TU9 Aussagenlogik. Daniela Andrade
|
|
|
- Theresa Esser
- vor 8 Jahren
- Abrufe
Transkript
1 TU9 Aussagenlogik Daniela Andrade / 21
2 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf findet ;) 2 / 21
3 Bitte nicht verwechseln! 3 / 21
4 TA 1 Äquivalenzen in der Aussagenlogik 4 / 21
5 Wie überprüfen wir, ob zwei Formeln logisch äquivalent sind? 1 Möglichkeit: Vergleiche die Semantikspalten der Wahrheitstabellen 2 Möglichkeit: Mit Hilfe von KV-Diagrammen... :) 3 Möglichkeit: Mit Hilfe von Äquivalenzregeln 5 / 21
6 Äquivalenzregeln Seien F, G und H aussagenlogische Formeln. Ein paar nützliche Äquivalenzregeln sind: F true F F false F (Identität) F true true F false false (Dominanz) F F F F F F (Idempotenz) F F (Doppelte Negation) F F true F F false (Triv. Taut./Kontr.) F G G F F G G F (Kommutativität) (F G) H F (G H) (F G) H F (G H) (Assoziativität) F (G H) (F G) (F H) F (G H) (F G) (F H) (Distributivität) (F G) F G (F G) F G (De Morgan) F G (F G) (F G) F G (F G) (G F ) (Exklusives-Oder) F G F G F G F G (Implikation) F G (F G) (G F ) F G (F G) (Bikonditional) 6 / 21
7 TA KNF & DNF 7 / 21
8 Literale Ein Literal ist eine Variable oder die Negation einer Variable. Beispiel Die Menge aller Literale über V = {p, q, r} ist {p, q, r, p, q, r}. 8 / 21
9 Disjunktionen Eine Disjunktion F von Formeln F 1,..., F n ist eine Formel der Form F = F 1... F n. Beispiel F = (q (p r)) (r q) p (p q) ist eine Disjunktion. 9 / 21
10 Konjunktionen Eine Konjunktion F von Formeln F 1,..., F n ist eine Formel der Form F = F 1... F n. Beispiel F = (p q) q (q r) (p q s) ist eine Konjunktion. 10 / 21
11 Disjunktive Normalform Sei V eine beliebige Menge. Beispiel eine Formel über V heißt DNF-Klausel, falls sie eine Konjunktion von Literalen ist. Eine Formel über V in disjunktiver Normalform (DNF) ist eine Disjunktion von DNF-Klauseln. Folgende Formel F über V = {p, q, r, s} ist in DNF: F = ( p r s) ( q s) (p q r s) }{{}}{{}}{{} ( r s) }{{} Konjunktion Konjunktion Konjunktion Konjunktion }{{} Disjunktion 11 / 21
12 Konjunktive Normalform Sei V eine beliebige Menge. Beispiel eine Formel über V heißt KNF-Klausel, falls sie eine Disjunktion von Literalen ist. Eine Formel über V in konjunktiver Normalform (KNF) ist eine Konjunktion von KNF-Klauseln. Folgende Formel F über V = {p, q, r, s} ist in KNF: F = ( p r s) ( q s) (p q r s) }{{}}{{}}{{} ( r s) }{{} Disjunktion Disjunktion Disjunktion Disjunktion }{{} Konjunktion 12 / 21
13 Vollständige Normalformen Eine Formel ist in vollständiger DNF oder KNF, falls alle Klauseln in ihr genau dieselben Variablen besitzen. 13 / 21
14 Rezept Frage: Wie findet man eine zu einer gegebenen Formel F äquivalente Formel in vollständiger DNF bzw. KNF? Methode: Zuerst stelle die Wahrheitstafel der Formel F auf. Dann: DNF: 1 Wähle Zeilen mit Ergebnis 1. 2 Bilde für jede Zeile eine Konjunktion aller Variablen (mit ), in der alle mit 0 belegten Variablen negiert sind und die anderen nicht. 3 Bilde eine Disjunktion aller Konjunktionen (mit ). KNF: 1 Wähle Zeilen mit Ergebnis 0. 2 Bilde für jede Zeile eine Disjunktion aller Variablen (mit ), in der alle mit 1 belegten Variablen negiert sind und die anderen nicht. 3 Bilde eine Konjunktion aller Disjunktionen (mit ). 14 / 21
15 TA 2+3 DPLL-Algorithmus 15 / 21
16 Ersetzen von Variablen Sei V eine Variablenmenge und F eine KNF-Formel mit p V F. F [p\ true] bezeichnet die Formel, die entsteht, in dem jedem Vorkommnis von p in F durch true ersetzt wird. F [p\ false] bezeichnet die Formel, die entsteht, in dem jedem Vorkommnis von p in F durch false ersetzt wird. Nachdem eine Variable mit true oder false belegt wurde, kann die entstehende Formel mit folgenden Regeln vereinfacht werden: F true F, F true true, true false, F false false, F false F, false true. 16 / 21
17 Beispiel Sei F folgende KNF-Formel über V = {p, q, r, s}: Dann gilt und F = ( p q s) (p q s) (p q r) ( p r s). F [p\ true] ( p q s) (p q s) (p q r) ( p r s) (q s) ( r s) F [p\ false] ( p q s) ( p q s) ( p q r) ( p r s) ( q s) (q r). 17 / 21
18 Infos F [p\ true] entspricht also F ohne Vorkommnisse von p und ohne Klauseln, die p enthalten. F [p\ false] entspricht also F ohne Vorkommnisse von p und ohne Klauseln, die p enthalten. 18 / 21
19 DPLL DPLL überprüft die Erfüllbarkeit einer KNF-Formel. KNF-Formeln werden als Mengen dargestellt. Zum Beispiel: ( p q r) q (r s) {{ p, q, r}, {q}, {r, s}} Achtung mit der leeren Menge {}: {{}} ˆ= leere Klausel ˆ= leere Disjunktion ˆ= false {} ˆ= leere Formel ˆ= leere Konjunktion ˆ= true 19 / 21
20 Rezept Frage: Wie überprüft man mit dem DPLL-Algorithmus, ob eine gegebene KNF-Formel F erfüllbar ist? Methode: Führe den Algorithmus aus ;-) 1 Wenn F = {} (d.h. F = true), dann antworte erfüllbar ; 2 Wenn F = {{}} (d.h. F = false), dann antworte unerfüllbar ; 3 Sonst: 4 Wenn OLR für eine Variable p (bzw. p) gilt: 5 Führe den Algorithmus für F [p\ true] (bzw. F [p\ false]) aus; 6 Wenn PLR für eine Variable p (bzw. p) gilt: 7 Führe den Algorithmus für F [p\ true] (bzw. F [p\ false]) aus; 8 Sonst wähle eine Variable p V F in alphabethischer Reihenfolge und: 9 Falls F [p\ true] erfüllbar ist, antworte erfüllbar ; 10 Falls F [p\ false] erfüllbar ist, antworte erfüllbar ; 20 / 21
21 Infos Kommt man auf eine Formel, die die leere Klausel enthält, so ist diese äquivalent zu false. Dann müssen wir zur letzten Verzweigung zurück gehen und von da aus weitermachen. Liefern alle Pfade false, so ist die Formel unerfüllbar. Bei DPLL ist die Lösung nicht immer eindeutig! Wir können die Reihenfolge, in der Variablen ersetzt werden, und den Wert, durch den sie ersetzt werden, selber wählen. Der Algorithmus hält, sobald die leere Menge zum ersten Mal gefunden wird. 21 / 21
TU5 Aussagenlogik II
TU5 Aussagenlogik II Daniela Andrade [email protected] 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)
Übung 4: Aussagenlogik II
Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F
Beispiel Aussagenlogik nach Schöning: Logik...
Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit
I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.
I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten
Ersetzbarkeitstheorem
Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen
3. Grundlegende Begriffe von Logiken - Aussagenlogik
3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge
Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln
Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht
Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche
Aussagenlogik. Aussagen und Aussagenverknüpfungen
Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,
Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik
Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable
Erfüllbarkeit und Allgemeingültigkeit
Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ
Normalformen boolescher Funktionen
Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion
Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:
Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,
Mathematik-Vorkurs für Informatiker Aussagenlogik 1
Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Notieren Sie die Definitionen der
Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen
Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.
Logic in a Nutshell. Christian Liguda
Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung
Mathematik-Vorkurs für Informatiker Aussagenlogik 1
Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Kategorie 1 Notieren Sie die Definitionen
Einführung in die Logik. Sommersemester Juli 2010 Institut für Theoretische Informatik
Einführung in die Logik Jiří Adámek Sommersemester 2010 14. Juli 2010 Institut für Theoretische Informatik Inhaltsverzeichnis 1 Einleitung: Logische Systeme 4 I Aussagenlogik 6 2 Aussagenlogik 7 2.i Syntax
Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1
Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
Logik Teil 1: Aussagenlogik
Aussagenlogik Aussagenlogik behandelt die logische Verknüpfung von Aussagen mittels Junktoren wie und, oder, nicht, gdw. Logik Teil : Aussagenlogik Jeder Aussage ist ein Wahrheitswert (wahr/falsch) zugeordnet
TU8 Beweismethoden. Daniela Andrade
TU8 Beweismethoden Daniela Andrade [email protected] 12.12.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2
Mathematische Logik. Grundlagen, Aussagenlogik, Semantische Äquivalenz. Felix Hensel. February 21, 2012
Mathematische Logik Grundlagen, Aussagenlogik, Semantische Äquivalenz Felix Hensel February 21, 2012 Dies ist im Wesentlichen eine Zusammenfassung der Abschnitte 1.1-1.3 aus Wolfgang Rautenberg s Buch
Konjunktive und disjunktive Normalformen
Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,
Zusammenfassung des Stoffes zur Vorlesung Formale Systeme
Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Max Kramer 13. Februar 2009 Diese Zusammenfassung entstand als persönliche Vorbereitung auf die Klausur zur Vorlesung Formale Systeme von Prof.
Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1
Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter
Informationsverarbeitung auf Bitebene
Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung
Informatik A (Autor: Max Willert)
2. Aufgabenblatt Wintersemester 2012/2013 - Musterlösung Informatik A (Autor: Max Willert) 1. Logik im Alltag (a) Restaurant A wirbt mit dem Slogan Gutes Essen ist nicht billig!, das danebenliegende Restaurant
Grundlagen der Theoretischen Informatik
FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski
Musterbeispiele: Aussagenlogik (Lösung)
Musterbeispiele: Aussagenlogik (Lösung) 3.0 VU Formale Modellierung Lara Spendier, Gernot Salzer WS 2011 Aufgabe 1 Gegeben seien die folgenden Aussagen: A: Es ist eiskalt. B: Es schneit. Drücken Sie die
Grundlagen der diskreten Mathematik
Grundlagen der diskreten Mathematik Prof. Dr. Romana Piat WS 25/6 Allgemeine Informationen Vorlesungen:./C Zug D (Mi., 3. Block + Do., 4. Block, y-raster) Zug E (Di., 5. Block + Do.,. Block, y-raster)
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:
Logik Teil 1: Aussagenlogik. Vorlesung im Wintersemester 2010
Logik Teil 1: Aussagenlogik Vorlesung im Wintersemester 21 Aussagenlogik Aussagenlogik behandelt die logische Verknüpfung von Aussagen mittels Junktoren wie und, oder, nicht, gdw. Jeder Aussage ist ein
Einiges zu Resolutionen anhand der Aufgaben 6 und 7
Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Es gibt eine Fülle von verschiedenen Resolutionen. Die bis jetzt behandelten möchte ich hier noch ein Mal kurz erläutern. Ferner möchte ich noch auf
Mathematik für Informatiker I
Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft
II. Grundlagen der Programmierung
II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123
Bisher. minimale DNF. logischen Formeln Booleschen Funktionen Schaltungen
Bisher Klassische Aussagenlogik (Syntax, Semantik) semantische Äquivalenz von Formeln äquivalentes Umformen von Formeln (syntaktisch) Normalformen: NNF, DNF, CNF, kanonische DNF und CNF Ablesen kanonischer
Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen
Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der
Informatik I WS 07/08 Tutorium 24
Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: [email protected] Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben
Was bisher geschah: klassische Aussagenlogik
Was bisher geschah: klassische Aussagenlogik klassische Aussagenlogik: Syntax, Semantik Äquivalenz zwischen Formeln ϕ ψ gdw. Mod(ϕ) = Mod(ψ) wichtige Äquivalenzen, z.b. Doppelnegation-Eliminierung, DeMorgan-Gesetze,
Logik. Markus Lohrey. Wintersemester 2012/2013. Universität Leipzig. Markus Lohrey (Universität Leipzig) Logik Wintersem.
Logik Markus Lohrey Universität Leipzig Wintersemester 2012/2013 Markus Lohrey (Universität Leipzig) Logik Wintersem. 2012/2013 1 / 214 Organisatorisches zur Vorlesung Informationen finden Sie unter z.
5. Aussagenlogik und Schaltalgebra
5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft
WS 2009/10. Diskrete Strukturen
WS 29/ Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws9
Aussagenlogik. Beispiel
Aussagenlogik 2 Die Aussagenlogik (AL) ist die einfachste Form der Logik. Sie geht schon auf George Boole (1815 1864) zurück und beschreibt einfachste Verknüpfungen zwischen als atomar ( unteilbar ) angesehenen
Logik und Diskrete Strukturen
Skript zum Logikteil der Vorlesung Logik und Diskrete Strukturen SS 2016 Martin Hofmann Lehr- und Forschungseinheit Theoretische Informatik Institut für Informatik Ludwig-Maximilians-Universität München
Binäre Suchbäume (binary search trees, kurz: bst)
Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.
Normalformen der Prädikatenlogik
Normalformen der Prädikatenlogik prädikatenlogische Ausdrücke können in äquivalente Ausdrücke umgeformt werden Beispiel "X (mensch(x) Æ sterblich(x)) "X (ÿ mensch(x) sterblich(x)) "X (ÿ (mensch(x) Ÿ ÿ
Einführung in die Mathematik (Vorkurs 1 )
Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise
Aussagenlogik. Aussagenlogik. Syntax Semantik Formeln, Modelle, Tautologien und Anwendungen Folgerungen, Wissen Bernd Baumgarten
Aussagenlogik 86 Syntax Semantik Formeln, Modelle, Tautologien und Anwendungen Folgerungen, Wissen Folgerungen (1) 87 ϕ folgt aus (ist Folgerung aus) Formelmenge M bzw. M = ϕ : Jedes für ϕ ausreichende
Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen
Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke
Logik. Markus Lohrey. Sommersemester Universität Siegen. Markus Lohrey (Universität Siegen) Logik Sommersem / 299
Logik Markus Lohrey Universität Siegen Sommersemester 2014 Markus Lohrey (Universität Siegen) Logik Sommersem. 2014 1 / 299 Organisatorisches zur Vorlesung Informationen finden Sie unter z. B. http://www.eti.uni-siegen.de/ti/lehre/ss14/logik/
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume
Vorlesung. Logik und Diskrete Mathematik
Vorlesung Logik und Diskrete Mathematik (Mathematik für Informatiker I) Wintersemester 2008/09 FU Berlin Institut für Informatik Klaus Kriegel 1 Literatur zur Vorlesung: C. Meinel, M. Mundhenk, Mathematische
Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung
Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung
Digitalelektronik - Inhalt
Digitalelektronik - Inhalt Grundlagen Signale und Werte Rechenregeln, Verknüpfungsregeln Boolesche Algebra, Funktionsdarstellungen Codes Schaltungsentwurf Kombinatorik Sequentielle Schaltungen Entwurfswerkzeuge
Logik, Mengen und Abbildungen
Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen
Normalformen von Schaltfunktionen
Disjunktive Normalform (DNF) Vorgehen: 2. Aussuchen der Zeilen, in denen die Ausgangsvariable den Zustand 1 hat 3. Die Eingangsvariablen einer Zeile werden UND-verknüpft a. Variablen mit Zustand 1 werden
Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion
Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert
Grundlagen der Künstlichen Intelligenz
Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.
Teil 7. Grundlagen Logik
Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also
Logik für Informatiker
Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül
5. Vorlesung: Normalformen
5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1
2.1 Beschreibung von Mengen 2.2 Formale Logik 2.3 Beziehungen zwischen Mengen 2.4 Mengenoperationen
2. Mengen 2.1 Beschreibung von Mengen 2.2 Formale Logik 2.3 Beziehungen zischen Mengen 2.4 Mengenoperationen 2. Mengen GM 2-1 Wozu Mengen? In der Mathematik Au dem Mengenbegri kann man die gesamte Mathematik
ÜBUNG ZUM GRUNDKURS LOGIK WS 2015/16 GÜNTHER EDER
ÜBUNG ZUM GRUNDKURS LOGIK WS 2015/16 GÜNTHER EDER SPARSAMKEIT BEI DER WAHL DER JUNKTOREN Wie sich mit Wahrheitstaeln zeigen lässt, benötigen wir nicht gar nicht alle Junktoren die oiziell in unserer Sprache
Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)
WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14
Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese
Einleitung Zur Aktivitätsanzeige der 3 Gehäuselüfter (Signale a - c) eines PC-Systems soll eine Logikschaltung entwickelt werden, die über drei Signalleuchten (LEDs) anzeigt, ob ein beliebiger (LED1 x),
Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln
Vorlesung Letz WS 2002/2003 TU München: Logikbasierte Entscheidungsverfahren Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln INHALTE Die Bernays-Schönfinkel-Klasse bzw. Datenlogik-Formeln
Grundlagen der Rechnerarchitektur
Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Kombinatorische
Algorithmen für Hornlogik
Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik Lebniz Universität Hannover Jing Liu Algorithmen für Hornlogik Studienarbeit 2010 1 Einleitung Die Aussagenlogik ist der Bereich der Logik,
4 Logik 4.1 Aussagenlogik
4 Logik 4.1 Aussagenlogik Mod - 4.1 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder alsch angesehen erden können. z. B.: Es regnet.,
Formelsammlung. Wahrscheinlichkeit und Information
Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)
GTI ÜBUNG 6 NORMALFORM, MINIMALFORM UND DER ENTWICKLUNGSSATZ
1 GTI ÜBUNG 6 NORMALFORM, MINIMALFORM UND DER ENTWICKLUNGSSATZ Aufgabe 1 - Boolesche Algebra 2 Beweisen oder widerlegen Sie die folgenden Aussagen, ohne Wahrheitstabellen zu verwenden. Für Aussagen, die
der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr
Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 8 31.05.2016 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Bis jetzt Normalformen: CNF/DNF Subsumption SAT-Problem
A.1 Schaltfunktionen und Schaltnetze
Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware
Theoretische Informatik SS 03 Übung 11
Theoretische Informatik SS 03 Übung 11 Aufgabe 1 Zeigen Sie, dass es eine einfachere Reduktion (als die in der Vorlesung durchgeführte) von SAT auf 3KNF-SAT gibt, wenn man annimmt, dass die Formel des
Vertiefungskurs Mathematik
Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat im Schuljahr 01/13 Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik in Klasse 11. Inhaltliche Voraussetzungen: Aussagenlogik
Überblick über die Aussagenlogik, Teil 2. Nicole Stender
Überblick über die Aussagenlogik, Teil 2 Nicole Stender Goethe Universität Frankfurt am Main Seminar: Aktuelle Themen aus der Wissensverarbeitung Dozent: Prof. Dr. Manfred Schmidt-Schauß Abgabedatum: 17.05.2012
Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge
Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem
Einführung in die technische Informatik
Einführung in die technische Informatik hristopher Kruegel [email protected] http://www.auto.tuwien.ac.at/~chris Logische Schaltungen System mit Eingängen usgängen interne Logik die Eingänge auf
Hilbert-Kalkül (Einführung)
Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle
Schaltalgebra und kombinatorische Logik
Schaltalgebra und kombinatorische Logik. Digitale elektrische Schaltungen 2. Beschreibung durch logische Ausdrücke 3. Boolesche Algebra 4. Schaltfunktionen 5. Synthese von Schaltungen 6. Schaltnetze *Die
Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren
Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 11. Oktober 2016, Fehler, Ideen, Anmerkungen und Verbesserungsvorschläge bitte an [email protected]
Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer:
Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.
Übung zum Grundkurs Logik. Günther Eder Institut für Philosophie Universität Wien
Übung zum Grundkurs Logik Günther Eder Institut für Philosophie Universität Wien 2 http://www.youtube.com/watch?v=kqfkti6gn9y ACHTUNG! Bei diesem Dokument handelt es sich NICHT um ein offizielles (oder
Aussagenlogik. Syntax und Semantik Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle
Aussagenlogik Syntax und Semantik Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.1 Aussagenlogik Syntax und Semantik 23 Einführendes Beispiel
Formale Systeme. P. H. Schmitt
Formale Systeme P. H. Schmitt Winter 2007/2008 Version: 5. März 2008 Vorwort Formale Methoden und die zu ihrer Umsetzung notwendigen formalen Systeme spielen in der Informatik von Anfang an eine wichtige
Verwendung eines KV-Diagramms
Verwendung eines KV-Diagramms Ermittlung einer disjunktiven Normalform einer Schaltfunktion Eine Disjunktion von Konjunktionen derart, dass jeder Konjunktion ein Block in dem KV-Diagramm entspricht, der
Teil II. Schaltfunktionen
Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)
Logik - SS13. Hannes Diener. basierend auf dem Skript von Dieter Spreen
Logik - SS13 Hannes Diener basierend auf dem Skript von Dieter Spreen Inhaltsverzeichnis 1 Aussagenlogik.............................................. 5 1.1 Einleitung 5 1.2 Syntax der Aussagenlogik 5
Logik Vorlesung 6: Resolution
Logik Vorlesung 6: Resolution Andreas Maletti 28. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften
Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20
Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt
1 Aussagenlogische Formeln
1 Aussagenlogische Formeln Aufgabe 1.1 Transformieren Sie die Formel in disjunktive Normalform (DNF). ((:A! :B) ^ D)! ((A _ C) $ (:B ^ D)) Lösung 1.1 Schrittweise Transformation: Schritt 1: ((:A! :B) ^
Leseprobe. Dirk W. Hoffmann. Theoretische Informatik. ISBN (Buch): ISBN (E-Book):
Leseprobe Dirk W. Hoffmann Theoretische Informatik ISBN (Buch): 978-3-446-44446-1 ISBN (E-Book): 978-3-446-44530-7 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-44446-1
1 Analogtechnik und Digitaltechnik. C Schaltalgebra und kombinatorische Logik. 2 Digitale elektrische Schaltungen
Analogtechnik und Digitaltechnik C Schaltalgebra und kombinatorische Logik bei analoger Technik kontinuierliche Signale. Analog- und Digitaltechnik 2. Digitale elektrische Schaltungen 3. Logische Schaltungen
mathe plus Aussagenlogik Seite 1
mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet
