Logik für Informatiker
|
|
|
- Lars Fleischer
- vor 8 Jahren
- Abrufe
Transkript
1 Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16
2 Syntax der Aussagenlogik: Logische Zeichen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Logik für Informatiker, SS 06 p.17
3 Syntax der Aussagenlogik: Logische Zeichen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Negationssymbol ( nicht ) Logik für Informatiker, SS 06 p.17
4 Syntax der Aussagenlogik: Logische Zeichen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Negationssymbol ( nicht ) Konjunktionssymbol ( und ) Disjunktionssymbol ( oder ) Implikationssymbol ( wenn... dann ) Symbol für Äquivalenz ( genau dann, wenn ) Logik für Informatiker, SS 06 p.17
5 Syntax der Aussagenlogik: Logische Zeichen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Negationssymbol ( nicht ) Konjunktionssymbol ( und ) Disjunktionssymbol ( oder ) Implikationssymbol ( wenn... dann ) Symbol für Äquivalenz ( genau dann, wenn ) ( ) die beiden Klammern Logik für Informatiker, SS 06 p.17
6 Vokabular der Aussagenlogik: Signatur Definition: Aussagenlogische Signatur Abzählbare Menge von Symbolen, etwa Σ = {P 0,..., P n } oder Σ = {P 0, P 1,...} Logik für Informatiker, SS 06 p.18
7 Vokabular der Aussagenlogik: Signatur Definition: Aussagenlogische Signatur Abzählbare Menge von Symbolen, etwa Σ = {P 0,..., P n } oder Σ = {P 0, P 1,...} Bezeichnungen für Symbole in Σ atomare Aussagen Atome Aussagevariablen Logik für Informatiker, SS 06 p.18
8 Formeln der Aussagenlogik Definition: Menge For0 Σ der Formeln über Σ Die kleinste Menge mit: 1 For0 Σ und 0 For0 Σ Logik für Informatiker, SS 06 p.19
9 Formeln der Aussagenlogik Definition: Menge For0 Σ der Formeln über Σ Die kleinste Menge mit: 1 For0 Σ und 0 For0 Σ Σ For0 Σ Logik für Informatiker, SS 06 p.19
10 Formeln der Aussagenlogik Definition: Menge For0 Σ der Formeln über Σ Die kleinste Menge mit: 1 For0 Σ und 0 For0 Σ Σ For0 Σ Wenn A, B For0 Σ, dann auch A, (A B), (A B), (A B), (A B) Elemente von For0 Σ Logik für Informatiker, SS 06 p.19
11 Beispiel: Formeln aus der Wumpus-Welt Aussagenlogische Variablen P i,j bedeutet: B i,j bedeutet: Grube in [i, j] Luftzug in [i, j] P 1,1 B 1,1 B 2,1 Logik für Informatiker, SS 06 p.20
12 Beispiel: Formeln aus der Wumpus-Welt Aussagenlogische Variablen P i,j bedeutet: B i,j bedeutet: Grube in [i, j] Luftzug in [i, j] P 1,1 B 1,1 B 2,1 Formeln Gruben bewirken Luftzug in angrenzenden Feldern P 1,2 (B 1,1 B 1,3 B 2,2 ) Luftzug in einem Feld gdw. es an eine Grube grenzt B 1,1 (P 1,2 P 2,1 ) B 2,1 (P 1,1 P 2,2 P 3,1 ) Logik für Informatiker, SS 06 p.20
13 Induktion über Formelaufbau: Beispiel Lemma Ist A For0 Σ und sind B, C Teilformeln von A, dann gilt C ist Teilformel von B, oder B ist Teilformel von C, oder B, C liegen getrennt Beweis: Durch noethersche Induktion über den Formelaufbau Logik für Informatiker, SS 06 p.21
14 Semantik der Aussagenlogik Σ eine aussagenlogische Signatur Definition: Aussagenlogisches Modell (Interpretation) Eine beliebige Abbildung I : Σ {true, false} Logik für Informatiker, SS 06 p.22
15 Semantik der Aussagenlogik Σ eine aussagenlogische Signatur Definition: Aussagenlogisches Modell (Interpretation) Eine beliebige Abbildung I : Σ {true, false} Beispiel A B C true true false (Bei drei Symbolen gibt es 8 mögliche Modelle) Logik für Informatiker, SS 06 p.22
16 Semantik der Aussagenlogik Definition: Auswertung von Formeln in einem Modell Zu Modell / Interpretation I val I : For0 Σ {true, false} mit: val I (1) = true val I (0) = false val I (P) = I(P) für P Σ Logik für Informatiker, SS 06 p.23
17 Semantik der Aussagenlogik und: val I ( A) = false falls val I (A) = true true falls val I (A) = false Logik für Informatiker, SS 06 p.24
18 Semantik der Aussagenlogik und: val I (A B) = val I (A B) = true falls val I (A) = true und val I (B) = true false sonst true falls val I (A) = true oder val I (B) = true false sonst Logik für Informatiker, SS 06 p.25
19 Semantik der Aussagenlogik und: val I (A B) = true falls val I (A) = false oder val I (B) = true false val I (A B) = sonst true falls val I (A) = val I (B) false sonst Logik für Informatiker, SS 06 p.26
Logik für Informatiker
Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:
Logik für Informatiker
Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Grundlegende Beweisstrategien Induktion über
Logik für Informatiker
Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der
Theoretische Grundlagen des Software Engineering
Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik [email protected] Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10
Logik für Informatiker
Logik für Informatiker 3. Prädikatenlogik Teil 1 9.06.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik
Logik für Informatiker
Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische
Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung
Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele
Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung
Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik
Logik für Informatiker
Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Formale Logik Ziel Formalisierung und Automatisierung rationalen
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.
Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.
Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.
Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14
Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht
Logik für Informatiker
Vorlesung Logik für Informatiker 2. Induktion Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Induktion Zentrale Rolle Wesentliches Beweisprinzip in Mathematik
Syntax der Prädikatenlogik: Komplexe Formeln
Syntax der Prädikatenlogik: Komplexe Formeln Σ = P, F eine prädikatenlogische Signatur Var eine Menge von Variablen Definition: Menge For Σ der Formeln über Σ Logik für Informatiker, SS 06 p.10 Syntax
Logik für Informatiker
Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche
Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie
Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf
Mathematik für Informatiker I
Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft
Einführung in die Logik
Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3
Was bisher geschah: klassische Aussagenlogik
Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f (nullstellig), (einstellig),,,, (zweistellig) aussagenlogische Formeln AL(P) induktive Definition: IA atomare Formeln
Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I
Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:
Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =
Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min
1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.
Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik
Die Prädikatenlogik erster Stufe: Syntax und Semantik
Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,
Logik Vorlesung 3: Äquivalenz und Normalformen
Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
Beispiel Aussagenlogik nach Schöning: Logik...
Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit
Nichtklassische Logiken
Nichtklassische Logiken Peter H. Schmitt [email protected] UNIVERSITÄT KARLSRUHE Sommersemester 2004 P. H. Schmitt: Nichtklassische Logiken p.1 Inhalt Wiederholung P. H. Schmitt: Nichtklassische Logiken
Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1
Kapitel 1.1 Aussagenlogik: Syntax Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Übersicht 1.1.1 Die Sprache der Aussagenlogik 1.1.2 Explizite vs. implizite Definitionen 1.1.3
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in
Grundlagen der Logik
Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl
4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik
Theorie der Informatik 3. März 2014 4. Prädikatenlogik I Theorie der Informatik 4. Prädikatenlogik I 4.1 Motivation Malte Helmert Gabriele Röger 4.2 Syntax der Prädikatenlogik Universität Basel 3. März
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für
Logik für Informatiker Logic for Computer Scientists
Logik für Informatiker Logic for Computer Scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 13 Vollständigkeit der Aussagenlogik Till Mossakowski Logik 2/ 13 Objekt- und Metatheorie
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 18: Logik Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/35 Überblick Formeln in Prädikatenlogik erster Stufe Theorien und
Logik für Informatiker Logic for computer scientists
Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel
Zusammenfassung des Stoffes zur Vorlesung Formale Systeme
Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Max Kramer 13. Februar 2009 Diese Zusammenfassung entstand als persönliche Vorbereitung auf die Klausur zur Vorlesung Formale Systeme von Prof.
Vorsemesterkurs Informatik
Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung
Logik für Informatiker
Logik für Informatiker 3. Prädikatenlogik Teil 4 18.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Letzte Vorlesung Sematik: Σ-Strukturen = (U, (f : U
Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14.
Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 14. Dezember 2016 Die formale Sprache der Prädikatenlogik: Zeichen Benutzt werden
Logic in a Nutshell. Christian Liguda
Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
Logik für Informatiker
Vorlesung Logik für Informatiker 11. Prädikatenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Negationsnormalform Definition: Negationsnormalform
Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik
Formale Grundlagen der Informatik 1 Kapitel 19 & Frank Heitmann [email protected] 23. Juni 2015 Frank Heitmann [email protected] 1/25 Motivation Die ist eine Erweiterung
I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.
I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten
Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Grundbegriffe für dreiwertige Logik
Grundbegriffe für dreiwertige Logik Hans Kleine Büning Universität Paderborn 1.11.2011 1 Syntax und Semantik Die klassische Aussagenlogik mit den Wahrheitswerten falsch und wahr bezeichnen wir im weiteren
Weitere Beweistechniken und aussagenlogische Modellierung
Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche
Kapitel 1. Aussagenlogik
Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive
Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reguläre Ausdrücke als Suchmuster für grep
Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen
Aussagenlogik. Motivation Syntax Semantik Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle
Aussagenlogik Motivation Syntax Semantik Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.1 Aussagenlogik Syntax 22 Einführendes Beispiel
Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen
Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der
2.2.4 Logische Äquivalenz
2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden
1 Übersicht Induktion
Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender 0.11.01 (v1.3) 1 Übersicht Induktion 1.1 Allgemeines Unter einem induktiven Vorgehen versteht
Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.
