Logik für Informatiker
|
|
|
- Kristian Albrecht
- vor 8 Jahren
- Abrufe
Transkript
1 Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1
2 Der aussagenlogische Resolutionkalkül Wesentliche Eigenschaften Widerlegungskalkül: Testet auf Unerfüllbarkeit Logik für Informatiker, SS 06 p.2
3 Der aussagenlogische Resolutionkalkül Wesentliche Eigenschaften Widerlegungskalkül: Testet auf Unerfüllbarkeit Voraussetzung: Alle Formeln in konjunktiver Normalform Logik für Informatiker, SS 06 p.2
4 Der aussagenlogische Resolutionkalkül Wesentliche Eigenschaften Widerlegungskalkül: Testet auf Unerfüllbarkeit Voraussetzung: Alle Formeln in konjunktiver Normalform Eine einzige Regel Logik für Informatiker, SS 06 p.2
5 Der aussagenlogische Resolutionkalkül Wesentliche Eigenschaften Widerlegungskalkül: Testet auf Unerfüllbarkeit Voraussetzung: Alle Formeln in konjunktiver Normalform Eine einzige Regel Operiert of Klauseln (in Mengenschreibweise) Logik für Informatiker, SS 06 p.2
6 Der aussagenlogische Resolutionkalkül Wesentliche Eigenschaften Widerlegungskalkül: Testet auf Unerfüllbarkeit Voraussetzung: Alle Formeln in konjunktiver Normalform Eine einzige Regel Operiert of Klauseln (in Mengenschreibweise) Notation Leere Klausel: Logik für Informatiker, SS 06 p.2
7 Resolutionskalkül Definition: Resolutionsregel (einzige Regel des Kalküls) wobei C 1 {P}, C 2 { P} C 1 C 2 P eine aussagenlogische Variable C 1, C 2 Klauseln (können leer sein) Logik für Informatiker, SS 06 p.3
8 Resolutionskalkül Definition: Resolutionsregel (einzige Regel des Kalküls) wobei C 1 {P}, C 2 { P} C 1 C 2 P eine aussagenlogische Variable C 1, C 2 Klauseln (können leer sein) Definition: Resolvente C 1 C 2 heißt Resolvente von C 1 {P}, C 2 { P}. Logik für Informatiker, SS 06 p.3
9 Resolution: Beispiel Gegeben die Klauselmenge M = { {P 1, P 2 }, {P 1, P 2 }, { P 1, P 2 }, { P 1, P 2 } } Logik für Informatiker, SS 06 p.4
10 Resolution: Beispiel Gegeben die Klauselmenge M = { {P 1, P 2 }, {P 1, P 2 }, { P 1, P 2 }, { P 1, P 2 } } Resolution {P 1, P 2 } {P 1, P 2 } Logik für Informatiker, SS 06 p.4
11 Resolution: Beispiel Gegeben die Klauselmenge M = { {P 1, P 2 }, {P 1, P 2 }, { P 1, P 2 }, { P 1, P 2 } } Resolution {P 1, P 2 } {P 1, P 2 } {P 1 } Logik für Informatiker, SS 06 p.4
12 Resolution: Beispiel Gegeben die Klauselmenge M = { {P 1, P 2 }, {P 1, P 2 }, { P 1, P 2 }, { P 1, P 2 } } Resolution {P 1, P 2 } {P 1, P 2 } {P 1 } { P 1, P 2 } { P 1, P 2 } Logik für Informatiker, SS 06 p.4
13 Resolution: Beispiel Gegeben die Klauselmenge M = { {P 1, P 2 }, {P 1, P 2 }, { P 1, P 2 }, { P 1, P 2 } } Resolution {P 1, P 2 } {P 1, P 2 } {P 1 } { P 1, P 2 } { P 1, P 2 } { P 1 } Logik für Informatiker, SS 06 p.4
14 Resolution: Beispiel Gegeben die Klauselmenge M = { {P 1, P 2 }, {P 1, P 2 }, { P 1, P 2 }, { P 1, P 2 } } Resolution {P 1, P 2 } {P 1, P 2 } {P 1 } { P 1, P 2 } { P 1, P 2 } { P 1 } {P 1 }, { P 1 } Logik für Informatiker, SS 06 p.4
15 Resolution: Beispiel Gegeben die Klauselmenge M = { {P 1, P 2 }, {P 1, P 2 }, { P 1, P 2 }, { P 1, P 2 } } Resolution {P 1, P 2 } {P 1, P 2 } {P 1 } { P 1, P 2 } { P 1, P 2 } { P 1 } {P 1 }, { P 1 } Logik für Informatiker, SS 06 p.4
16 Resolution: Beispiel Gegeben die Klauselmenge M = { {P 1, P 2 }, {P 1, P 2 }, { P 1, P 2 }, { P 1, P 2 } } Resolution {P 1, P 2 } {P 1, P 2 } {P 1 } Insgesamt M Res { P 1, P 2 } { P 1, P 2 } { P 1 } {P 1 }, { P 1 } Logik für Informatiker, SS 06 p.4
17 Resolution: Beispiel Gegeben die Klauselmenge M = { {P 1, P 2 }, {P 1, P 2 }, { P 1, P 2 }, { P 1, P 2 } } Resolution {P 1, P 2 } {P 1, P 2 } {P 1 } { P 1, P 2 } { P 1, P 2 } { P 1 } {P 1 }, { P 1 } Insgesamt M Res also M unerfüllbar Logik für Informatiker, SS 06 p.4
18 Resolution: Weiteres Beispiel Zu zeigen (A B) ((B C) (A C)) ist allgemeingültig Logik für Informatiker, SS 06 p.5
19 Resolution: Weiteres Beispiel Zu zeigen (A B) ((B C) (A C)) ist allgemeingültig Dazu zeigen wir, dass ((A B) ((B C) (A C))) unerfüllbar ist Logik für Informatiker, SS 06 p.5
20 Resolution: Weiteres Beispiel Zu zeigen (A B) ((B C) (A C)) ist allgemeingültig Dazu zeigen wir, dass ((A B) ((B C) (A C))) unerfüllbar ist Klauselnormalform M = {{ A, B}, { B, C}, {A}, { C}} Logik für Informatiker, SS 06 p.5
21 Resolution: Weiteres Beispiel Klauselnormalform M = {{ A, B}, { B, C}, {A}, { C}} Ableitung der leeren Klausel aus M Logik für Informatiker, SS 06 p.6
22 Resolution: Weiteres Beispiel Klauselnormalform M = {{ A, B}, { B, C}, {A}, { C}} Ableitung der leeren Klausel aus M (1) [] { A, B} (2) [] { B, C} (3) [] {A} (4) [] { C} Logik für Informatiker, SS 06 p.6
23 Resolution: Weiteres Beispiel Klauselnormalform M = {{ A, B}, { B, C}, {A}, { C}} Ableitung der leeren Klausel aus M (1) [] { A, B} (2) [] { B, C} (3) [] {A} (4) [] { C} (5) [1, 3] {B} Logik für Informatiker, SS 06 p.6
24 Resolution: Weiteres Beispiel Klauselnormalform M = {{ A, B}, { B, C}, {A}, { C}} Ableitung der leeren Klausel aus M (1) [] { A, B} (2) [] { B, C} (3) [] {A} (4) [] { C} (5) [1, 3] {B} (6) [2, 5] {C} Logik für Informatiker, SS 06 p.6
25 Resolution: Weiteres Beispiel Klauselnormalform M = {{ A, B}, { B, C}, {A}, { C}} Ableitung der leeren Klausel aus M (1) [] { A, B} (2) [] { B, C} (3) [] {A} (4) [] { C} (5) [1, 3] {B} (6) [2, 5] {C} (7) [4, 6] Logik für Informatiker, SS 06 p.6
26 Resolution: Bemerkungen Vorsicht bei Klauseln mit mehreren Resolutionsmöglichkeiten Zwei Klauseln können mehr als eine Resolvente haben z.b.: {A, B} und { A, B} Logik für Informatiker, SS 06 p.7
27 Resolution: Bemerkungen Vorsicht bei Klauseln mit mehreren Resolutionsmöglichkeiten Zwei Klauseln können mehr als eine Resolvente haben z.b.: {A, B} und { A, B} {A, B, C} und { A, B, D} haben NICHT {C, D} als Resolvente Logik für Informatiker, SS 06 p.7
28 Resolution: Bemerkungen Vorsicht bei Klauseln mit mehreren Resolutionsmöglichkeiten Zwei Klauseln können mehr als eine Resolvente haben z.b.: {A, B} und { A, B} {A, B, C} und { A, B, D} haben NICHT {C, D} als Resolvente Heuristik Immer möglichst kleine Klauseln ableiten Logik für Informatiker, SS 06 p.7
29 Notwendigkeit der Mengenschreibweise Die Menge E = {P 1 P 2, P 1 P 2, P 1 P 2, P 1 P 2 } ist unerfüllbar Logik für Informatiker, SS 06 p.8
30 Notwendigkeit der Mengenschreibweise Die Menge E = {P 1 P 2, P 1 P 2, P 1 P 2, P 1 P 2 } ist unerfüllbar Es gibt folgende Resolutionsmöglichkeiten (ohne Mengenschreibweise) P 1 P 2, P 1 P 2 P 2 P 2 P 1 P 2, P 1 P 2 P 1 P 1 P 1 P 1, P 1 P 2 P 1 P 2 P 2 P 2, P 1 P 2 P 1 P 2 Logik für Informatiker, SS 06 p.8
31 Notwendigkeit der Mengenschreibweise Die Menge E = {P 1 P 2, P 1 P 2, P 1 P 2, P 1 P 2 } ist unerfüllbar Es gibt folgende Resolutionsmöglichkeiten (ohne Mengenschreibweise) P 1 P 2, P 1 P 2 P 2 P 2 P 1 P 2, P 1 P 2 P 1 P 1 P 1 P 1, P 1 P 2 P 1 P 2 P 2 P 2, P 1 P 2 P 1 P 2 Auf diese Weise ist nicht herleitbar Logik für Informatiker, SS 06 p.8
32 Resolution: Korrektheit und Vollständigkeit Theorem Für eine Menge M von Klauseln gilt M unerfüllbar gdw. M Res Logik für Informatiker, SS 06 p.9
33 1-Resolution Regel der 1-Resolution {P}, C 2 { P} C 2 { P}, C 2 {P} C 2 Spezialfall der Resolutionsregel Logik für Informatiker, SS 06 p.10
34 1-Resolution Regel der 1-Resolution {P}, C 2 { P} C 2 { P}, C 2 {P} C 2 Spezialfall der Resolutionsregel Frage Ist 1-Resolution vollständig? Logik für Informatiker, SS 06 p.10
35 1-Resolution Regel der 1-Resolution {P}, C 2 { P} C 2 { P}, C 2 {P} C 2 Spezialfall der Resolutionsregel Frage Ist 1-Resolution vollständig? NEIN Logik für Informatiker, SS 06 p.10
36 1-Resolution Beispiel für Unvollständigkeit E = {{P 1, P 2 }, {P 1, P 2 }, { P 1, P 2 }, { P 1, P 2 }} ist unerfüllbar, aber mit 1-Resolution ist aus E nichts ableitbar Logik für Informatiker, SS 06 p.11
37 Zusammenfassung: Resolution Die Resolutionsregel Logik für Informatiker, SS 06 p.12
38 Zusammenfassung: Resolution Die Resolutionsregel Vorgehensweise für Nachweis der Allgemeingültigkeit: Negation, Klauseln, Resolution Logik für Informatiker, SS 06 p.12
39 Zusammenfassung: Resolution Die Resolutionsregel Vorgehensweise für Nachweis der Allgemeingültigkeit: Negation, Klauseln, Resolution Korrektheit und Vollständigkeit Logik für Informatiker, SS 06 p.12
40 Zusammenfassung: Resolution Die Resolutionsregel Vorgehensweise für Nachweis der Allgemeingültigkeit: Negation, Klauseln, Resolution Korrektheit und Vollständigkeit 1-Resolution (unvollständig) Logik für Informatiker, SS 06 p.12
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
Logik für Informatiker
Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische
Logik für Informatiker
Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül
Formale Systeme, WS 2015/2016. Lösungen zu Übungsblatt 7
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Bernhard Beckert Dr. Thorsten Bormer, Dr. Vladimir Klebanov, Dr. Mattias Ulbrich Formale Systeme, WS 2015/2016 Lösungen
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,
5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation
Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
Logik für Informatiker
Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Formale Logik Ziel Formalisierung und Automatisierung rationalen
Logik für Informatiker
Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:
Logik für Informatiker
Vorlesung Logik für Informatiker 11. Prädikatenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Negationsnormalform Definition: Negationsnormalform
Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Deduktion in der Aussagenlogik
Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive
Grundlagen der Künstlichen Intelligenz
Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.
Aussagenlogische Kalküle
Aussagenlogische Kalküle Ziel: mit Hilfe von schematischen Regeln sollen alle aus einer Formel logisch folgerbaren Formeln durch (prinzipiell syntaktische) Umformungen abgeleitet werden können. Derartige
Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:
Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht
Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen
Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,
Logik für Informatiker
Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:
Logik Vorlesung 3: Äquivalenz und Normalformen
Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
Einiges zu Resolutionen anhand der Aufgaben 6 und 7
Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Es gibt eine Fülle von verschiedenen Resolutionen. Die bis jetzt behandelten möchte ich hier noch ein Mal kurz erläutern. Ferner möchte ich noch auf
Prädikatenlogische Entscheidbarkeitsprobleme
Prädikatenlogische Entscheidbarkeitsprobleme Erfüllbarkeitsproblem: Gegeben: prädikatenlogischer Ausdruck A über einer Signatur S Frage: Ist A erfüllbar? Gültigkeitsproblem: Gegeben: prädikatenlogischer
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in
Logik für Informatiker
Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der
Computational Logic Algorithmische Logik Boolesche Algebra und Resolution
Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale
Logik für Informatiker Logic for Computer Scientists
Logik für Informatiker Logic for Computer Scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 18 Vollständigkeit der Aussagenlogik Till Mossakowski Logik 2/ 18 Objekt- und Metatheorie
Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl.
Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln
Resolution für die Aussagenlogik
Resolution für die Aussagenlogik Der Resolutionskakül ist ein Beweiskalkül, der auf Klauselmengen, d.h. Formeln in KNF arbeitet und nur eine Schlußregel besitzt. Der Resolution liegt die folgende Vorstellung
Hilbert-Kalkül (Einführung)
Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle
Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung
Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann [email protected] 9. Juni 2015 Frank Heitmann [email protected] 1/36 Ersetzbarkeitstheorem
Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen
Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification
Wiederholung: Resolution in der Aussagenlo. Resolution in der Prädikatenlogik. Definition von Res(F) (Wiederholung)
Resolution in der Prädikatenlogik Wiederholung: Resolution in der Aussagenlo Der Algorithmus von Gilmore funktioniert zwar, ist in der Praxis aber unbrauchbar. Daher ist unser Programm der nächsten Stunden:
Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart)
Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Javier Esparza und Barbara König 4. Dezember 2003 Für eine gegebene aussagenlogische
Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie
Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf
Resolutionsalgorithmus
112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:
Logik für Informatiker
Logik für Informatiker Wintersemester 2007/08 Thomas Schwentick Teil A: Aussagenlogik 3. Erfüllbarkeit Version von: 23. Januar 2008(16:11) Inhalt 3.1 Grundbegriffe 3.2 Aussagenlogische Resolution 3.3 Endlichkeitssatz
Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018
Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Schlussregeln aus anderen Kalkülen
Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik,
Formale Systeme, WS 2012/2013. Lösungen zu Übungsblatt 7
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Faragó, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt
Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten
2.6 Verfeinerung der Resolution Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten Resolutions-Strategien: heuristische Regeln für die Auswahl der Resolventen Resolutions-Restriktionen:
Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.
Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.
Algorithmischer Aufbau der Aussagenlogik
Algorithmischer Aufbau der Aussagenlogik In diesem Abschnitt betrachten wir Verfahren die bei gegebener endlichen Menge Σ und A-Form A entscheiden ob Σ = A gilt. Die bisher betrachteten Verfahren prüfen
Grundlagen der Logik
Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl
1 Aussagenlogischer Kalkül
1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln
Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK
Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz
Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D)
INTA - Lösungshinweise zum Übungsblatt 4, Version 1.0α. Wenn sie Fehler finden oder Ihnen etwas auch nach dem Gespräch mit ihren Kommilitonen noch unklar ist, dann schicken sie mir bitte eine Email! Aufgabe
Logik für Informatiker Musterlösung Aufgabenblatt 11
Universität Koblenz-Landau SS 06 Institut für Informatik Bernhard Beckert www.uni-koblenz.de/~beckert Christoph Gladisch www.uni-koblenz.de/~gladisch Claudia Obermaier www.uni-koblenz.de/~obermaie Übung
Logik für Informatiker
Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der
Prädikatenlogik: Syntax
Prädikatenlogik: Syntax Signatur : Welche Zeichen gibt es? Funktionssymbole Prädikatensymbol (Eigenschaften) Terme: Variablen f(t 1,... t n ) wenn t i Terme und f Funktionssymbol Formeln: P (t 1,... t
Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser
Informatik A Prof. Dr. Norbert Fuhr [email protected] auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische
Deduktion. Semantische Folgerungsbeziehung. Syntaktische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung
Deduktion Menge von Ausdrücken der Aussagenlogik oder der Prädikatenlogik beschreibt einen bestimmten Sachverhalt, quasi eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion:
3. Grundlegende Begriffe von Logiken - Aussagenlogik
3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,
Logik für Informatiker
Logik für Informatiker 3. Prädikatenlogik Teil 6 25.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Letzte Vorlesungen Prädikatenlogik: Syntax Semantik
Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle
smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht
Logik Teil 1: Aussagenlogik. Vorlesung im Wintersemester 2010
Logik Teil 1: Aussagenlogik Vorlesung im Wintersemester 21 Aussagenlogik Aussagenlogik behandelt die logische Verknüpfung von Aussagen mittels Junktoren wie und, oder, nicht, gdw. Jeder Aussage ist ein
Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.
Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen
5. Logik in der KI. Wissensbasis: Menge von Aussagen, die Fakten über die Welt repräsentieren, formuliert in einer Wissensrepräsentationssprache.
5. Logik in der KI Wissensbasis: Menge von Aussagen, die Fakten über die Welt repräsentieren, formuliert in einer Wissensrepräsentationssprache. Neue Aussagen können in die Wissensbasis eingefügt werden:
Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch
Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann [email protected] 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei
Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle
smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung
wenn es regnet ist die Straße nass.
Aussagenlogik 2 In der Aussagenlogik werden, wie der Name schon sagt, Aussagen über logische Operatoren verknüpft. Der Satz diestraßeistnass ist eine Aussage, genauso wie es regnet. Diese beiden Aussagen
Tableaukalkül für Aussagenlogik
Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird
Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen
Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.
Logic in a Nutshell. Christian Liguda
Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung
Musterlösung der Klausur zur Vorlesung Logik für Informatiker
Musterlösung der Klausur zur Vorlesung Logik für Informatiker Bernhard Beckert Christoph Gladisch Claudia Obermaier Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau
Allgemeingültige Aussagen
Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt
Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99. Sequenzen
Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99 Sequenzen Zum Abschluss des Kapitels über Aussagenlogik behandeln wir noch Gentzens Sequenzenkalkül.
Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:
Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N
Aussagenlogik. Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle
Aussagenlogik Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Logik für Informatiker, M. Lange, IFI/LMU: Aussagenlogik Syntax und Semantik 26 Einführendes Beispiel
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 8 31.05.2016 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Normalformen: CNF/DNF Subsumption SAT-Problem
Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen
Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der
Resolution und Regeln
Resolution und Regeln Hans Kleine Büning University of Paderborn Institute for Computer Science Group Paderborn, 18. Juli 2013 Resolution und Regeln Hans Kleine Büning 1/9 Resolution Theorem Resolution:
Vorsemesterkurs Informatik
Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung
Mathematische Grundlagen
Mathematische Grundlagen für Wirtschaftsinformatiker Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2016/17 Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester
Logik für Informatiker
Vorlesung Logik für Informatiker 2. Induktion Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Induktion Zentrale Rolle Wesentliches Beweisprinzip in Mathematik
Logik Teil 1: Aussagenlogik
Aussagenlogik Aussagenlogik behandelt die logische Verknüpfung von Aussagen mittels Junktoren wie und, oder, nicht, gdw. Logik Teil : Aussagenlogik Jeder Aussage ist ein Wahrheitswert (wahr/falsch) zugeordnet
Notizen zur Aussagenlogik (AL)
Notizen zur Aussagenlogik (AL) Inhaltsverzeichnis 1 Syntax und Semantik der AL 3 2 Grundlegende semantische Begriffe 5 2.1 Semantische Folgerung und Allgemeingültigkeit.............. 5 2.2 Logische Äquivalenz.............................
Klauseltableau: Einschränkungen des Suchraums
Klauseltableau: Einschränkungen des Suchraums Regularität Kein Literal darf auf einem Ast mehr als einmal vorkommen Schwache Konnektionsbedingung Bei Erweiterung von Ast B muss mindestens eines der neuen
Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik
Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable
Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4
Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)
7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit.
7. Prädikatenlogik Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. Aber: Aussagenlogik ist sehr beschränkt in der Ausdrucksmächtigkeit. Wissen kann nur
1 Aussagenlogische Formeln
1 Aussagenlogische Formeln Aufgabe 1.1 Transformieren Sie die Formel in disjunktive Normalform (DNF). ((:A! :B) ^ D)! ((A _ C) $ (:B ^ D)) Lösung 1.1 Schrittweise Transformation: Schritt 1: ((:A! :B) ^
Zusammenfassung des Stoffes zur Vorlesung Formale Systeme
Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Max Kramer 13. Februar 2009 Diese Zusammenfassung entstand als persönliche Vorbereitung auf die Klausur zur Vorlesung Formale Systeme von Prof.
Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1)
Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Wissensrepräsentation: Resolution (im PK1) 2. Resolution Vorbild für Formalismus : exakt, präzise, (theoretisch) beherrscht Aufbau: Zeichen
Grundlagen der Künstlichen Intelligenz
Grundlagen der Künstlichen Intelligenz 28. Aussagenlogik: DPLL-Algorithmus Malte Helmert Universität Basel 2. Mai 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26. Grundlagen 27. Logisches
Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P. Jede Struktur hat mindestens eine Substruktur
Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P Jede Struktur hat mindestens eine Substruktur JA Jeder Isomorphismus ist ein Homomorphismus JEIN? jeder bijektive Homomorphismus ist ein
TU5 Aussagenlogik II
TU5 Aussagenlogik II Daniela Andrade [email protected] 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)
TU9 Aussagenlogik. Daniela Andrade
TU9 Aussagenlogik Daniela Andrade [email protected] 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /
Logik Vorlesung 6: Resolution
Logik Vorlesung 6: Resolution Andreas Maletti 28. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften
Herbrand-Universum. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Herbrand-Universum. Herbrand-Universum
Herbrand-Universum Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Motivation: Um die Erfüllbarkeit/Unerfüllbarkeit einer prädikatenlogischen
Logik Vorlesung 8: Modelle und Äquivalenz
Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere
