TU5 Aussagenlogik II
|
|
|
- Franziska Lehmann
- vor 9 Jahren
- Abrufe
Transkript
1 TU5 Aussagenlogik II Daniela Andrade / 21
2 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf findet ;) 2 / 21
3 Themenübersicht 1 Aussagenlogik II 3 / 21
4 Bitte nicht verwechseln! 4 / 21
5 Themenübersicht 1 Aussagenlogik II KV Diagramme DPLL-Algorithmus 5 / 21
6 KV Diagramme Themenübersicht 1 Aussagenlogik II KV Diagramme DPLL-Algorithmus 6 / 21
7 KV Diagramme KV-Diagramme in der Aussagenlogik KV-Diagramme benutzen wir in der Aussagenlogik, um die Semantik einer Formel F kompakter darzustellen. 7 / 21
8 KV Diagramme Beispiel: Semantik einer Formel im KV-Diagramm Gegeben: Formel F über V = {A, B, B}: F = ( B C ) ( A C ). Semantik in der Wahrheitstabelle und im KV-Diagramm: A B C (B C) (A C) / 21
9 Themenübersicht 1 Aussagenlogik II KV Diagramme DPLL-Algorithmus 9 / 21
10 Literale Ein Literal ist eine Variable oder die Negation einer Variable. Beispiel Die Menge aller Literale über V = {p, q, r} ist {p, q, r, p, q, r}. 10 / 21
11 Disjunktionen Eine Disjunktion F von Formeln F 1,..., F n ist eine Formel der Form F = F 1... F n. Beispiel F = (q (p r)) (r q) p (p q) ist eine Disjunktion. Info Die leere Disjunktion ist F := false. 11 / 21
12 Konjunktionen Eine Konjunktion F von Formeln F 1,..., F n ist eine Formel der Form F = F 1... F n. Beispiel F = (p q) q (q r) (p q s) ist eine Konjunktion. Info Die leere Konjunktion ist F := true. 12 / 21
13 Disjunktive Normalform Sei V eine beliebige Menge. Beispiel eine Formel über V heißt DNF-Klausel, falls sie eine Konjunktion von Literalen ist. Eine Formel über V in disjunktiver Normalform (DNF) ist eine Disjunktion von DNF-Klauseln. Folgende Formel F über V = {p, q, r, s} ist in DNF: F = ( p r s) ( q s) (p q r s) }{{}}{{}}{{} ( r s) }{{} Konjunktion Konjunktion Konjunktion Konjunktion }{{} Disjunktion 13 / 21
14 Konjunktive Normalform Sei V eine beliebige Menge. Beispiel eine Formel über V heißt KNF-Klausel, falls sie eine Disjunktion von Literalen ist. Eine Formel über V in konjunktiver Normalform (KNF) ist eine Konjunktion von KNF-Klauseln. Folgende Formel F über V = {p, q, r, s} ist in KNF: F = ( p r s) ( q s) (p q r s) }{{}}{{}}{{} ( r s) }{{} Disjunktion Disjunktion Disjunktion Disjunktion }{{} Konjunktion 14 / 21
15 Vollständige Normalformen Eine Formel ist in vollständiger DNF oder KNF, falls alle Klauseln in ihr genau dieselben Variablen besitzen. 15 / 21
16 Rezept Frage: Wie findet man eine zu einer gegebenen Formel F äquivalente Formel in vollständiger DNF bzw. KNF? Methode: Zuerst stelle die Wahrheitstafel der Formel F auf. Dann: DNF: 1 Wähle Zeilen mit Ergebnis 1. 2 Bilde für jede Zeile eine Konjunktion aller Variablen (mit ), in der alle mit 0 belegten Variablen negiert sind und die anderen nicht. 3 Bilde eine Disjunktion aller Konjunktionen (mit ). KNF: 1 Wähle Zeilen mit Ergebnis 0. 2 Bilde für jede Zeile eine Disjunktion aller Variablen (mit ), in der alle mit 1 belegten Variablen negiert sind und die anderen nicht. 3 Bilde eine Konjunktion aller Disjunktionen (mit ). 16 / 21
17 DPLL-Algorithmus Themenübersicht 1 Aussagenlogik II KV Diagramme DPLL-Algorithmus 17 / 21
18 DPLL-Algorithmus Ersetzen von Variablen Sei V eine Variablenmenge und F eine KNF-Formel mit p V F. F [p\ true] bezeichnet die Formel, die entsteht, in dem jedem Vorkommnis von p in F durch true ersetzt wird. F [p\ false] bezeichnet die Formel, die entsteht, in dem jedem Vorkommnis von p in F durch false ersetzt wird. Nachdem eine Variable mit true oder false belegt wurde, kann die entstehende Formel mit folgenden Regeln vereinfacht werden: F true F, F true true, true false, F false false, F false F, false true. 18 / 21
19 DPLL-Algorithmus Beispiel Sei F folgende KNF-Formel über V = {p, q, r, s}: Dann gilt und F = ( p q s) (p q s) (p q r) ( p r s). F [p\ true] ( p q s) (p q s) (p q r) ( p r s) (q s) ( r s) F [p\ false] ( p q s) ( p q s) ( p q r) ( p r s) ( q s) (q r). 19 / 21
20 DPLL-Algorithmus Infos DPLL überprüft die Erfüllbarkeit einer KNF-Formel. KNF-Formeln werden als Mengen dargestellt. Zum Beispiel: Achtung: ( p q r) q (r s) {{ p, q, r}, {q}, {r, s}} {} ˆ= leere Klausel ˆ= leere Disjunktion ˆ= false {{}} ˆ= leere Formel ˆ= leere Konjunktion ˆ= true Der Algorithmus hält, sobald die leere Menge zum ersten Mal gefunden wird. 20 / 21
21 DPLL-Algorithmus Rezept: DPLL-Algorithmus Frage: Ist eine gegebene KNF-Formel F erfüllbar? 1 Wenn F = {}, dann antworte erfüllbar ; 2 Wenn F = {{}}, dann antworte unerfüllbar ; 3 Sonst: 4 Für jede Variable p V F (in alphabetischer Reihenfolge): 5 Führe den Algorithmus für F [p\ true] aus; 6 Breche ab, falls F [p\ true] erfüllbar ; 7 Führe den Algorithmus für F [ p\ true] aus; 8 Breche ab, falls F [ p\ false] erfüllbar ; 21 / 21
TU9 Aussagenlogik. Daniela Andrade
TU9 Aussagenlogik Daniela Andrade [email protected] 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /
Logik für Informatiker
Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische
Übung 4: Aussagenlogik II
Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F
Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??
Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten
Beispiel Aussagenlogik nach Schöning: Logik...
Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 4 7.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
TU7 Aussagenlogik II und Prädikatenlogik
TU7 Aussagenlogik II und Prädikatenlogik Daniela Andrade [email protected] 5.12.2016 1 / 32 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds
Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.
Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.
Ersetzbarkeitstheorem
Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1
Aussagenlogik Formale Methoden der Informatik WiSe 22/23 teil 6, folie Teil VI: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning, Fakultät
Logische Äquivalenz. Definition Beispiel 2.23
Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt
Allgemeingültige Aussagen
Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt
Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch
Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann [email protected] 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann [email protected] 9. Juni 2015 Frank Heitmann [email protected] 1/36 Ersetzbarkeitstheorem
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
1 Aussagenlogischer Kalkül
1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln
Künstliche Intelligenz Logische Agenten & Resolution
Künstliche Intelligenz Logische Agenten & Resolution Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Inferenz-Algorithmus Wie könnte ein
Computational Logic Algorithmische Logik Boolesche Algebra und Resolution
Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale
Aussagenlogik. (MAF2) MAF(I, t) = t und MAF(I, f ) = f. Die Semantik aussagenlogischer Formeln ist durch die Funktion
43 Vergleiche mit MBA! (MAF4) MAF(I, (F G)) = MAF(I, F) MAF(I, G), wobei die zum Symbol gehörende Funktion ist. (MAF3) MAF(I, F) = MAF(I, F) (MAF2) MAF(I, t) = t und MAF(I, f ) = f (MAF1) MAF(I, A) = I(A),
Resolution (Idee) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit.
Resolution (Idee) (F A) (F A) (F A) (F A) (F F ) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit. Zwei Fragen: Kann man aus einer unerfüllbaren Formel immer die leere
Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln
Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Frank Heitmann [email protected] 30. Mai 2016 Frank Heitmann [email protected] 1/42 Zusammenfassung Syntax
Formale Systeme. Aussagenlogik: Resolutionskalku l. Prof. Dr. Bernhard Beckert, WS 2018/2019
Formale Systeme Prof. Dr. Bernhard Beckert, WS 2018/2019 Aussagenlogik: Resolutionskalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Grundlagen der Logik
Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl
Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018
Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive
Semantik der Aussagenlogik (Kurzform)
Semantik der Aussagenlogik (Kurzform) Eine Interpretation ist eine Abbildung der Aussagevariablen je in {true,false} (entspr. Wahrheit und Falschheit, abk.,) Interpretation zusammengesetzter Formeln definiere
Was bisher geschah: klassische Aussagenlogik
Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f,,,,, aussagenlogische Formeln AL(P) induktive Definition: IA Atome (Aussagenvariablen) p, q, r,... P IS zusammengesetzte
Zusammenfassung Syntax: Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln. Zusammenfassung
Formale der Informatik 1 Kapitel 15 und Frank Heitmann [email protected] 30. Mai 2016 Zusammenfassung Syntax Zusammenfassung Syntax: Motivation Definition der Syntax: Alphabet, Junktor
Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)
Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,
Grundlagen der Programmierung
GdP4 Slide 1 Grundlagen der Programmierung Vorlesung 4 vom 04.11.2004 Sebastian Iwanowski FH Wedel Grundlagen der Programmierung 1. Einführung Grundlegende Eigenschaften von Algorithmen und Programmen
HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 10. Besprechung in KW02/2019
Technische Universität München Winter 2018/19 Prof. J. Esparza / Dr. M. Luttenberger, C. Welzel 2019/01/11 HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 10 Besprechung in KW02/2019 Beachten
Grundlagen der Theoretischen Informatik
FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie 1 Grundlagen der Theoretischen Inormatik Sebastian Ianoski FH Wedel Kap. 2: Logik, Teil 2.1: Aussagenlogik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie
Kapitel L:II. II. Aussagenlogik
Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen
Klauselmengen. Definition Sei
Klauselmengen Definition 2.38 Sei α = (p 11... p 1k1 )... (p n1... p nkn ) eine in aussagenlogische Formel in KNF. Dann heißen die Mengen {p i1,..., p iki }, 1 i n, der jeweils disjunktiv verknüpften Literale
DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery. WOCHE 4 AM
DuE-Tutorien 4 und 6 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery WOCHE 4 AM 13.11.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Logik Vorlesung 3: Äquivalenz und Normalformen
Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
Logik für Informatiker Logic for Computer Scientists
Logik für Informatiker Logic for Computer Scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 18 Vollständigkeit der Aussagenlogik Till Mossakowski Logik 2/ 18 Objekt- und Metatheorie
3. Grundlegende Begriffe von Logiken - Aussagenlogik
3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,
Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen
Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen Barbara König Übungsleitung: Dennis Nolte, Harsh Beohar Barbara König Logik 1 Mengen, Relationen und Funktionen Menge: Menge X von Elementen,
Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015
Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 3: Logik 1 Aussagenlogik Einleitung Eigenschaften Äquivalenz Folgerung Normalformen 2 Prädikatenlogik Wenn eine Karte
Was bisher geschah: klassische Aussagenlogik
Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur, Junktoren: t, f,,,,, Prinzip der strukturellen Induktion über Baumstruktur von Formeln, arithmetischen Ausdrücken usw. induktive
Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4
Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)
Aussagenlogik: Syntax von Aussagen
Aussagenlogik: Syntax von Aussagen A ::= X (A A) (A A) ( A) (A A) (A A) 0 1 Prioritätsreihenfolge :,,,,. A B: Konjunktion (Verundung). A B: Disjunktion (Veroderung). A B: Implikation. A B: Äquivalenz.
Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl.
Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für
b= NaN
42 Beispiel: IEEE single precision: 0 10000000 00000000000000000000000 b= + 2 128 127 1.0 2 = 2 0 10000001 10100000000000000000000 b= + 2 129 127 1.101 2 = 6.5 1 10000001 10100000000000000000000 b= 2 129
Logik Vorlesung 5: Grundlagen Resolution
Logik Vorlesung 5: Grundlagen Resolution Andreas Maletti 21. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere
Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik
Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable
DisMod-Repetitorium Tag 1
DisMod-Repetitorium Tag 1 Aussagenlogik, Mengen 19. März 2018 1 Organisatorisches 2 Tipps zur Klausur 3 Aussagenlogik Was gehört in die Aussagenlogik, was nicht? Notationen für viele Terme Belegungen,
Grundlagen der Programmierung
GdP2 Slide 1 Grundlagen der Programmierung Vorlesung 2 Sebastian Ianoski FH Wedel GdP2 Slide 2 Beispiel ür eine Programmveriikation Gegeben sei olgender Algorithmus: i (x>0) ((y+x) 0) then z := x y else
Schaltfunktion, Definition
Schaltfunktion, Definition Sei S = { 0,1}. Dann heißt eine Abbildung f: S n S eine Schaltfunktion. = f(x n-1,x n-2,...,,, ), x n-1, x n-2,...,,, S x i X = (x n-1,x n-2,...,,, ) Eingangsvariable Eingangsvektor
Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D)
INTA - Lösungshinweise zum Übungsblatt 4, Version 1.0α. Wenn sie Fehler finden oder Ihnen etwas auch nach dem Gespräch mit ihren Kommilitonen noch unklar ist, dann schicken sie mir bitte eine Email! Aufgabe
Normalformen boolescher Funktionen
Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion
Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0
Das SAT Problem oder Erfüllbarkeitsproblem Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe TH SAT Instanz: Eine aussagenlogische Formel F For 0 Frage: Ist F erfüllbar?
TU8 Beweismethoden. Daniela Andrade
TU8 Beweismethoden Daniela Andrade [email protected] 12.12.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2
Formale Grundlagen der Informatik 1 Wiederholung zum Logik-Teil
Formale Grundlagen der Informatik 1 zum Logik-Teil Frank Heitmann [email protected] 20. Juni 2016 Frank Heitmann [email protected] 1/32 Überblick Im hatten wir Aussagenlogik
Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016
Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 2: Logik 1 Prädikatenlogik (Einleitung) 2 Aussagenlogik Motivation Grundlagen Eigenschaften Eigenschaften Normalformen
Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln
Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht
FORMALE SYSTEME. 23. Vorlesung: Logisches Schließen. TU Dresden, 16. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme
FORMALE SYSTEME 23. Vorlesung: Logisches Schließen Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 16. Januar 2017 Rückblick Markus Krötzsch, 16. Januar 2017 Formale Systeme Folie 2 von 31
Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser
Informatik A Prof. Dr. Norbert Fuhr [email protected] auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische
Einige Grundlagen der Komplexitätstheorie
Deterministische Polynomialzeit Einige Grundlagen der Komplexitätstheorie Ziel: NP-Vollständigkeit als ressourcenbeschränktes Analagon zur RE-Vollständigkeit. Komplexitätstheorie untersucht den Ressourcenbedarf
Logik Vorlesung 4: Horn-Logik und Kompaktheit
Logik Vorlesung 4: Horn-Logik und Kompaktheit Andreas Maletti 14. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
Beweisen mit Semantischen Tableaux
Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet
Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche
Formale Systeme, WS 2011/2012 Lösungen zu Übungsblatt 1
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2/22 Lösungen zu Übungsblatt Dieses
1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.
Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)
1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.
Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)
Definition (Modus Ponens) Wenn A, dann B. A gilt Also, gilt B
Zusammenfassung der letzten LVA Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Fakt Korrektheit dieser Schlussfigur ist unabhängig von den konkreten Aussagen Einführung
Grundlagen der Künstlichen Intelligenz
Grundlagen der Künstlichen Intelligenz 28. Aussagenlogik: DPLL-Algorithmus Malte Helmert Universität Basel 2. Mai 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26. Grundlagen 27. Logisches
Aussagenlogik. Aussagen und Aussagenverknüpfungen
Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,
Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =?
Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 2 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl.
1 Aussagenlogik AL: Verknüpfung von Aussagen
1 Aussagenlogik AL: Verknüpfung von Aussagen Syntax atomare Formeln A,B,C sind AL-Formeln F und G AL-Formeln (F G),(F G) und F AL-Formeln müssen in endlich vielen Schritten gebildet werden können echtes
Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung
Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele
Logic in a Nutshell. Christian Liguda
Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung
Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1
Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 7 15.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Unser Ziel Kalkül(e) zur systematischen Überprüfung
f ist sowohl injektiv als auch surjektiv.
Bemerkungen: Wir erinnern uns an folgende Definitionen: Eine Funktion f : U V heißt injektiv, wenn gilt: ( x, y U)[x y f(x) f(y)] Eine Funktion f : U V heißt surjektiv, wenn gilt: ( y V x U)[y = f(x)]
Einführung in die Logik. Sommersemester Juli 2010 Institut für Theoretische Informatik
Einführung in die Logik Jiří Adámek Sommersemester 2010 14. Juli 2010 Institut für Theoretische Informatik Inhaltsverzeichnis 1 Einleitung: Logische Systeme 4 I Aussagenlogik 6 2 Aussagenlogik 7 2.i Syntax
Mathematik für Informatiker I
Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft
Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung
Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik
Erfüllbarkeit und Allgemeingültigkeit
Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ
Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen
Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification
Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie
Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf
Mathematische Grundlagen I Logik und Algebra
Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte
