Rechenoperationen vor, bei denen man
G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag
G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN
1 Mathematische Grundbegriffe
1 1 Mathematische Grundbegriffe 1.1 Relationen und Funktionen Seien A 1,..., A n Mengen. Ein n-tupel über A 1,..., A n ist eine Folge (a 1,..., a n ) von Objekten a i A i, für i = 1,..., n. Zwei n-tupel
Seminar zum Thema Kryptographie
Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3
3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen
TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,
Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr
Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen
Mathematische Strukturen
Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: [email protected]
Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016
Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016 Lösungen Aufgabe 1: Betrachten Sie die Menge H aller Abbildungen f : R 2 R 2 der Form f(x) = Ax + b, A R 2 2, b R 2. (1) Zeigen
Aufgaben zur Verbandstheorie
TU Bergakademie Freiberg WS 2005/06 Institut für Diskrete Mathematik & Algebra Prof. Dr. Udo Hebisch Aufgaben zur Verbandstheorie 1. Für ein beliebiges n IN sei X n die Menge aller Teiler von n. Definiert
3.4 Algebraische Strukturen
3.4 Algebraische Strukturen 9 3.4 Algebraische Strukturen Man sagt, eine Menge hat eine algebraische Struktur, wenn in ihr eine Operation definiert ist, d.h. eine Verknüpfung von zwei Elementen der Menge,
(Algebraische) Strukturen Beispiele (Träger-)Mengen (Individuenbereiche) mit Relationen (Eigenschaften, Beziehungen) und Funktionen (Operationen) auf
Was bisher geschah Modellierung von Aussagen durch logische Formeln Daten durch Mengen, Multimengen, Folgen, Sprachen Zusammenhängen und Eigenschaften von Elementen von Mengen durch Relationen (Eigenschaften
ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.
ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,
3 Allgemeine Algebren
Grundlagen der Matematik für Informatiker 1 Grundlagen der Matematik für Informatiker 2 3 Allgemeine Algebren Definition 3.1 Für eine Menge A nennen wir eine n-stellige Funktion : A n A eine n-äre algebraisce
Übungsblatt 1: Monoide und Gruppen
Übungsblatt 1: Monoide und Gruppen Die schriftlichen Übungsaufgaben sind durch ein S gekennzeichnet und sollen in der Übung der nächsten Woche abgegeben werden. Die Votieraufgaben sind mit einem V gekennzeichnet.
LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow
LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y
5 GRUPPEN 5 Gruppen Hier fehlt eine schöne Einleitung oder ein motivierendes Beispiel. Definition [5.1] Sei G eine nicht-leere Menge, e G ein (ausgezeichnetes) Element in G und : G G G eine Abbildung.
1. Gruppen. 1. Gruppen 7
1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.
1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion. 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion
Transitiv-reflexive Hülle Definition 24. Sei R M M eine Relation. Dann ist die transitiv-reflexive Hülle R von R definiert als die kleinste Menge mit folgenden Eigenschaften: 1. a M : (a, a) R 2. R R 3.
PROSEMINAR LINEARE ALGEBRA
PROSEMINAR LINEARE ALGEBRA von Daniel Cagara Zunächst benötigen wir einige Elemente der Gruppentheorie. Definition 1. Eine Gruppe ist ein Tupel, bestehend aus einer nicht leeren Menge G und einer Verknüpfung,
8 Gruppen und Körper
8 Gruppen und Körper (8.) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein weiteres Element a?b aus G zuordnet, so dass die folgenden
1 Modulare Arithmetik
$Id: modul.tex,v 1.11 2012/04/16 19:15:39 hk Exp $ $Id: gruppen.tex,v 1.11 2012/04/17 10:30:56 hk Exp $ 1 Modulare Arithmetik 1.3 Restklassen Wir waren gerade damit beschäftigt eine Beispiele zum Rechnen
Algebra für Informationssystemtechniker
Algebra für Informationssystemtechniker Prof. Dr. Ulrike Baumann Fachrichtung Mathematik Institut für Algebra www.math.tu-dresden.de/ baumann [email protected] 16.07.2018 14. Vorlesung irreduzible
Übungsaufgaben und Musterlösungen zur Einführung in die Algebra im Sommersemester 2004
Übungsaufgaben und Musterlösungen zur Einführung in die Algebra im Sommersemester 2004 Aufgabe (1). Sei D eine nichtleere Menge und M := Abb(D D). (a) Zeigen Sie: M ist bzgl. der Hintereinanderausführung
1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale
Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen
5.1 Operationen 5.2 Boolsche Algebren 5.3 Monoide, Gruppen, Ringe, Körper 5.4 Quotientenalgebren
5. Algebra 5.1 Operationen 5.2 Boolsche Algebren 5.3 Monoide, Gruppen, Ringe, Körper 5.4 Quotientenalgebren 5. Algebra GM 5-1 Black Box Allgemein ist eine Black Box ein Objekt, dessen innerer Aufbau und
Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18.
18. November 2011 Wozu das alles? Bedeutung von Termen Vektoren in R n Ähnlichkeiten zwischen Termbedeutungen Skalarprodukt/Norm/Metrik in R n Komposition von Termbedeutungen Operationen auf/abbildungen
Formelsammlung: Mathematik für Informatiker I
25. März 2008 Inhaltsverzeichnis 1 Komplexe Zahlen 2 1.1 Allgemeines................................................ 2 1.2 Rechenregeln............................................... 2 1.3 Potenzen.................................................
Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein
Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst
3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen
Inhaltsverzeichnis Teil II: Gruppen 2 3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen.................. 2 3.1.1 Gruppen.......................................... 2 3.1.2 Untergruppen.......................................
IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen
IT-Sicherheitsmanagement Teil 4: Einführung in algebraische Strukturen 19.09.18 1 Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie.
Konstruktion der reellen Zahlen
Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert
Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014
Diskrete Strukturen WS 2013/2014 Vorlesung vom 24. Jänner 2014 Thomas Vetterlein Institut für Wissensbasierte Mathematische Systeme Johannes-Kepler-Universität Linz 10.1 Die Modulo-n-Relation Definition
Lineare Algebra I (NAWI) WS2015/2016 Übungsblatt
Lineare Algebra I (NAWI) WS205/206 Übungsblatt 0 07.0.205 Aufgabe. Von einem Parallelogramm seien die Punkte A = (5, 2), B = (4, ), C = (, ) gegeben. Bestimme die Koordinaten des vierten Punkts. Aufgabe
IT-Security. Teil 9: Einführung in algebraische Strukturen
IT-Security Teil 9: Einführung in algebraische Strukturen 08.05.17 1 Literatur und Videos [9-1] http://www.iti.fh-flensburg.de/lang/krypto [9-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage,
