Vorsemesterkurs Informatik
|
|
|
- Wolfgang Krause
- vor 9 Jahren
- Abrufe
Transkript
1 Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/ September 2015
2 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen
3 Vorsemesterkurs Informatik > Einleitung 1 Einleitung 2 Aussagenlogik 3 Mengen
4 Vorsemesterkurs Informatik > Einleitung Theoretische Informatik: Wieso, weshalb, warum? 1 Modellieren und Formalisieren von Problemen (und Lösungen) 2 Verifikation (Beweis der Korrektheit) 3 Grundlagenforschung
5 Vorsemesterkurs Informatik > Einleitung Abbildung: visualizations/million-lines-of-code/
6 Vorsemesterkurs Informatik > Einleitung Überblick heute (30.09.): Aussagenlogik Mengen Freitag (02.10.): Relationen und Funktionen Beweistechniken Dienstag (06.10.): Rekursion Vollständige Induktion
7 Vorsemesterkurs Informatik > Aussagenlogik 1 Einleitung 2 Aussagenlogik 3 Mengen
8 Vorsemesterkurs Informatik > Aussagenlogik Aussagenlogik: Was ist das? Aussage: (Definition folgt gleich) Logik: Lehre des vernünftigen Schlussfolgerns Beschäftigt sich u.a. mit der Frage: Wie kann man Aussagen miteinander verküpfen? Auf welche Weise kann man formale Schlüsse ziehen und Beweise durchführen?
9 Vorsemesterkurs Informatik > Aussagenlogik Warum ist das wichtig? Mathematische Beweise Modellierung von Wissen (z. B. künstliche Intelligenz) Auswertung von Datenbankanfragen Kontrollfluss von Computerprogrammen (if-then-else-konstrukte) Logikbausteine in der technischen Informatik (Hardware) Verifikation von Schaltkreisen Programmen Protokollen (Kommunikation zwischen Systemen z.b. Internetbanking)
10 Vorsemesterkurs Informatik > Aussagenlogik logische Aussagen Definition (Aussage) Eine logische Aussage (kurz Aussage) ist ein Satz oder Ausdruck, der entweder wahr (1) oder falsch (0) sein kann. 0 und 1 werden auch Wahrheitswerte genannt. zum Beispiel: Die Sonne scheint. Die Zahl n ist durch 3 teilbar. 3 > 7 Wenn der Bewohner rot ist, dann hat er grüne Haare.
11 Vorsemesterkurs Informatik > Aussagenlogik logische Aussagen keine logischen Aussagen sind dagegen: 1 + 2: es kann kein Wert (wahr oder falsch) zugeordnet werden. 2 ist eine kleine Zahl: klein ist für Zahlen nicht definiert. Aufforderungen und Fragen wie Komm her! oder Was machen wir? Dieser Satz ist falsch., da dieser Satz weder wahr noch falsch sein kann
12 Vorsemesterkurs Informatik > Aussagenlogik Frage 23: Einhörner und Sonnenstrahlen Wir nehmen an: Es gibt keine Einhörner. Dann ist die Aussage: Alle Einhörner fressen gerne Sonnenstrahlen.... (a) wahr (b) falsch (c) nicht definiert (d) wahr und falsch (e) weiß nicht
13 Vorsemesterkurs Informatik > Aussagenlogik atomare Aussagen Definition Atomare Aussagen sind (logische) Aussagen, die nicht weiter zerlegt werden können. Beispiel Wenn die Sonne scheint, gehe ich an den Strand und sonne mich. Wenn die Sonne scheint, (dann) gehe ich an den Strand und sonne mich. A:= Die Sonne scheint B:= Ich gehe an den Strand C:= Ich sonne mich ϕ = (A (B C))
14 Vorsemesterkurs Informatik > Aussagenlogik Syntax und Semantik der Aussagenlogik Syntax Was darf ich in einer Sprache (z. B. in der Aussagenlogik) schreiben? Der ökonomische Hund schreibt im Computer. Semantik Welche Bedeutung haben Wörter (und Sätze) in einer Sprache? Unser Ziel: In der Aussagenlogik soll man nur sinnvolle Wörter schreiben dürfen.
15 Vorsemesterkurs Informatik > Aussagenlogik Syntax der Aussagenlogik Definition (Syntax der Aussagenlogik) Basisregeln: B A : Jede atomare Aussage ist eine aussagenlogische Formel (af). B 0 : 0 ist eine af. B 1 : 1 ist eine af. Rekursive Regeln: R N : Wenn ϕ eine af ist, dann ist auch ϕ eine af. Wenn ϕ eine af ist und ψ eine af ist, dann sind R K : (ϕ ψ), R D : (ϕ ψ), R I : (ϕ ψ), R B : und (ϕ ψ) ebenfalls af.
16 Vorsemesterkurs Informatik > Aussagenlogik Semantik der Aussagenlogik Definition (Semantik der Negation, ) Die Formel A (bedeutet: nicht A ) ist genau dann wahr, wenn A falsch ist. Wahrheitstabelle: A A
17 Vorsemesterkurs Informatik > Aussagenlogik Frage 21: Verneinung von: Alle Kinder spielen gern. Verneinung von: Alle Kinder spielen gern (a) Kein Kind spielt gern. (b) Alle Kinder spielen nicht gern. (c) Nicht alle Kinder spielen gern. (d) Alle Kinder hassen Spiele. (e) weiß nicht. Anzahl a b c d e
18 Vorsemesterkurs Informatik > Aussagenlogik Konjunktion Definition (Semantik der Konjunktion, ) Die Formel (A B) (bedeutet: A und B ) ist genau dann wahr, wenn sowohl A als auch B wahr ist. Wahrheitstabelle: A B (A B) Beispiel A := Alice hat einen Hund., B := Bob hat eine Katze. (A B) = Alice hat einen Hund und Bob hat eine Katze.
19 Vorsemesterkurs Informatik > Aussagenlogik Disjunktion Definition (Semantik der Disjunktion, ) Die Formel (A B) (bedeutet: A oder B ) ist genau dann wahr, wenn mindestens eine der beiden Aussagen A oder B wahr sind. Wahrheitstafel: A B (A B) Beispiel A := Alice hat einen Hund., B := Bob hat eine Katze. (A B) = Alice hat einen Hund oder Bob hat eine Katze.
20 Vorsemesterkurs Informatik > Aussagenlogik Implikation Definition (Semantik der Implikation, ) Die Formel (A B) (bedeutet: Wenn A, dann B ) ist genau dann wahr, wenn A falsch oder B wahr ist. Wahrheitstabelle: A B (A B) Beispiel (A B) = Wenn Alice in der Klausur die Note 4.0 schreibt, dann hat Alice bestanden.
21 Vorsemesterkurs Informatik > Aussagenlogik Frage 22: Für alle Bewohner des Planeten Zutan gilt: Wenn der Bewohner rot ist, dann hat er grüne Haare. (a) Wenn der Bewohner nicht rot ist, dann hat er keine grünen Haare. (b) Wenn der Bewohner keine grünen Haare hat, dann ist er nicht rot. (c) Wenn der Bewohner grüne Haare hat, dann ist er rot. (d) Alle der obigen Schlussfolgerungen sind richtig. (e) weiß nicht Anzahl Wenn der Bewohner rot ist, dann hat er grüne Haare. a b c d e
22 Vorsemesterkurs Informatik > Aussagenlogik Biimplikation Definition (Semantik der Biimplikation, ) Die Formel (A B) (bedeutet: A genau dann, wenn B ) ist genau dann wahr, wenn Aussagen A und B beide falsch oder beide wahr ist. Wahrheitstabelle: A B (A B) Beispiel (A B) = Alice hat eine Note zwischen 1.0 und 4.0 genau dann, wenn Alice die Prüfung bestanden hat.
23 Vorsemesterkurs Informatik > Aussagenlogik Erfüllbarkeit und Allgemeingültigkeit Definition (Erfüllbarkeit) Eine aussagenlogische Formel ϕ heißt erfüllbar, wenn es (mindestens) eine Belegung der Variablen gibt, sodass die Formel den Wahrheitswert 1 hat. z.b. (A B) Definition (Unerfüllbarkeit) ϕ heißt unerfüllbar, wenn es keine erfüllende Belegung gibt. z.b. (A A) Definition (Allgemeingültigkeit) ϕ heißt allgemeingültig (auch Tautologie), wenn ϕ für jede Belegung den Wahrheitswert 1 annimmt. z.b. (A A)
24 Vorsemesterkurs Informatik > Aussagenlogik Äquivalenz Definition Zwei aussagenlogische Formeln ϕ und ψ heißen äquivalent ( ), wenn die Wahrheitswerte für alle passenden Belegungen für ϕ und ψ identisch sind. Beispiel Für ϕ = ( A B) und ψ = (A B) gilt: ϕ ψ ϕ ψ A B A ( A B) (A B)
25 Vorsemesterkurs Informatik > Mengen 1 Einleitung 2 Aussagenlogik 3 Mengen
26 Vorsemesterkurs Informatik > Mengen Mengen: Wieso, weshalb, warum? Wir wollen: allgemeingültige Aussagen treffen. allgemeingültige Lösungen finden. Wir benötigen die Möglichkeit: Objekte/Konzepte zusammenzufassen anhand der für die Problemstellung relevanten Eigenschaften über die wir Aussagen machen können deren Eigenschaften und Aussagen wir beweisen können gibt es in vielen Programmiersprachen als Datentyp/Container (set)
27 Vorsemesterkurs Informatik > Mengen Mengen Definition (Menge (nach Cantor, 1895)) Eine Menge M ist eine Zusammenfassung von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens, welche Elemente der Menge M genannt werden, zu einem Ganzen. zum Beispiel: die Menge aller natürlichen Zahlen N die Menge aller Vorkursteilnehmer die Menge aller Bücher in der Informatikbibliothek die Menge aller aussagenlogischer Formeln
28 Vorsemesterkurs Informatik > Mengen Beschreibung bzw. Definition Notation: m M : m ist Element der Menge M. m / M : m ist kein Element der Menge M. extensional, aufzählen der Elemente z.b. M 1 := {0, 1, 2, 3, 4, 5, 6, 7}= {0, 1, 2,..., 7} intensional, Angabe von charakteristischen Eigenschaften der Elemente z.b. M 1 := {x x N, 0 x 7} Definition (leere Menge) Die leere Menge ist die Menge, die kein(e) Element(e) enthält. = {} Beachte: { }
29 Vorsemesterkurs Informatik > Mengen Eigenschaften Alle Elemente einer Menge sind verschieden, d. h. kein Wert kann mehrfach vorkommen. Elemente einer Menge haben keine feste Reihenfolge. Eine Menge M kann auf verschiedenen Arten beschrieben werden z.b: M = {1, 3, 5, 7} = {3, 5, 7, 1} = {1, 1, 5, 3, 5, 7} = {x x N, 1 x 7, x ist ungerade} Mengen können auch verschiedenartige Elemente enthalten z.b.: M = {7, Haus, (Herz, 3), 4, {l, m, n}, 9}
30 Vorsemesterkurs Informatik > Mengen Frage 13: Was ist in einer Menge wichtig? Was ist in einer Menge wichig? (a) Das Vorhandensein der Elemente (b) Die Reihenfolge der Elemente (c) Die Häufigkeit des Auftretens eines Elementes (d) Alle drei der oben genannten Eigenschaften (e) weiß nicht Anzahl a b c d e
31 Vorsemesterkurs Informatik > Mengen Mengenalgebra I Definition (Gleichheit, Teilmenge, Obermenge) Seien M und N Mengen. M und N sind genau dann gleich (kurz: M = N), wenn sie dieselben Elemente enthalten. M ist genau dann eine Teilmenge von N (kurz: M N), wenn jedes Element von M auch ein Element von N ist. M ist genau dann eine echte Teilmenge von N (kurz: M N), wenn jedes Element von M auch ein Element von N ist, aber nicht jedes Element von N auch ein Element von M (kurz: M N und M N). M ist genau dann eine Obermenge von N (M N), wenn N eine Teilmenge von M ist (kurz: N M).
32 Vorsemesterkurs Informatik > Mengen Satz 1 Satz Seien L, M und N Mengen, für die L M und M N gilt. Dann gilt auch L N. Beispiel Sei L = {Stein, Schere, Papier}, M = {Stein, Schere, Papier, Eidechse} und N = {Stein, Schere, Papier, Eidechse, Spock}. Dann gilt: L M M N L N
33 Vorsemesterkurs Informatik > Mengen Satz 2 Satz Seien M und N Mengen. M = N gilt genau dann, wenn M N und N M gelten. Beispiel Sei M = {3, 4, 5} und N = {3, 4, 5}. Dann ist: M = N und M N und N M Sei M = {3, 4, 5} und N = {3, 4}. Dann ist: N M und M N und M N
34 Vorsemesterkurs Informatik > Mengen Mengenalgebra II Definition (Schnitt, Vereinigung, Differenz...) Seien M und N Mengen. Der Schnitt von M und N ist die Menge M N := {x x M und x N}. Die Vereinigung von M und N ist die Menge M N := {x x M oder x N}. Die Differenz von M und N ist die Menge M \ N := {x x M und x / N}. M und N heißen disjunkt, wenn sie kein gemeinsames Element enthalten (kurz: M N = ).
35 Vorsemesterkurs Informatik > Mengen Venn-Diagramme Venn-Diagramme (a) A B (b) A B (c) A \ B Stand:
36 Vorsemesterkurs Informatik > Mengen Mächtigkeiten Definition Eine Menge M heißt endlich, wenn sie nur endlich viele Elemente enthält, d.h. es gibt eine Zahl n N, sodass M genau n viele Elemente enthält. z.b.: Die Anzahl der Elemente einer Menge M bezeichnet man auch als Mächtigkeit der Menge M (in Zeichen: M ). { Anzahl der Elemente in M, falls M endlich ist M :=, sonst {4, 7, 2} = 3 {7, Haus, (Herz, 3), 4, {l, m, n}, 9} = 6 = 0 aber { } = 1
37 Vorsemesterkurs Informatik > Mengen Satz 3 I Satz Seien M und N endliche Mengen. Es gilt M N = M + N genau dann, wenn M und N disjunkt sind.
38 Vorsemesterkurs Informatik > Mengen Satz 3 II Beispiel Sei M = {Stein, Papier, Schere} und N = {3, Haus, Spock, 5} Dann ist: M N = und M N = {Stein, Papier, Schere, 3, Haus, Spock, 5} und M N = 7 = = M + N Sei M = {Stein, Papier, Schere} und N = {Schere, Haus, Spock, 5} Dann ist: M N = {Schere} und M N = {Stein, Papier, Schere, Haus, Spock, 5} und M N = = M + N Die Elemente der Schnittmenge werden doppelt gezählt.
39 Vorsemesterkurs Informatik > Mengen Wie geht es weiter? Übungsaufgaben Wann? ab 13:00 Uhr bis 16:00 Uhr Wie? Gemeinsam und mit Unterstützung durch die besten der Besten Wo?
Vorsemesterkurs Informatik
Vorsemesterkurs Informatik Ronja Düffel WS2018/19 01. Oktober 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis der
Vorsemesterkurs Informatik
Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis
Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14
Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine
Grundbegriffe Mengenlehre und Logik
Grundbegriffe Mengenlehre und Logik Analysis für Informatiker und Lehramt Mathematik MS/GS/FS WS 2016/2017 Agnes Radl Mengen Georg Cantor (1895) Unter einer Menge verstehen wir jede Zusammenfassung M von
Tag 1a - Aussagenlogik und Mengen
Vorsemesterkurs Informatik Übungsaufgaben Tag 1a - Aussagenlogik und Mengen Aufgabe 1: Quiz-Negation Aussage A Negation A richtig falsch Alle Menschen schlafen gerne Alle Menschen sind lang. Frühaufsteher.
Übungszettel 1a - Aussagenlogik und Mengen
Vorsemesterkurs Informatik Übungsaufgaben Übungszettel 1a - Aussagenlogik und Mengen Aufgabe 1: Quiz-Negation Aussage A Negation A richtig falsch Alle Menschen schlafen gerne Alle Menschen sind lang. Frühaufsteher.
Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation
Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik & Frank Heitmann [email protected] Mit der Aussagenlogik lassen sich einfache Verknüpfungen zwischen (atomaren) Gebilden ausdrücken
1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.
Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik
Logic in a Nutshell. Christian Liguda
Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung
Einführung in die Logik
Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle
1.1 Grundbegriffe. Logik und Diskrete Strukturen (Sommer 2018) Prof. Dr. Ulrich Hertrampf
. Grundbegriffe Beispiele: Paris und Mäuse / Otto und der Arzt /... Definition: Syntax der Aussagenlogik ) Atomare Formeln (A i, i =, 2, 3,...)sindFormeln. 2) Falls F und G Formeln, dann auch (F ^ G) und
Logik für Informatiker
Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 4 7.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
Theorie der Informatik
Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 Motivation Aufgabe von letzter Vorlesungsstunde Worin besteht das Geheimnis Ihres langen Lebens?
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht
ERRATA. Übungsblatt 4a: Aufgabe 3 : Definition der Teilbarkeit (Skript S.62)
Logik und Beweise ERRATA Übungsblatt 4a: Aufgabe 3 : Definition der Teilbarkeit (Skript S.62) Aufgabe 5 : Beweise folgende Aussage: 25 ist keine Primzahl Tipp: Beweis durch Widerspruch Logik und Beweise
Kapitel 1: Grundbegriffe
Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2
1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.
Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)
Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie
Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf
Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016
Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 2: Logik 1 Prädikatenlogik (Einleitung) 2 Aussagenlogik Motivation Grundlagen Eigenschaften Eigenschaften Normalformen
Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =
Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht
Frank Heitmann 2/42. 1 Etwas aus der realen Welt in der Logik abstrakt ausdrücken. 2 In der Logik Schlüsse ziehen.
Literaturhinweis Formale Grundlagen der Informatik 1 Kapitel 13 Aussagenlogik & Frank Heitmann [email protected] 23. Mai 2016 Literaturhinweis Der Logikteil (die nächsten fünf Wochen)
Grundlagen der Logik
Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl
Formale Grundlagen der Informatik 1 Kapitel 13 Aussagenlogik Syntax & Semantik
Formale Grundlagen der Informatik 1 Kapitel 13 Aussagenlogik & Frank Heitmann [email protected] 23. Mai 2016 Frank Heitmann [email protected] 1/42 Literaturhinweis Literaturhinweis
Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =?
Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 2 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl.
Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch
Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann [email protected] 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei
Definition (Modus Ponens) Wenn A, dann B. A gilt Also, gilt B
Zusammenfassung der letzten LVA Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Fakt Korrektheit dieser Schlussfigur ist unabhängig von den konkreten Aussagen Einführung
Zusammenfassung Syntax: Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln. Zusammenfassung
Formale der Informatik 1 Kapitel 15 und Frank Heitmann [email protected] 30. Mai 2016 Zusammenfassung Syntax Zusammenfassung Syntax: Motivation Definition der Syntax: Alphabet, Junktor
Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln
Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Frank Heitmann [email protected] 30. Mai 2016 Frank Heitmann [email protected] 1/42 Zusammenfassung Syntax
Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung
Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele
Beweistechniken. Vorkurs Informatik - SoSe April 2014
Vorkurs Informatik SoSe14 07. April 2014 Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Motivation Wozu Beweise in der Informatik? Quelle: http://www.nileguide.com Wozu Beweise in der
1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.
Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)
Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung
Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik
Was bisher geschah. Klassische Prädikatenlogik (der ersten Stufe): Syntax Modellierungsbeispiele
Was bisher geschah Klassische Aussagenlogik zur Modellierung von Aussagen Syntax: induktive Definition der Menge AL(P) (Baumstruktur) strukturelle Induktion (Funktionen, Nachweise) Semantik: Belegungen
DisMod-Repetitorium Tag 1
DisMod-Repetitorium Tag 1 Aussagenlogik, Mengen 19. März 2018 1 Organisatorisches 2 Tipps zur Klausur 3 Aussagenlogik Was gehört in die Aussagenlogik, was nicht? Notationen für viele Terme Belegungen,
Beispiel Aussagenlogik nach Schöning: Logik...
Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit
Mengenlehre. Mengenlehre. Vorkurs Informatik WS 2013/ September Vorkurs Informatik - WS2013/14
Mengenlehre Mengenlehre Vorkurs Informatik WS 2013/14 30. September 2013 Mengen Mengen Definition (Menge) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten
Vorlesung 3: Logik und Mengenlehre
28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung
De Morgan sche Regeln
De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,
Die Prädikatenlogik erster Stufe: Syntax und Semantik
Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,
Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017
Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe17 Ronja Düffel 22. März 2017 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise
Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.
Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F
Kapitel 1. Aussagenlogik
Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Grundlegende Beweisstrategien Induktion über
Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015
Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe15 Ronja Düffel 23. März 2015 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise
Logik Vorlesung 3: Äquivalenz und Normalformen
Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15
Logik Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2014/15 WS 2014/15 G. Kern-Isberner (TU Dortmund) Logik WS 2014/15 1 / 125 Übersicht Modallogik 5. Grundlagen 6. Erfüllbarkeit
Logik Vorlesung 2: Semantik der Aussagenlogik
Logik Vorlesung 2: Semantik der Aussagenlogik Andreas Maletti 24. Oktober 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
Logische Äquivalenz. Definition Beispiel 2.23
Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt
Was bisher geschah: klassische Aussagenlogik
Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f (nullstellig), (einstellig),,,, (zweistellig) aussagenlogische Formeln AL(P) induktive Definition: IA atomare Formeln
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage
Mathematische Grundlagen der Computerlinguistik
Mengen und Mengenoperationen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Mengen und ihre Darstellung Darstellung endlicher Mengen Darstellung unendlicher
Theoretische Informatik: Logik
Theoretische Informatik: Logik Vorlesung mit Übungen im WS 2006/2007 Vorlesung: Montag Montag 9-10 Uhr, Raum 1603 WAneu 14-16 Uhr, Raum 1603 WAneu Beginn: Montag, den 23.10.2006, 9 15 Uhr. Übungen in 3
1 Grundlagen. 1.1 Aussagen
1 Grundlagen 1.1 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben,
Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.
Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
Aussagenlogik. Aussagen und Aussagenverknüpfungen
Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,
Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016
Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.
Logik für Informatiker Logic for computer scientists
Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel
Logik (Prof. Dr. Wagner FB AI)
Logik (Prof. Dr. Wagner FB AI) LERNZIELE: Über die Kenntnis und das Verständnis der gegebenen Definitionen hinaus verfolgt dieser Teil der Lehrveranstaltung die folgenden Lernziele: Bei gegebenen sprachlichen
Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung
Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches Was folgt logisch aus dieser Theorie? Deduktion: aus
Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion
Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten
Deduktion in der Aussagenlogik
Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann [email protected] 9. Juni 2015 Frank Heitmann [email protected] 1/36 Ersetzbarkeitstheorem
Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen
Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen
Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.
2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.
Logik Vorlesung 4: Horn-Logik und Kompaktheit
Logik Vorlesung 4: Horn-Logik und Kompaktheit Andreas Maletti 14. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
Logik für Informatiker
Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der
Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1
Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter
Diskrete Strukturen. Vorlesung 3: Naive Mengenlehre. 30. Oktober 2018
Diskrete Strukturen Vorlesung 3: Naive Mengenlehre 30. Oktober 2018 2 Organisation Prüfung: vorauss. am Freitag, den 22. Februar 2019 von 10 11 Uhr im AudiMax, HS 3, HS 9 Abmeldungen noch bis zum 12. Januar
Einführung in die Informatik 2
Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 [email protected] Sprechstunde: Freitag, 12:30-14:00 Uhr,
Formale Grundlagen der Informatik 1 Wiederholung zum Logik-Teil
Formale Grundlagen der Informatik 1 zum Logik-Teil Frank Heitmann [email protected] 20. Juni 2016 Frank Heitmann [email protected] 1/32 Überblick Im hatten wir Aussagenlogik
Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7
Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum
1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen
1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist
1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen
. Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!
Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4
Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)
Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen
Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen Barbara König Übungsleitung: Dennis Nolte, Harsh Beohar Barbara König Logik 1 Mengen, Relationen und Funktionen Menge: Menge X von Elementen,
Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik
Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Aussagen Begriff Aussage: Ausdruck, welcher entweder wahr oder falsch ist e Die RWTH Aachen hat
Weitere Beweistechniken und aussagenlogische Modellierung
Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.
Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??
Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten
Grundlagen der Mathematik
Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n
