Resolutionsalgorithmus
|
|
|
- Artur Philipp Kästner
- vor 9 Jahren
- Abrufe
Transkript
1 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül: Syntaktische Umformungsregeln: Resolution, Stopp bei Erreichen der leeren Klausel Semantische Eigenschaft der Eingabeformel: Unerfüllbarkeit Wünschenswerte Eigenschaften eines Kalküls: Korrektheit: Wenn die leere Klausel aus F abgeleitet werden kann, dann ist F unerfüllbar. Vollständigkeit: Wenn F unerfüllbar ist, dann ist die leere Klausel aus F ableitbar.
2 113 Resolutionsalgorithmus 1. Version: berechne Res (F) if Res (F) then return unerfüllbar else return erfüllbar 2. (praktische) Version: suche mit Hilfe von Heuristiken kurze Deduktion von (n ist die Anzahl der atomaren Formeln in F): for 1 i 4 n do choose K 1,K 2 F, Resolvente R von K 1 und K 2 if R = then return unerfüllbar else F := F {R} return erfüllbar
3 114 Resolutionsalgorithmus Bemerkungen: 1 Häufig existiert kurze Deduktion von, obwohl Res (F) sehr groß ist. Daher ist Resolution als Unerfüllbarkeitstest häufig effizient. Wenn keine Deduktion von existiert, so muß Schleife 4 n bzw. Res (F) mal durchlaufen werden, als Erfüllbarkeitstest ist Resolution also nicht sehr effizient. 2 auch als Unerfüllbarkeitstest ist Resolution nicht immer effizient: Haken hat 1985 für jedes n eine Menge von Klauseln F n angegeben mit: F n ist unerfüllbar. F n enthält n (n+1) viele atomare Teilformeln. F n besteht aus n3 +n 2 2 +n+1 vielen Klauseln. Jede Deduktion der leeren Klausel aus F n hat Länge mindestens c n für eine feste Konstante c > 1.
4 115 Anwendung 1 der Resolution: (Un-)Erfüllbarkeitstest geg. aussagenlogische Formel F Frage: Ist F erfüllbar? Methode: Wandle F in KNF in Mengendarstellung um und wende Resolutionsalgorithmus an.
5 116 Anwendung 2 der Resolution: Tautologietest geg. aussagenlogische Formel F Frage: Ist F Tautologie? Methode: Wandle F in KNF in Mengendarstellung um und wende Resolutionsalgorithmus an. An Stelle von unerfüllbar gib Tautologie, an Stelle von erfüllbar gib keine Tautologie aus.
6 117 Anwendung 3 der Resolution: Folgerungstest geg. aussagenlogische Formeln F 1,F 2,...,F n,f Frage: Gilt F 1,F 2,...,F n = F? Methode: Bilde F = F 1 F 2 F n F, wandle F in KNF in Mengendarstellung um und wende Resolutionsalgorithmus an. An Stelle von unerfüllbar gib F folgt aus F 1,F 2,...,F n, an Stelle von erfüllbar gib F folgt nicht aus F 1,F 2,...,F n aus.
7 118 Beweis einer Folgerung: Beispiel Wir wollen zeigen. (AK BK),(AK BK),(BK RL AK),RL = ( AK BK) Betrachte F = (AK BK) (AK BK) (BK RL AK) RL ( AK BK) Eine KNF von F ist (AK BK) ( AK BK) ( BK RL AK) RL (AK BK) In Mengendarstellung: {{AK,BK}, { AK,BK}, { BK, RL, AK}, {RL}, {AK, BK}}
8 119 Beispiel zur Resolution Eine mögliche Deduktion von aus {{AK,BK}, { AK,BK}, { BK, RL, AK}, {RL}, {AK, BK}} (1) sieht wie folgt aus: {AK,BK} gehört zu (1) (2) { AK,BK} gehört zu (1) (3) {BK} aus (2) und (3) (4) { BK, RL, AK} gehört zu (1) (5) {AK, BK} gehört zu (1) (6) { BK, RL} aus (5) und (6) (7) {RL} gehört zu (1) (8) { BK} aus (7) und (8) (9) aus (4) und (9) (10)
9 120 Bemerkungen zur Resolution Die Resolution ist als Unerfüllbarkeitstest für Formeln in KNF, als Tautologietest für Formeln in DNF, als Folgerungstest für Formeln in KNF i.a. sehr effizient (aber nicht immer: Haken 1985). Um allgemeine Formeln zu behandeln, müssen diese in KNF umgewandelt werden, was sie i.a. exponentiell vergrößert. Die Vorlesungsseite enthält einen Verweis auf ein Java-Applet zum Resolutionsalgorithmus.
10 121 Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln in KNF im allgemeinen effizienter Unerfüllbarkeitstest (Resolution) Ein für beliebige Formeln im allgemeinen effizienter Erfüllbarkeitstest (Tableau) Ein (philosophisch) interessanter Erfüllbarkeitstest für beliebige Formeln (natürliches Schließen)
11 122 Tableaux (Idee) Nachteil des Resolutionskalküls: man muß zunächst KNF herstellen. Tableaux-Methoden testen beliebige Formeln auf Erfüllbarkeit. Sie sind etwas direkter, aber nicht unbedingt effizienter. Idee: Suche systematisch nach einer erfüllenden Belegung über wahre Teilformeln. hier nur für Formeln in NNF (die ja mit linearem Aufwand aus beliebiger Formel berechnet werden kann) Definition Ein Tableau ist ein endlicher Baum, dessen Knoten mit Formeln beschriftet sind. Ein Ast p in τ ist abgeschlossen, falls es atomare Formel A gibt, so daß A und A auf p vorkommen.
12 123 Tableaux und Entwicklung Definition Das Tableau τ wird zum Tableau τ entwickelt (τ τ ), falls τ einen nicht-abgeschlossenen Ast p enthält, so daß eine der folgenden Aussagen gilt: in p enthaltene Formeln in p nicht enthaltene Formeln (F G) F und G F (F G),F G (F G),G F (F G) F und G τ entsteht aus τ durch Verlängerung von p um G G F F G
13 124 Tableaux: Vollständigkeit (I) Lemma Sei τ τ ein Entwicklungsschritt und B eine Belegung. Wenn es einen Ast p in τ gibt mit B(F) = 1 für alle Formeln F auf p, dann hat auch τ einen solchen Ast p. Beweis: Wird die Entwicklung von τ zu τ an einem Ast p p gemacht, so ist p gewünchter Ast von τ. Werde also der Ast p weiter entwickelt unter Verwendung der Formel F G (bzw. F G). Dann gilt B(F) = B(G) = 1 (bzw. B(F) = 1 oder B(G) = 1). Die bzw. eine der Verlängerungen von p in τ ist gewünschter Ast p.
14 125 Tableaux: Vollständigkeit (II) Folgerung Sei τ Tableau mit F τ ( das aus F entwickelt werden kann ). Ist F erfüllbar, so hat τ einen nicht-abgeschlossenen Ast. Beweis: Es gilt F τ 1 τ 2 τ n = τ und es gibt eine Belegung B mit B(F) = 1. Nach dem Lemma hat jedes dieser Tableaux einen abgeschlossenen Ast p i, so daß B(G) = 1 für alle Formeln auf p i. Also ist p n ein nicht-abgeschlossener Ast in τ.
15 126 Tableaux: Korrektheit Definition Ein Tableau ist vollständig, wenn es nicht weiter entwickelt werden kann. Lemma Sei τ vollständiges Tableau, das aus F entwickelt werden kann. Ist F nicht erfüllbar, so ist jeder Ast in τ abgeschlossen. Beweis: Es gilt wieder F τ 1 τ 2 τ n = τ. Angenommen, τ hätte einen nicht-abgeschlossenen Ast p. Definiere eine Belegung B durch { 1 A kommt in p vor B(A) = 0 sonst. Sei F = F m,f m 1,F m 2,...,F 1 die Folge der Formeln auf dem Ast p. Man zeigt induktiv über die Größe der Formeln F i, daß B(F i ) = 1 gilt, insbesondere also B(F) = B(F m ) = 1, ein Widerspruch zur Annahme.
16 127 Tableauxverfahren τ := F while true do if alle Äste in τ abgeschlossen sind then stopp mit Ausgabe unerfüllbar if ein Ast nicht-abgeschlossen und nicht-entwickelbar then stopp mit Ausgabe erfüllbar berechne ein τ mit τ τ ; setze τ := τ endwhile
17 128 Tableauxverfahren: Beispiel 1 F H G ( F G) F H G ( F G) Alle Äste in τ sind abgeschlossen, also ist die Formel nicht erfüllbar. H G ( F G) G F G F G
18 129 Tableauxverfahren: Beispiel 2 (F G) (F G) F G F G F G Die zwei nichtabgeschlossenen und nichtentwickelbaren Äste führen beide zu der erfüllenden Belegungen B(F) = 1 und B(G) = 0 (denn beide enthalten F aber nicht G) F G
19 130 Vollständigkeit und Korrektheit des Tableauxverfahrens Satz Das Tableauxverfahren terminiert immer. Er gibt genau dann erfüllbar aus, wenn die Formel F erfüllbar ist. Beweis: Termination folgt aus zwei Beobachtungen: Die Knoten der berechneten Tableaux sind Teilformeln von F jede Teilformel von F kommt auf jedem Ast eines berechneten Tableaux höchstens einmal vor Ist F erfüllbar, so gibt der Algorithmus erfüllbar aus nach Folgerung auf Folie 125 Gibt der Algorithmus erfüllbar aus, so ist F erfüllbar nach Lemma auf Folie 126
20 131 Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln in KNF im allgemeinen effizienter Unerfüllbarkeitstest (Resolution) Ein für beliebige Formeln im allgemeinen effizienter Erfüllbarkeitstest (Tableau) Ein (philosophisch) interessanter Erfüllbarkeitstest für beliebige Formeln (natürliches Schließen Sequenzenkalkül)
21 132 Sequenzenkalkül ein weiterer Kalkül, der rein syntaktisch die Folgerungen erzeugt Idee: Regeln der Form: Wenn ich weiß, daß G aus F bewiesen werden kann, so weiß ich auch, daß G aus F bewiesen werden kann. Schreibweise: {F 1,F 2,...,F n } G wird heißen Die Formel G kann aus den Formeln F 1,...,F n bewiesen werden. Regeln werden geschrieben als F 1 G 1 F 2 G 2 F G...F k G k Definition Eine Sequenz besteht aus einer endlichen Menge von Formeln F und einer Formel G.
22 Sequenzenkalkül Definition Die Sequenz (F,G) ist gültig (F G), wenn sie sich in endlich vielen Schritten durch die folgenden Regeln erzeugen läßt: F {G} G F G F G i F G 1 F G 2 F G 1 G 2 i F G 1 i F G 2 F G 1 G 1 i F F G F F G 2 F G 1 G 2 2 F G e F G 1 F G 2 F (G 1 G 2 ) dem F G 1 F (G 1 G 2 ) dem 1 F H G H G F G G MP F G 2 F (G 1 G 2 ) dem 2 F {F} G F F G i 133
23 Korrektheit Lemma Aus F G folgt F = G. Bemerkung Auf der linken Seite steht, daß man F G herleiten kann. Dies ist eine syntaktische Aussage. Auf der rechten Seite steht, daß jede Belegung B, die alle Formeln aus F erfüllt, auch G erfüllt. Dies ist eine semantische Aussage. 134
24 135 Korrektheit Beweis induktiv über die Länge einer Herleitung (= Anzahl der Regelanwendungen) von F G I.A. gilt G F, so folgt aus B = F sofort B = G, also F = G. I.V. Gelte F = G, falls die Gültigkeit der Sequenz F G sich in n Schritten zeigen läßt. I.S. Sei F G eine gültige Sequenz, deren Gültigkeit sich in n+1 Schritten zeigen läßt. Wir machen eine Fallunterscheidung danach, welche Regel als letztes angewandt wurde.
25 136 Korrektheit i 1 Wurde als letztes die Regel i 1 angewandt, so gilt G = G 1 G 2 und die Gültigkeit der Sequenz F G 1 kann in höchstens n Schritten gezeigt werden. Also gilt nach I.V. F = G 1. Sei nun B Belegung mit B = F. Dann gilt also B(G 1 ) = 1 und damit 1 = B(G 1 G 2 ) = B(G). Also haben wir F = G gezeigt. i Wurde als letztes die Regel i angewandt, so gilt G = G 1 G 2 und die Gültigkeit der Sequenzen F G 1 und F G 2 kann in höchstens n Schritten gezeigt werden. Also gilt nach I.V. F = G 1 und F = G 2. Sei nun B Belegung mit B = F. Dann gilt also B(G 1 ) = B(G 2 ) = 1 und damit 1 = B(G 1 G 2 ) = B(G). Also haben wir F = G gezeigt.
26 137 Korrektheit em Wurde als letztes die Regel dem angewandt, so gilt G = (G 1 G 2 ) und die Gültigkeit der Sequenzen F G 1 und F G 2 kann in höchstens n Schritten gezeigt werden. Also gilt nach I.V. F = G 1 und F = G 2. Sei nun B Belegung mit B = F. Dann gilt also B( G 1 ) = B( G 2 ) = 1 und damit 1 = B( G 1 G 2 ) = B( (G 1 G 2 )) = B(G) nach dem Fundamentalsatz. Also haben wir F = G gezeigt. i Wurde als letztes die Regel i angewandt, so gilt G = G 1 G 2 und die Gültigkeit der Sequenz F {G 1 } G 2 kann in höchstens n Schritten gezeigt werden. Also gilt nach I.V. F {G 1 } = G 2. Sei nun B Belegung mit B = F. Gilt B(G 1 ) = 0, so erhalten wir B( G 1 G 2 ) = 1. Andernfalls haben wir B = F {G 1 } und damit auch B(G 2 ) = 1, also B( G 1 G 2 ) = 1. Die restlichen Fälle können (und sollten von Ihnen beim Nacharbeiten) analog behandelt werden.
Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl.
Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln
Resolution (Idee) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit.
Resolution (Idee) (F A) (F A) (F A) (F A) (F F ) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit. Zwei Fragen: Kann man aus einer unerfüllbaren Formel immer die leere
Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:
Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht
Ersetzbarkeitstheorem
Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen
Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen
Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,
Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15
Logik Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2014/15 WS 2014/15 G. Kern-Isberner (TU Dortmund) Logik WS 2014/15 1 / 125 Übersicht Modallogik 5. Grundlagen 6. Erfüllbarkeit
Theoretische Informatik: Logik
Theoretische Informatik: Logik Vorlesung mit Übungen im WS 2006/2007 Vorlesung: Montag Montag 9-10 Uhr, Raum 1603 WAneu 14-16 Uhr, Raum 1603 WAneu Beginn: Montag, den 23.10.2006, 9 15 Uhr. Übungen in 3
Hilbert-Kalkül (Einführung)
Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle
Logik für Informatiker
Logik für Informatiker Wintersemester 2007/08 Thomas Schwentick Teil A: Aussagenlogik 3. Erfüllbarkeit Version von: 23. Januar 2008(16:11) Inhalt 3.1 Grundbegriffe 3.2 Aussagenlogische Resolution 3.3 Endlichkeitssatz
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann [email protected] 9. Juni 2015 Frank Heitmann [email protected] 1/36 Ersetzbarkeitstheorem
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive
Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:
Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,
Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4
Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0
Das SAT Problem oder Erfüllbarkeitsproblem Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe TH SAT Instanz: Eine aussagenlogische Formel F For 0 Frage: Ist F erfüllbar?
Aussagenlogik: Syntax von Aussagen
Aussagenlogik: Syntax von Aussagen A ::= X (A A) (A A) ( A) (A A) (A A) 0 1 Prioritätsreihenfolge :,,,,. A B: Konjunktion (Verundung). A B: Disjunktion (Veroderung). A B: Implikation. A B: Äquivalenz.
1 Aussagenlogik AL: Verknüpfung von Aussagen
1 Aussagenlogik AL: Verknüpfung von Aussagen Syntax atomare Formeln A,B,C sind AL-Formeln F und G AL-Formeln (F G),(F G) und F AL-Formeln müssen in endlich vielen Schritten gebildet werden können echtes
Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln
Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Frank Heitmann [email protected] 30. Mai 2016 Frank Heitmann [email protected] 1/42 Zusammenfassung Syntax
Tableaukalkül für Aussagenlogik
Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird
Zusammenfassung Syntax: Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln. Zusammenfassung
Formale der Informatik 1 Kapitel 15 und Frank Heitmann [email protected] 30. Mai 2016 Zusammenfassung Syntax Zusammenfassung Syntax: Motivation Definition der Syntax: Alphabet, Junktor
Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??
Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten
Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D)
INTA - Lösungshinweise zum Übungsblatt 4, Version 1.0α. Wenn sie Fehler finden oder Ihnen etwas auch nach dem Gespräch mit ihren Kommilitonen noch unklar ist, dann schicken sie mir bitte eine Email! Aufgabe
Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch
Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann [email protected] 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei
Klauselmengen. Definition Sei
Klauselmengen Definition 2.38 Sei α = (p 11... p 1k1 )... (p n1... p nkn ) eine in aussagenlogische Formel in KNF. Dann heißen die Mengen {p i1,..., p iki }, 1 i n, der jeweils disjunktiv verknüpften Literale
Logik. Markus Lohrey. Sommersemester Universität Siegen. Markus Lohrey (Universität Siegen) Logik Sommersem / 299
Logik Markus Lohrey Universität Siegen Sommersemester 2014 Markus Lohrey (Universität Siegen) Logik Sommersem. 2014 1 / 299 Organisatorisches zur Vorlesung Informationen finden Sie unter z. B. http://www.eti.uni-siegen.de/ti/lehre/ss14/logik/
Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,
Logik. Markus Lohrey. Wintersemester 2012/2013. Universität Leipzig. Markus Lohrey (Universität Leipzig) Logik Wintersem.
Logik Markus Lohrey Universität Leipzig Wintersemester 2012/2013 Markus Lohrey (Universität Leipzig) Logik Wintersem. 2012/2013 1 / 214 Organisatorisches zur Vorlesung Informationen finden Sie unter z.
1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.
Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)
Logik Vorlesung 5: Grundlagen Resolution
Logik Vorlesung 5: Grundlagen Resolution Andreas Maletti 21. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere
Kapitel L:II. II. Aussagenlogik
Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen
Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =?
Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 2 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl.
Einiges zu Resolutionen anhand der Aufgaben 6 und 7
Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Es gibt eine Fülle von verschiedenen Resolutionen. Die bis jetzt behandelten möchte ich hier noch ein Mal kurz erläutern. Ferner möchte ich noch auf
Einführung in die Logik
Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3
Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen
Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen Barbara König Übungsleitung: Dennis Nolte, Harsh Beohar Barbara König Logik 1 Mengen, Relationen und Funktionen Menge: Menge X von Elementen,
Resolution für die Aussagenlogik
Resolution für die Aussagenlogik Der Resolutionskakül ist ein Beweiskalkül, der auf Klauselmengen, d.h. Formeln in KNF arbeitet und nur eine Schlußregel besitzt. Der Resolution liegt die folgende Vorstellung
FORMALE SYSTEME. 23. Vorlesung: Logisches Schließen. TU Dresden, 16. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme
FORMALE SYSTEME 23. Vorlesung: Logisches Schließen Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 16. Januar 2017 Rückblick Markus Krötzsch, 16. Januar 2017 Formale Systeme Folie 2 von 31
Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018
Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart)
Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Javier Esparza und Barbara König 4. Dezember 2003 Für eine gegebene aussagenlogische
Deduktion in der Aussagenlogik
Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus
Aussagenlogische Kalküle
Aussagenlogische Kalküle Ziel: mit Hilfe von schematischen Regeln sollen alle aus einer Formel logisch folgerbaren Formeln durch (prinzipiell syntaktische) Umformungen abgeleitet werden können. Derartige
1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.
Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)
Logik Vorlesung 4: Horn-Logik und Kompaktheit
Logik Vorlesung 4: Horn-Logik und Kompaktheit Andreas Maletti 14. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 7 15.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Unser Ziel Kalkül(e) zur systematischen Überprüfung
Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung
Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches Was folgt logisch aus dieser Theorie? Deduktion: aus
Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016
Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 2: Logik 1 Prädikatenlogik (Einleitung) 2 Aussagenlogik Motivation Grundlagen Eigenschaften Eigenschaften Normalformen
HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 10. Besprechung in KW02/2019
Technische Universität München Winter 2018/19 Prof. J. Esparza / Dr. M. Luttenberger, C. Welzel 2019/01/11 HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 10 Besprechung in KW02/2019 Beachten
Beispiel Aussagenlogik nach Schöning: Logik...
Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive
3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik
Deduktionssysteme der Aussagenlogik, Kap. 3: Tableaukalküle 38 3 Tableaukalküle 3.1 Klassische Aussagenlogik 3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Ein zweites Entscheidungsverfahren
Logik für Informatiker
Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche
Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)
WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14
2.3 Deduktiver Aufbau der Aussagenlogik
2.3 Deduktiver Aufbau der Aussagenlogik Dieser Abschnitt beschäftigt sich mit einem axiomatischen Aufbau der Aussagenlogik mittels eines Deduktiven Systems oder eines Kalküls. Eine syntaktisch korrekte
Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015
Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 3: Logik 1 Aussagenlogik Einleitung Eigenschaften Äquivalenz Folgerung Normalformen 2 Prädikatenlogik Wenn eine Karte
Wiederholung: Resolution in der Aussagenlo. Resolution in der Prädikatenlogik. Definition von Res(F) (Wiederholung)
Resolution in der Prädikatenlogik Wiederholung: Resolution in der Aussagenlo Der Algorithmus von Gilmore funktioniert zwar, ist in der Praxis aber unbrauchbar. Daher ist unser Programm der nächsten Stunden:
3. Grundlegende Begriffe von Logiken - Aussagenlogik
3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,
Logik für Informatiker
Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül
Computational Logic Algorithmische Logik Boolesche Algebra und Resolution
Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale
1.1 Grundbegriffe. Logik und Diskrete Strukturen (Sommer 2018) Prof. Dr. Ulrich Hertrampf
. Grundbegriffe Beispiele: Paris und Mäuse / Otto und der Arzt /... Definition: Syntax der Aussagenlogik ) Atomare Formeln (A i, i =, 2, 3,...)sindFormeln. 2) Falls F und G Formeln, dann auch (F ^ G) und
Algorithmischer Aufbau der Aussagenlogik
Algorithmischer Aufbau der Aussagenlogik In diesem Abschnitt betrachten wir Verfahren die bei gegebener endlichen Menge Σ und A-Form A entscheiden ob Σ = A gilt. Die bisher betrachteten Verfahren prüfen
Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten
2.6 Verfeinerung der Resolution Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten Resolutions-Strategien: heuristische Regeln für die Auswahl der Resolventen Resolutions-Restriktionen:
Was bisher geschah: klassische Aussagenlogik
Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f,,,,, aussagenlogische Formeln AL(P) induktive Definition: IA Atome (Aussagenvariablen) p, q, r,... P IS zusammengesetzte
5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation
Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung
Grundlagen der Künstlichen Intelligenz
Grundlagen der Künstlichen Intelligenz 28. Aussagenlogik: DPLL-Algorithmus Malte Helmert Universität Basel 2. Mai 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26. Grundlagen 27. Logisches
Ablauf. Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution. Eine besondere Formel. Eine besondere Formel
Ablauf Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Frank Heitmann [email protected] 30. Juni 2015 Wir werden heute die Themen aus den Kapitel 2.3, 2.4 und 2.5 aus
Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.
Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.
Formale Systeme. Aussagenlogik: Resolutionskalku l. Prof. Dr. Bernhard Beckert, WS 2018/2019
Formale Systeme Prof. Dr. Bernhard Beckert, WS 2018/2019 Aussagenlogik: Resolutionskalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Übung 4: Aussagenlogik II
Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F
Logik Vorlesung 3: Äquivalenz und Normalformen
Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
De Morgan sche Regeln
De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,
Formale Grundlagen der Informatik 1 Wiederholung zum Logik-Teil
Formale Grundlagen der Informatik 1 zum Logik-Teil Frank Heitmann [email protected] 20. Juni 2016 Frank Heitmann [email protected] 1/32 Überblick Im hatten wir Aussagenlogik
Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen
Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.
Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1
Aussagenlogik Formale Methoden der Informatik WiSe 22/23 teil 6, folie Teil VI: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning, Fakultät
Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution
Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Frank Heitmann [email protected] 30. Juni 2015 Frank Heitmann [email protected] 1/41 Ablauf Unendliche
Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation
Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik & Frank Heitmann [email protected] Mit der Aussagenlogik lassen sich einfache Verknüpfungen zwischen (atomaren) Gebilden ausdrücken
Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99. Sequenzen
Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99 Sequenzen Zum Abschluss des Kapitels über Aussagenlogik behandeln wir noch Gentzens Sequenzenkalkül.