2 Aussagenlogik (AL) 2. Wahrheitsfunktionale Konnektoren Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.
Mathematik-Vorkurs für Informatiker Aussagenlogik 1
Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Notieren Sie die Definitionen der
SS April Übungen zur Vorlesung Logik Blatt 1. Prof. Dr. Klaus Madlener Abgabe bis 27. April :00h
SS 2011 20. April 2011 Übungen zur Vorlesung Logik Blatt 1 Prof. Dr. Klaus Madlener Abgabe bis 27. April 2011 10:00h 1. Aufgabe: [strukturelle Induktion, Übung] Zeigen Sie mit struktureller Induktion über
Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik
Zusammenfassung Einführung in die Theoretische Informatik Woche 5 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung der letzten LV Jede binäre Operation hat maximal ein
Formale Systeme. Übung: Reinhard Hemmerling Büsgenweg 4, Raum 89 (1. Stock) rhemmer<at>gwdg.de
Formale Systeme Vorlesung: Winfried Kurth Lehrstuhl Computergrafik und ökologische Informatik Büsgenweg 4, Raum 90 (1. Stock) 39-9715 wkinformatik.uni-goettingen.de http://www.uni-goettingen.de/de/72781.html
Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II.
Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen
Logik für Informatiker
Logik für Informatiker Wintersemester 2007/08 Thomas Schwentick Teil A: Aussagenlogik 2. Grundlagen Version von: 2. November 2007(16:19) Inhalt 2.1 Beispiele 2.2 Syntax 2.3 Semantik 2.4 Modellierung mit
Logik für Informatiker
Vorlesung Logik für Informatiker 3. Aussagenlogik Einführung: Logisches Schließen im Allgemeinen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Beispiel:
Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch
Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann [email protected] 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei
Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik
Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Grundbegriffe der Aussagenlogik 1 Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen
Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur
Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die
5.2 Logische Gültigkeit, Folgerung, Äquivalenz
5.2 Logische Gültigkeit, Folgerung, Äquivalenz Durch Einsetzung von PL1-Formeln für die Metavariablen in AL-Gesetzen erhält man PL1-Instanzen von AL-Gesetzen. Beispiele: φ φ AL PL1-Instanzen: Pa () Pa
Logik für Informatiker Musterlösung Aufgabenblatt 8
Universität Koblenz-Landau SS 06 Institut für Informatik Bernhard Beckert www.uni-koblenz.de/~beckert Claudia Obermaier www.uni-koblenz.de/~obermaie Cristoph Gladisch www.uni-koblenz.de/~gladisch Übung
Logik für Informatiker
Vorlesung Logik für Informatiker 10. Prädikatenlogik Substitutionen und Unifikation Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Substitutionen Definition:
Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik
Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Fragen Seite Punkte 1. Was ist die Mathematische Logik? 3 2 2. Was sind die Aussagenlogik und die Prädikatenlogik? 5 4 3. Was sind Formeln,
Einführung in die mathematische Logik
Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive
1. Einführung in Temporallogik CTL
1. Einführung in Temporallogik CTL Temporallogik dient dazu, Aussagen über Abläufe über die Zeit auszudrücken und zu beweisen. Zeit wird in den hier zunächst behandelten Logiken als diskret angenommen
Motivation. Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel
Motivation Formale Grundlagen der Informatik 1 Kapitel 17 & Frank Heitmann [email protected] 6. & 7. Juni 2016 Frank Heitmann [email protected] 1/43 Die ist eine Erweiterung
Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4
Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)
Boolesche Terme und Boolesche Funktionen
Boolesche Terme und Boolesche Funktionen Aussagen Mit dem Begriff der Aussage und der logischen Verknüpfung von Aussagen beschäftigte man sich schon im alten Griechenland. Die Charakterisierung einer Aussage
Die Folgerungsbeziehung
Kapitel 2: Aussagenlogik Abschnitt 2.1: Syntax und Semantik Die Folgerungsbeziehung Definition 2.15 Eine Formel ψ AL folgt aus einer Formelmenge Φ AL (wir schreiben: Φ = ψ), wenn für jede Interpretation
TU7 Aussagenlogik II und Prädikatenlogik
TU7 Aussagenlogik II und Prädikatenlogik Daniela Andrade [email protected] 5.12.2016 1 / 32 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds
Theoretische Grundlagen des Software Engineering
Theoretische Grundlagen des Software Engineering 9: Prädikatenlogik [email protected] Rückblick 2 Rückblick: Vor- und Nachteile von Aussagenlogik Aussagenlogik ist deklarativ: Syntaxelemente entsprechen
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 3: Alphabete, Abbildungen, Aussagenlogik Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/32 Überblick Alphabete
5. Logik in der KI. Wissensbasis: Menge von Aussagen, die Fakten über die Welt repräsentieren, formuliert in einer Wissensrepräsentationssprache.
5. Logik in der KI Wissensbasis: Menge von Aussagen, die Fakten über die Welt repräsentieren, formuliert in einer Wissensrepräsentationssprache. Neue Aussagen können in die Wissensbasis eingefügt werden:
Logik Vorlesung 8: Modelle und Äquivalenz
Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere
