Logik für Informatiker
|
|
|
- Marielies Albrecht
- vor 9 Jahren
- Abrufe
Transkript
1 Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1
2 Syntax der Aussagenlogik: Logische Zeichen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Logik für Informatiker, SS 06 p.2
3 Syntax der Aussagenlogik: Logische Zeichen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Negationssymbol ( nicht ) Logik für Informatiker, SS 06 p.2
4 Syntax der Aussagenlogik: Logische Zeichen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Negationssymbol ( nicht ) Konjunktionssymbol ( und ) Disjunktionssymbol ( oder ) Implikationssymbol ( wenn... dann ) Symbol für Äquivalenz ( genau dann, wenn ) Logik für Informatiker, SS 06 p.2
5 Syntax der Aussagenlogik: Logische Zeichen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Negationssymbol ( nicht ) Konjunktionssymbol ( und ) Disjunktionssymbol ( oder ) Implikationssymbol ( wenn... dann ) Symbol für Äquivalenz ( genau dann, wenn ) ( ) die beiden Klammern Logik für Informatiker, SS 06 p.2
6 Vokabular der Aussagenlogik: Signatur Definition: Aussagenlogische Signatur Abzählbare Menge von Symbolen, etwa Σ = {P 0,..., P n } oder Σ = {P 0, P 1,...} Logik für Informatiker, SS 06 p.3
7 Vokabular der Aussagenlogik: Signatur Definition: Aussagenlogische Signatur Abzählbare Menge von Symbolen, etwa Σ = {P 0,..., P n } oder Σ = {P 0, P 1,...} Bezeichnungen für Symbole in Σ atomare Aussagen Atome Aussagevariablen Logik für Informatiker, SS 06 p.3
8 Formeln der Aussagenlogik Definition: Menge For0 Σ der Formeln über Σ Die kleinste Menge mit: 1 For0 Σ und 0 For0 Σ Logik für Informatiker, SS 06 p.4
9 Formeln der Aussagenlogik Definition: Menge For0 Σ der Formeln über Σ Die kleinste Menge mit: 1 For0 Σ und 0 For0 Σ Σ For0 Σ Logik für Informatiker, SS 06 p.4
10 Formeln der Aussagenlogik Definition: Menge For0 Σ der Formeln über Σ Die kleinste Menge mit: 1 For0 Σ und 0 For0 Σ Σ For0 Σ Wenn A, B For0 Σ, dann auch A, (A B), (A B), (A B), (A B) Elemente von For0 Σ Logik für Informatiker, SS 06 p.4
11 Beispiel: Formeln aus der Wumpus-Welt Aussagenlogische Variablen P i,j bedeutet: B i,j bedeutet: Grube in [i, j] Luftzug in [i, j] P 1,1 B 1,1 B 2,1 Logik für Informatiker, SS 06 p.5
12 Beispiel: Formeln aus der Wumpus-Welt Aussagenlogische Variablen P i,j bedeutet: B i,j bedeutet: Grube in [i, j] Luftzug in [i, j] P 1,1 B 1,1 B 2,1 Formeln Gruben bewirken Luftzug in angrenzenden Feldern P 1,2 (B 1,1 B 1,3 B 2,2 ) Luftzug in einem Feld gdw. es an eine Grube grenzt B 1,1 (P 1,2 P 2,1 ) B 2,1 (P 1,1 P 2,2 P 3,1 ) Logik für Informatiker, SS 06 p.5
13 Induktion über Formelaufbau: Beispiel Lemma Ist A For0 Σ und sind B, C Teilformeln von A, dann gilt C ist Teilformel von B, oder B ist Teilformel von C, oder B, C liegen getrennt Beweis: Durch noethersche Induktion über den Formelaufbau Logik für Informatiker, SS 06 p.6
14 Semantik der Aussagenlogik Σ eine aussagenlogische Signatur Definition: Aussagenlogisches Modell (Interpretation) Eine beliebige Abbildung I : Σ {true, false} Logik für Informatiker, SS 06 p.7
15 Semantik der Aussagenlogik Σ eine aussagenlogische Signatur Definition: Aussagenlogisches Modell (Interpretation) Eine beliebige Abbildung I : Σ {true, false} Beispiel A B C true true false (Bei drei Symbolen gibt es 8 mögliche Modelle) Logik für Informatiker, SS 06 p.7
16 Semantik der Aussagenlogik Definition: Auswertung von Formeln in einem Modell Zu Modell / Interpretation I val I : For0 Σ {true, false} mit: val I (1) = true val I (0) = false val I (P) = I(P) für P Σ Logik für Informatiker, SS 06 p.8
17 Semantik der Aussagenlogik und: val I ( A) = false falls val I (A) = true true falls val I (A) = false Logik für Informatiker, SS 06 p.9
18 Semantik der Aussagenlogik und: val I (A B) = val I (A B) = true falls val I (A) = true und val I (B) = true false sonst true falls val I (A) = true oder val I (B) = true false sonst Logik für Informatiker, SS 06 p.10
19 Semantik der Aussagenlogik und: val I (A B) = true falls val I (A) = false oder val I (B) = true false val I (A B) = sonst true falls val I (A) = val I (B) false sonst Logik für Informatiker, SS 06 p.11
20 Wahrheitstafel für die logischen Operatoren A B A A B A B A B A B false false true false false true true false true true false true true false true false false false true false false true true false true true true true Logik für Informatiker, SS 06 p.12
21 Uniforme Notation Konjunktive Formeln: Typ α Disjunktive Formeln: Typ β Raymond Smullyan Logik für Informatiker, SS 06 p.13
22 Uniforme Notation Konjunktive Formeln: Typ α A A B (A B) (A B) Disjunktive Formeln: Typ β Raymond Smullyan Logik für Informatiker, SS 06 p.13
23 Uniforme Notation Konjunktive Formeln: Typ α A A B (A B) (A B) Disjunktive Formeln: Typ β (A B) A B A B Raymond Smullyan Logik für Informatiker, SS 06 p.13
24 Uniforme Notation Zuordnungsregeln Formeln / Unterformeln α α 1 α 2 A B A B (A B) A B (A B) A B A A A Logik für Informatiker, SS 06 p.14
25 Uniforme Notation Zuordnungsregeln Formeln / Unterformeln α α 1 α 2 A B A B (A B) A B (A B) A B β β 1 β 2 (A B) A B A B A B A B A B A A A Logik für Informatiker, SS 06 p.14
26 Uniforme Notation: Beispiel der Anwendung Alternative Art der Definition von val I val I (α) = val I (β) = true falls val I (α 1 ) = true und val I (α 2 ) = true false sonst true falls val I (β 1 ) = true oder val I (β 2 ) = true false sonst Logik für Informatiker, SS 06 p.15
27 Uniforme Notation: Beispiel der Anwendung Alternative Art der Definition von val I val I (α) = val I (β) = true falls val I (α 1 ) = true und val I (α 2 ) = true false sonst true falls val I (β 1 ) = true oder val I (β 2 ) = true false sonst Umfaßt Definition von val I für alle Operatoren außer: 1, 0,, Logik für Informatiker, SS 06 p.15
28 Modell einer Formel(menge) Definition: Modell einer Formel Modell / Interpretation I ist Modell einer Formel A For0 Σ, falls val I (A) = true Logik für Informatiker, SS 06 p.16
29 Modell einer Formel(menge) Definition: Modell einer Formel Modell / Interpretation I ist Modell einer Formel A For0 Σ, falls val I (A) = true Definition: Modell einer Formelmenge Modell / Interpretation I ist Modell einer Formelmenge M For0 Σ, falls val I (A) = true für alle A M Logik für Informatiker, SS 06 p.16
30 Zur Erinnerung: Logische Folgerbarkeit Definition: Logische Folgerbarkeit Formel A folgt logisch aus Formelmenge KB gdw. alle Modelle von KB sind auch Modell von A Notation KB = α Logik für Informatiker, SS 06 p.17
31 Ein erster Kalkül: Wahrheitstafelmethode Beispielformel α = A B KB = (A C) (B C) Überprüfen ob KB = α A B C A C B C KB α false false false false false true false true false false true true true false false true false true true true false true true true Logik für Informatiker, SS 06 p.18
32 Ein erster Kalkül: Wahrheitstafelmethode Beispielformel α = A B KB = (A C) (B C) Überprüfen ob KB = α A B C A C B C KB α false false false false false false true true false true false false false true true true true false false true true false true true true true false true true true true true Logik für Informatiker, SS 06 p.18
33 Ein erster Kalkül: Wahrheitstafelmethode Beispielformel α = A B KB = (A C) (B C) Überprüfen ob KB = α A B C A C B C KB α false false false false true false false true true false false true false false true false true true true true true false false true true true false true true false true true false true true true true true true true Logik für Informatiker, SS 06 p.18
34 Ein erster Kalkül: Wahrheitstafelmethode Beispielformel α = A B KB = (A C) (B C) Überprüfen ob KB = α A B C A C B C KB α false false false false true false false false true true false false false true false false true false false true true true true true true false false true true true true false true true false false true true false true true true true true true true true true Logik für Informatiker, SS 06 p.18
35 Ein erster Kalkül: Wahrheitstafelmethode Beispielformel α = A B KB = (A C) (B C) Überprüfen ob KB = α A B C A C B C KB α false false false false true false false false false true true false false false false true false false true false true false true true true true true true true false false true true true true true false true true false false true true true false true true true true true true true true true true true Logik für Informatiker, SS 06 p.18
36 Ein erster Kalkül: Wahrheitstafelmethode Beispielformel α = A B KB = (A C) (B C) Überprüfen ob KB = α A B C A C B C KB α false false false false true false false false false true true false false false false true false false true false true false true true true true true true true false false true true true true true false true true false false true true true false true true true true true true true true true true true Logik für Informatiker, SS 06 p.18
37 Logische Äquivalenz Definition: Logische Äquivalenz Zwei Formeln sind logisch äquivalent, wenn sie in den gleichen Modellen wahr sind, d.h. α = β and β = α Logik für Informatiker, SS 06 p.19
38 Logische Äquivalenz Definition: Logische Äquivalenz Zwei Formeln sind logisch äquivalent, wenn sie in den gleichen Modellen wahr sind, d.h. α = β and β = α Notation α β Logik für Informatiker, SS 06 p.19
39 Logische Äquivalenz Definition: Logische Äquivalenz Zwei Formeln sind logisch äquivalent, wenn sie in den gleichen Modellen wahr sind, d.h. α = β and β = α Notation α β Beispiel (A B) ( B A) (Kontraposition) Logik für Informatiker, SS 06 p.19
40 Logische Äquivalenz Substitutionstheorem Wenn A B C ist das Ergebnis der Ersetzung einer Unterformel A in C durch B, dann C C Logik für Informatiker, SS 06 p.20
41 Logische Äquivalenz Substitutionstheorem Wenn A B C ist das Ergebnis der Ersetzung einer Unterformel A in C durch B, dann C C Beispiel A B B A impliziert (C (A B)) D (C (B A)) D Logik für Informatiker, SS 06 p.20
42 Wichtige Äquivalenzen (A B) (B A) Kommutativität von Logik für Informatiker, SS 06 p.21
43 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) Kommutativität von Kommutativität von Logik für Informatiker, SS 06 p.21
44 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) ((A B) C) (A (B C)) Kommutativität von Kommutativität von Assoziativität von Logik für Informatiker, SS 06 p.21
45 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) ((A B) C) (A (B C)) ((A B) C) (A (B C)) Kommutativität von Kommutativität von Assoziativität von Assoziativität von Logik für Informatiker, SS 06 p.21
46 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) ((A B) C) (A (B C)) ((A B) C) (A (B C)) (A A) A Kommutativität von Kommutativität von Assoziativität von Assoziativität von Idempotenz für Logik für Informatiker, SS 06 p.21
47 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) ((A B) C) (A (B C)) ((A B) C) (A (B C)) (A A) A (A A) A Kommutativität von Kommutativität von Assoziativität von Assoziativität von Idempotenz für Idempotenz für Logik für Informatiker, SS 06 p.21
48 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) ((A B) C) (A (B C)) ((A B) C) (A (B C)) (A A) A (A A) A A A Kommutativität von Kommutativität von Assoziativität von Assoziativität von Idempotenz für Idempotenz für Doppelnegation Logik für Informatiker, SS 06 p.21
49 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) ((A B) C) (A (B C)) ((A B) C) (A (B C)) (A A) A (A A) A A A (A B) ( B A) Kommutativität von Kommutativität von Assoziativität von Assoziativität von Idempotenz für Idempotenz für Doppelnegation Kontraposition Logik für Informatiker, SS 06 p.21
50 Wichtige Äquivalenzen (A B) ( A B) Elimination Implikation Logik für Informatiker, SS 06 p.22
51 Wichtige Äquivalenzen (A B) ( A B) (A B) ((A B) (B A) Elimination Implikation Elimination Äquivalenz Logik für Informatiker, SS 06 p.22
52 Wichtige Äquivalenzen (A B) ( A B) (A B) ((A B) (B A) (A B) ( A B) Elimination Implikation Elimination Äquivalenz de Morgans Regeln Logik für Informatiker, SS 06 p.22
53 Wichtige Äquivalenzen (A B) ( A B) (A B) ((A B) (B A) (A B) ( A B) (A B) ( A B) Elimination Implikation Elimination Äquivalenz de Morgans Regeln de Morgans Regeln Logik für Informatiker, SS 06 p.22
54 Wichtige Äquivalenzen (A B) ( A B) (A B) ((A B) (B A) (A B) ( A B) (A B) ( A B) (A (B C)) ((A B) (A C)) Elimination Implikation Elimination Äquivalenz de Morgans Regeln de Morgans Regeln Distributivität von über Logik für Informatiker, SS 06 p.22
55 Wichtige Äquivalenzen (A B) ( A B) (A B) ((A B) (B A) (A B) ( A B) (A B) ( A B) (A (B C)) ((A B) (A C)) (A (B C)) ((A B) (A C)) Elimination Implikation Elimination Äquivalenz de Morgans Regeln de Morgans Regeln Distributivität von über Distributivität von über Logik für Informatiker, SS 06 p.22
56 Wichtige Äquivalenzen (zusammengefasst) (A B) (B A) Kommutativität von (A B) (B A) Kommutativität von ((A B) C) (A (B C)) Assoziativität von ((A B) C) (A (B C)) Assoziativität von (A A) A Idempotenz für (A A) A Idempotenz für A A Doppelnegation (A B) ( B A) Kontraposition (A B) ( A B) Elimination Implikation (A B) ((A B) (B A)) Elimination Äquivalenz (A B) ( A B) de Morgans Regeln (A B) ( A B) de Morgans Regeln (A (B C)) ((A B) (A C)) Distributivität von über (A (B C)) ((A B) (A C)) Distributivität von über Logik für Informatiker, SS 06 p.23
57 Wichtige Äquivalenzen mit 1 und 0 (A A) 0 Logik für Informatiker, SS 06 p.24
58 Wichtige Äquivalenzen mit 1 und 0 (A A) 0 (A A) 1 Tertium non datur Logik für Informatiker, SS 06 p.24
59 Wichtige Äquivalenzen mit 1 und 0 (A A) 0 (A A) 1 Tertium non datur (A 1) A Logik für Informatiker, SS 06 p.24
60 Wichtige Äquivalenzen mit 1 und 0 (A A) 0 (A A) 1 Tertium non datur (A 1) A (A 0) 0 Logik für Informatiker, SS 06 p.24
61 Wichtige Äquivalenzen mit 1 und 0 (A A) 0 (A A) 1 Tertium non datur (A 1) A (A 0) 0 (A 1) 1 Logik für Informatiker, SS 06 p.24
62 Ein zweiter Kalkül: Logische Umformung Definition: Äquivalenzumformung (Wiederholte) Ersetzung einer (Unter-)Formel durch äquivalente Formel Anwendung des Substitutionstheorems Logik für Informatiker, SS 06 p.25
63 Ein zweiter Kalkül: Logische Umformung Definition: Äquivalenzumformung (Wiederholte) Ersetzung einer (Unter-)Formel durch äquivalente Formel Anwendung des Substitutionstheorems Theorem Äquivalenzumformung bildet mit den aufgelisteten wichtigen Äquivalenzen einen vollständigen Kalkül: Wenn A, B logisch äquivalent sind, kann A in B umgeformt werden Logik für Informatiker, SS 06 p.25
64 Allgemeingültigkeit Definition: Allgemeingültigkeit Eine Formel ist allgemeingültig, wenn sie in allen Modellen wahr ist Logik für Informatiker, SS 06 p.26
65 Allgemeingültigkeit Definition: Allgemeingültigkeit Eine Formel ist allgemeingültig, wenn sie in allen Modellen wahr ist Notation = A Logik für Informatiker, SS 06 p.26
66 Allgemeingültigkeit Definition: Allgemeingültigkeit Eine Formel ist allgemeingültig, wenn sie in allen Modellen wahr ist Notation = A Beispiele A A A A (A (A B)) B 1 Logik für Informatiker, SS 06 p.26
67 Deduktionstheorem Deduktionstheorem KB = A gdw. KB A ist allgemeingültig (verbindet logische Folgerbarkeit und Allgemeingültigkeit) Logik für Informatiker, SS 06 p.27
68 Deduktionstheorem Deduktionstheorem KB = A gdw. KB A ist allgemeingültig (verbindet logische Folgerbarkeit und Allgemeingültigkeit) Folgerungen M {A} = B gdw. M = A B A, B sind logisch äquivalent gdw. A B ist allgemeingültig Logik für Informatiker, SS 06 p.27
69 Erfüllbarkeit Definition: Erfüllbarkeit Eine Formel ist erfüllbar, wenn sie ein Modell hat Logik für Informatiker, SS 06 p.28
70 Erfüllbarkeit Definition: Erfüllbarkeit Eine Formel ist erfüllbar, wenn sie ein Modell hat Beispiele A B A A (A B) Logik für Informatiker, SS 06 p.28
71 Unerfüllbarkeit Definition: Unerfüllbarkeit Eine Formel ist unerfüllbar, wenn sie in keinem Modell wahr ist, d.h., nicht erfüllbar ist Logik für Informatiker, SS 06 p.29
72 Unerfüllbarkeit Definition: Unerfüllbarkeit Eine Formel ist unerfüllbar, wenn sie in keinem Modell wahr ist, d.h., nicht erfüllbar ist Beispiel A A Logik für Informatiker, SS 06 p.29
73 Allgemeingültigkeit / Ableitbarkeit / Unerfüllbarkeit Theorem A ist allgemeingültig gdw. A ist unerfüllbar (verbindet Allgemeingültigkeit und Unerfüllbarkeit) Logik für Informatiker, SS 06 p.30
74 Allgemeingültigkeit / Ableitbarkeit / Unerfüllbarkeit Theorem A ist allgemeingültig gdw. A ist unerfüllbar (verbindet Allgemeingültigkeit und Unerfüllbarkeit) Theorem KB = A gdw. (KB A) ist unerfüllbar (verbindet logische Ableitbarkeit und Unerfüllbarkeit) Logik für Informatiker, SS 06 p.30
75 Verbindung der Eigenschaften Aus den Theoremen folgt Logische Folgerbarkeit Allgemeingültigkeit Unerfüllbarkeit sind verbunden. Kalkül für eine dieser Eigenschaften genügt Logik für Informatiker, SS 06 p.31
76 Das Craigsche Interpolationstheorem Theorem Seien A,B aussagenlogische Formeln mit = A B dann gibt es eine Formel C mit = A C und = C B, so daß in C nur solche aussagenlogischen Atome P Σ vorkommen, die sowohl in A als auch in B vorkommen. Logik für Informatiker, SS 06 p.32
77 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Logik für Informatiker, SS 06 p.33
78 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Logik für Informatiker, SS 06 p.33
79 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Logik für Informatiker, SS 06 p.33
80 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Logik für Informatiker, SS 06 p.33
81 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Wahrheitstafelmethode Logik für Informatiker, SS 06 p.33
82 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Wahrheitstafelmethode Wichtige Äquivalenzen Logik für Informatiker, SS 06 p.33
83 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Wahrheitstafelmethode Wichtige Äquivalenzen Äquivalenzumformung als Kalkül (Substitutionstheorem) Logik für Informatiker, SS 06 p.33
84 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Wahrheitstafelmethode Wichtige Äquivalenzen Äquivalenzumformung als Kalkül (Substitutionstheorem) Allgemeingültigkeit, Erfüllbarkeit, Unverfüllbarkeit Logik für Informatiker, SS 06 p.33
85 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Wahrheitstafelmethode Wichtige Äquivalenzen Äquivalenzumformung als Kalkül (Substitutionstheorem) Allgemeingültigkeit, Erfüllbarkeit, Unverfüllbarkeit Deduktionstheorem, Verbindung von Allgemeingültigkeit und Underfüllbarkeit Logik für Informatiker, SS 06 p.33
86 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Wahrheitstafelmethode Wichtige Äquivalenzen Äquivalenzumformung als Kalkül (Substitutionstheorem) Allgemeingültigkeit, Erfüllbarkeit, Unverfüllbarkeit Deduktionstheorem, Verbindung von Allgemeingültigkeit und Underfüllbarkeit Craigsches Interpolationstheorem Logik für Informatiker, SS 06 p.33
Logik für Informatiker
Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle
Theoretische Grundlagen des Software Engineering
Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik [email protected] Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
Logik für Informatiker
Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische
Logik für Informatiker
Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der
Logik für Informatiker
Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der
Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.
Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Grundlegende Beweisstrategien Induktion über
Logik Vorlesung 3: Äquivalenz und Normalformen
Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch
Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann [email protected] 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei
Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??
Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten
Was bisher geschah: klassische Aussagenlogik
Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f (nullstellig), (einstellig),,,, (zweistellig) aussagenlogische Formeln AL(P) induktive Definition: IA atomare Formeln
Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung
Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann [email protected] 9. Juni 2015 Frank Heitmann [email protected] 1/36 Ersetzbarkeitstheorem
Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung
Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik
Logik für Informatiker
Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche
THEORETISCHE INFORMATIK UND LOGIK
Rückblick: Logelei Wir kehren zurück auf das Inselreich mit Menschen von Typ W (Wahrheitssager) und Typ L (Lügner). THEORETISCHE INFORMATIK UND LOGIK 14. Vorlesung: Modelltheorie und logisches Schließen
Logik für Informatiker
Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül
Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14
Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine
Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =
Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min
THEORETISCHE INFORMATIK UND LOGIK
THEORETISCHE INFORMATIK UND LOGIK 14. Vorlesung: Modelltheorie und logisches Schließen Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 31. Mai 2017 Rückblick: Logelei Wir kehren zurück auf
Grundlagen der Logik
Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl
I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.
I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten
Beispiel Aussagenlogik nach Schöning: Logik...
Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit
Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4
Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)
Einführung in die Logik
Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3
Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie
Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf
3. Grundlegende Begriffe von Logiken - Aussagenlogik
3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,
Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015
Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 3: Logik 1 Aussagenlogik Einleitung Eigenschaften Äquivalenz Folgerung Normalformen 2 Prädikatenlogik Wenn eine Karte
TU9 Aussagenlogik. Daniela Andrade
TU9 Aussagenlogik Daniela Andrade [email protected] 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive
Logic in a Nutshell. Christian Liguda
Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung
3. Logik 3.1 Aussagenlogik
3. Logik 3.1 Aussagenlogik WS 06/07 mod 301 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder falsch angesehen erden können. z. B.: Es
Die Prädikatenlogik erster Stufe: Syntax und Semantik
Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,
2.3 Deduktiver Aufbau der Aussagenlogik
2.3 Deduktiver Aufbau der Aussagenlogik Dieser Abschnitt beschäftigt sich mit einem axiomatischen Aufbau der Aussagenlogik mittels eines Deduktiven Systems oder eines Kalküls. Eine syntaktisch korrekte
Vorsemesterkurs Informatik
Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung
Vorsemesterkurs Informatik
Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis
Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser
Informatik A Prof. Dr. Norbert Fuhr [email protected] auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive
Logik für Informatiker
Logik für Informatiker Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Literatur zur Vorlesung Skriptum von U. Furbach Ulrich Furbach Logic for Computer Scientists http://userpages.uni-koblenz.de/
Hilbert-Kalkül (Einführung)
Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle
1 Aussagenlogischer Kalkül
1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln
Logik für Informatiker
Logik für Informatiker 3. Prädikatenlogik Teil 1 9.06.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,
Logik für Informatiker
Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Formale Logik Ziel Formalisierung und Automatisierung rationalen
5. Logik in der KI. Wissensbasis: Menge von Aussagen, die Fakten über die Welt repräsentieren, formuliert in einer Wissensrepräsentationssprache.
5. Logik in der KI Wissensbasis: Menge von Aussagen, die Fakten über die Welt repräsentieren, formuliert in einer Wissensrepräsentationssprache. Neue Aussagen können in die Wissensbasis eingefügt werden:
Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken
Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation
Logik für Informatiker Logic for computer scientists
Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel
Logik Vorlesung 2: Semantik der Aussagenlogik
Logik Vorlesung 2: Semantik der Aussagenlogik Andreas Maletti 24. Oktober 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen
Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen
Kapitel 1. Aussagenlogik
Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax
TU7 Aussagenlogik II und Prädikatenlogik
TU7 Aussagenlogik II und Prädikatenlogik Daniela Andrade [email protected] 5.12.2016 1 / 32 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds
Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart)
Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Javier Esparza und Barbara König 4. Dezember 2003 Für eine gegebene aussagenlogische
Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen
Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der
Formale Logik. Logik für Informatiker. Modellierung. Logik in der Informatik. Viorica Sofronie-Stokkermans.
Formale Logik Logik für Informatiker Viorica Sofronie-Stokkermans e-mail: [email protected] Ziel Formalisierung und utomatisierung rationalen Denkens Rational richtige bleitung von neuem Wissen aus
Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.
2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.
1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.
Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik
Übung 4: Aussagenlogik II
Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F
7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit.
7. Prädikatenlogik Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. Aber: Aussagenlogik ist sehr beschränkt in der Ausdrucksmächtigkeit. Wissen kann nur
Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:
Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,
Formale Systeme. P. H. Schmitt
Formale Systeme P. H. Schmitt Winter 2007/2008 Version: 5. März 2008 Vorwort Formale Methoden und die zu ihrer Umsetzung notwendigen formalen Systeme spielen in der Informatik von Anfang an eine wichtige
Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation
Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik & Frank Heitmann [email protected] Mit der Aussagenlogik lassen sich einfache Verknüpfungen zwischen (atomaren) Gebilden ausdrücken
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in
Ersetzbarkeitstheorem
Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen
Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1
Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter
Vorlesung Logiksysteme
Vorlesung Logiksysteme Teil 1 - Aussagenlogik Martin Mundhenk Univ. Jena, Institut für Informatik 15. Mai 2014 Formalien zur Vorlesung/Übung Termine: dienstags 16:15 17:45 Uhr freitags 10:15 11:45 Uhr
Logik für Informatiker
Logik für Informatiker 3. Prädikatenlogik Teil 4 18.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Letzte Vorlesung Sematik: Σ-Strukturen = (U, (f : U
Grundbegriffe für dreiwertige Logik
Grundbegriffe für dreiwertige Logik Hans Kleine Büning Universität Paderborn 1.11.2011 1 Syntax und Semantik Die klassische Aussagenlogik mit den Wahrheitswerten falsch und wahr bezeichnen wir im weiteren
Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.
Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F
Logik für Informatiker
Vorlesung Logik für Informatiker 11. Prädikatenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Negationsnormalform Definition: Negationsnormalform
Die Folgerungsbeziehung
Kapitel 2: Aussagenlogik Abschnitt 2.1: Syntax und Semantik Die Folgerungsbeziehung Definition 2.15 Eine Formel ψ AL folgt aus einer Formelmenge Φ AL (wir schreiben: Φ = ψ), wenn für jede Interpretation
Zusammenfassung des Stoffes zur Vorlesung Formale Systeme
Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Max Kramer 13. Februar 2009 Diese Zusammenfassung entstand als persönliche Vorbereitung auf die Klausur zur Vorlesung Formale Systeme von Prof.
Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung
Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen
Logik. Studiengang. Informatik und. Technoinformatik SS 02. Prof. Dr. Madlener Universität Kaiserslautern. Vorlesung: Mi
Logik Studiengang Informatik und Technoinformatik SS 02 Vorlesung: Mi 11.45-13.15 52/207 Prof. Dr. Madlener Universität Kaiserslautern Informationen www-madlener.informatik.uni-kl.de/ag-madlener/teaching/ss2002/
Logik Vorlesung 8: Modelle und Äquivalenz
Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere
Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln
Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht
Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen
Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,
Allgemeingültige Aussagen
Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt
Logik für Informatiker
Logik für Informatiker Wintersemester 2007/08 Thomas Schwentick Teil A: Aussagenlogik 2. Grundlagen Version von: 2. November 2007(16:19) Inhalt 2.1 Beispiele 2.2 Syntax 2.3 Semantik 2.4 Modellierung mit
Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 1
Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt
