Konjunktive und disjunktive Normalformen
|
|
|
- Franziska Melsbach
- vor 9 Jahren
- Abrufe
Transkript
1 Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert, wollen wir jetzt den umgekehrten Weg gehen und für eine gegebene Boolesche Funktion einen passenden Term finden, der diese Funktion repräsentiert. Es wird sich zeigen, dass solche Terme nicht eindeutig sind, aber in jedem Fall kann man aus der Vielzahl der Repräsentanten zwei Standardvertreter hervorheben - die kanonische konjunktive Normalform und die kanonische disjunktive Normalform. Maxterme, Minterme und Normalformen Definition: Ein Literal ist eine Variable x i V oder deren Negation. Ein Maxterm ist eine Disjunktion von Literalen (dazu zählt man auch ein einzelnes Literal) und ein Minterm ist eine Konjunktion von Literalen (dazu zählt man auch ein einzelnes Literal). Wenn man vereinbart, dass V = V n die endliche Variablenmenge {x 1, x 2,..., x n } bezeichnet, dann nennt man einen Minterm (bzw. Maxterm) vollständig, wenn er für jedes 1 i n entweder das Literal x i oder das Literal x i enthält. Eine Disjunktion von Mintermen wird disjunktive Normalform (kurz DNF) genannt. Eine Konjunktion von Maxtermen wird konjunktive Normalform (kurz KNF) genannt. Beispiele: (x 1 x 2 ) ( x 1 x 3 ) x 2 ist eine DNF, aber keine KNF. Die Formeln x 1 x 2 und x 1 x 4 x 6 sind sowohl DNF s als auch KNF s. Zur Vereinfachung der Beschreibung vereinbaren wir die folgende Notation: x 1 i = x i und x 0 i = x i für alle x i V. Satz: Jede Boolesche Funktion f : B n B ist durch eine DNF d f und durch eine KNF k f repräsentierbar, wobei: d f = k f = (b 1,...,b n) f 1 (1) (b 1,...,b n) f 1 (0) x b x bn n x b x bn n Man nennt d f die kanonische DNF und k f die kanonische KNF von f. Im Spezialfall f 1 (1) = setzen wir d f = false und im Spezialfall f 1 (0) = setzen wir k f = true. 1
2 Beweis: An dieser Stelle müssen wir noch einmal auf die Bijektion zwischen der Menge aller Belegungen β : V n B und der Menge B n aller n Tupel (b 1,..., b n ) eingehen. Wir werden diese Bijektion mit ψ n bezeichnen, d.h. ψ n (β) ist das n Tupel (β(x 1 ),..., β(x n )) und für das Tupel (b 1,..., b n ) bezeichnen wir mit ψn 1 (b 1,..., b n ) die Belegung β : V n B mit β(x i ) = b i für alle i zwischen 1 und n. Zuerst überzeugen wir uns davon, dass der Minterm x b x bn n für die konkrete Belegung ψn 1 (b 1,..., b n ) wahr (1) und für alle anderen Belegungen falsch (0) ist. In der Tat wird eine Konjunktion von Literalen genau dann 1, wenn jedes Literal 1 ist und diese Situation wird nur bei der Belegung ψn 1 (b 1,..., b n ) erreicht. Die Disjunktion über alle (b 1,..., b n ) f 1 (1) führt dazu, dass alle Belegungen, die aus dieser Menge kommen, durch ihren Minterm akzeptiert (auf 1 bewertet) werden, während Tupel aus f 1 (0) von allen Mintermen aus d f verworfen (auf 0 bewertet) werden. Der Beweis für k f ist analog: Jede Disjunktion x b x bn n wird für die konkrete Belegung ψn 1 (b 1,..., b n ) falsch (0) und wahr für alle anderen Belegungen. Durch die Disjunktion über alle (b 1,..., b n ) f 1 (0) erzeugt man eine Formel, welche die vorgegebene Funktion f repräsentiert. Die Korrekheit der Formeln in den beiden Spezialfällen ist offensichtlich. An dieser Stelle wird klar, warum wir auf die Verwendung von true und false als Primformeln Wert gelegt haben. Es ist aber genauso offensichtlich, dass man zur Repräsentation der konstanten Booleschen Funktionen auch auf diese Primterme verzichten kann, denn true x 1 x 1 und false x 1 x 1. Beispiel: In der folgenden Tabelle ist eine 3 stellige Boolesche Funktion f dargestellt, zusammen mit den vollständigen Mintermen von Tupeln aus f 1 (1) und den vollständigen Maxtermen von Tupeln aus f 1 (0). x 1 x 2 x 3 f(x 1, x 2, x 3 ) Minterm Maxterm x 1 x 2 x x 1 x 2 x x 1 x 2 x x 1 x 2 x x 1 x 2 x x 1 x 2 x x 1 x 2 x x 1 x 2 x 3 Daraus resultieren die folgende kanonische DNF und KNF: d f = ( x 1 x 2 x 3 ) ( x 1 x 2 x 3 ) (x 1 x 2 x 3 ) (x 1 x 2 x 3 ) (x 1 x 2 x 3 ) k f = (x 1 x 2 x 3 ) (x 1 x 2 x 3 ) ( x 1 x 2 x 3 ) 2
3 Zum Verständnis von DNF und KNF kann man auch geometrische bzw. graphentheoretische Hilfsmittel einsetzen: Die Menge der n-tupel {0, 1} n bildet auch die Knotenmenge des n-dimensionalen Würfelgraphen Q n. Jede Konjunktion von k Literalen repräsentiert einen (n k)-dimensionalen Unterwürfel. Eine DNF muss durch die Unterwürfel der in ihr auftretenden Minterme die Knotenmenge f 1 (1) überdecken. In der kanonischen DNF wird jeder Knoten einzeln (als 0-dimensionaler Unterwürfel) überdeckt. Man sieht, dass man diese kanonische DNF vereinfachen kann, wenn mehrere Knoten aus f 1 (1) einen höherdimensionalen Unterwürfel bilden. Die folgende Abbildung veranschaulicht diese Idee für das oben besprochene Beispiel. Auf der linken Seite sind alle Tupel, die auf 1 abgebildet werden, mit vollen (schwarzen) Kreisen dargestellt, Tupel, die auf 0 abgebildet werden, durch einen Kreisring mit weißer Fläche. Auf der rechten Seite wird hervorgehoben, dass die vier Tupel auf der oberen Seite alle gleichgefärbt sind. Deshalb kann man die vier Minterme dieser Tupel durch den einfachen Minterm x 3 ersetzen. Analog können die zwei Maxterme der weiß markierten Kante durch den Maxterm x 1 x 3 ersetzt werden. (0,1,1) (1,1,1) (0,1,1) (1,1,1) (0,0,1) (0,0,1) (1,0,1) (1,0,1) (0,1,0) (1,1,0) (0,1,0) (1,1,0) (0,0,0) (1,0,0) (0,0,0) (1,0,0) Verfolgt man diese anschauliche Idee der Vereinfachung zurück zur formalen Darstellung, dann kann man jeweils zwei Minterme (bzw. Maxterme) t und t zu einem Minterm (bzw. Maxterm) s zusammenfassen, wenn t und t identisch sind bis auf eine Variable x, die unnegiert in t und negiert in t vorkommt. Der gemeinsame, identische Teil von t und t bildet dann den Ersatzterm s. Diese Regel ist ein Spezialfall des folgenden leicht zu beweisenden Fakts. Satz: Sei s ein beliebiger Term und x eine Variable, dann ist s logisch äquivalent zu den Termen (s x) (s x) und (s x) (s x). Im Allgemeinen wird man durch die wiederholte Anwendung dieser Regel nur einen gewissen Grad an Vereinfachung der kanonischen Normalformen erreichen, aber nicht zur einfachsten DNF bzw. KNF kommen. 3
4 Vollständige Signaturen Definition: Symbole, die man zur Bildung von Formeln aus Variablen einsetzt, bezeichnet man als logische Junktoren. Insbesondere muss man auch die elementaren Aussagen true und false bzw. die Werte 1 und 0 als 0 stellige Junktoren betrachten, wenn man sie zur Formelbildung verwenden will. Eine logische Signatur ist eine Menge von Junktoren. Eine logische Signatur ist funktional vollständig, wenn jede Boolesche Funktion durch eine mit dieser Signatur gebildeten Formel repräsentierbar ist. Man spricht in diesem Fall auch von einer vollständigen Basis. Die Signatur {,, } heißt Boolesche Signatur. Bei dieser Festlegung werden keine elementaren Aussagen zum Formelaufbau verwendet, insbesondere auch nicht true und false. Satz: Die Boolesche Signatur sowie die Signaturen {, } und {, } sind funktional vollständig. Beweis: Die Vollständigkeit der Booleschen Signatur folgt aus der Existenz von DNF s bzw. KNF s. Man beachte, daß die Formeln x x und x x konstanten Funktionen 0 und 1 repräsentieren. Die Vollständigkeit einer anderen Signatur Σ wird in der Regel damit nachgewiesen, dass man die Operationen der Booleschen Signatur mit Operationen aus Σ logisch äquivalent darstellen kann. So kann man für die Signatur Σ 1 = {, } die fehlende Disjunktion mit der de Morganschen Regel durch Negation und Konjunktion beschreiben und für die Signatur Σ 2 = {, } die fehlende Konjunktion mit der de Morganschen Regel durch Negation und Disjunktion. Somit wird die Vollständigkeit der Signaturen Σ 1 und Σ 2 auf die Vollständigkeit der Booleschen Signatur zurückgeführt. Es gibt sogar einelementige Signaturen, die funktional vollständig sind, z.b. die Signatur { }, wobei den sogenannten NAND Junktor ( x y (x y) ) bezeichnet. Hier beginnt die Begründung mit der Negation: x x x. Im zweiten Schritt gibt man eine Konstruktion für die Konjunktion an: x y (x y) (x y) (x y). Damit hat man das Problem auf die Vollständigkeit der Signatur Σ 1 zurückgeführt. Satz: Die Signaturen { }, { } und {, } sind nicht funktional vollständig. Beweis: Wir zeigen, dass die konstanten Booleschen Funktionen nicht darstellbar sind. Für die konstante Funktion mit dem Wert 0 argumentieren wir wie folgt: Betrachtet man einen beliebigen Term t, in dem nur Konjunktionen und Disjunktionen auftreten, dann nimmt dieser Term für die Belegung, die alle Variablen auf 1 setzt, auch den Wert 1 an (formal ist das ein Induktionsbeweis), d.h. t kann nicht die 4
5 Nullfunktion repräsentieren. Analog argumentiert man für die konstante Funktion mit dem Wert 1 durch Betrachtung der Belegung, die alle Variablen auf 0 setzt. Man kann auch zeigen, dass die Signatur {0, 1,, } nicht vollständig ist, aber das erfordert einen wesentlich höheren Aufwand und ist eng mit dem Begriff der monotonen Booleschen Funktion verbunden, welchen wir noch in einigen Übungsaufgaben kennenlernen werden. Weitere Beispiele für unvollständige Signaturen sind { }, { }, {, }, { }, {, } und {1, }. Die Beweis für die erste und zweite der oben genannten Signaturen kann wieder nach dem bereits verwendeten Schema geführt werden: Man begründet, dass die konstante Funktion mit dem Wert 0 nicht dargestellt werden kann. Die Kernidee für die restlichen Signaturen besteht darin, die mit Antivalenz erzeugbaren Funktionen genauer zu charakterisieren. Satz: Die Signatur {1, } ist nicht vollständig. Beweis: Zuerst stellen wir fest, dass die Operation kommutativ und assoziativ ist, sowie für jeden Term t die folgenden Regeln gelten: (1) t t 0 (2) t 0 t Betrachtet man nun einen Term s, der über der Signatur {1, } gebildet wurde, kann man ihn mit Kommutativ- und Assoziativgesetz so umformen, dass alle gleichen Variablen sowie alle Einsen jeweils in einem Block auftreten. Dann werden in diesen Blöcken mit Regel (1) schrittweise Paare von gleichen Variablen (oder von Einsen) in Nullen umgewandelt, welche anschließend mit Regel (2) eliminiert werden können. Am Ende bleiben Variable, die ursprünglich in ungerader Anzahl auftraten, in einfacher Ausführung übrig, Variable, die ursprünglich in gerader Anzahl auftraten, sind völlig verschwunden. Somit ist nach diesem Prozesses s äquivalent zu einer Formel s bzw. s der folgenden Form: s = x i1 x i2... x ik 0 s = x i1 x i2... x ik 1 wobei k eine natürliche Zahl ist und i 1, i 2,..., i k eine Folge paarweise verschiedener Indizes. Bei k = 0 repräsentieren s und s die konstanten Funktionen. In allen anderen Fällen nimmt s (bzw. s ) unter einer Belegung ω genau dann den Wert 1 an, wenn die Anzahl der Variablen x i1, x i2,..., x ik, die unter ω mit einer 1 belegt sind, ungerade (bzw. gerade) ist. In beiden Fällen repräsentiert s also eine Boolesche Funktion, die genau auf einer Hälfte aller Eingaben den Wert 0 und auf der anderen Hälfte den Wert 1 annimmt. Folglich kann man mit dieser Signatur weder eine Konjunktion noch eine Disjunktion oder eine Implikation (mit ihren 1 : 3 Verteilungen) realisieren. Folgerung: Die Signatur Σ = {1,, } ist nicht vollständig. Beweis: Da man durch t t 1 die Negation durch Antivalenz und 1 darstellen kann, wäre mit Σ auch schon die Signatur {1, } vollständig - Widerspruch! 5
Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1
Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische
Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche
03 Boolesche Algebra. Technische Grundlagen der Informatik
03 Boolesche Algebra Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: [email protected] Inhalt Operationen
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht
DuE-Tutorien 17 und 18
DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 3 AM 18.11.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Normalformen boolescher Funktionen
Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion
Allgemeingültige Aussagen
Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt
Informationsverarbeitung auf Bitebene
Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung
Informatik A (Autor: Max Willert)
2. Aufgabenblatt Wintersemester 2012/2013 - Musterlösung Informatik A (Autor: Max Willert) 1. Logik im Alltag (a) Restaurant A wirbt mit dem Slogan Gutes Essen ist nicht billig!, das danebenliegende Restaurant
5. Vorlesung: Normalformen
5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1
II. Grundlagen der Programmierung
II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123
f ist sowohl injektiv als auch surjektiv.
Bemerkungen: Wir erinnern uns an folgende Definitionen: Eine Funktion f : U V heißt injektiv, wenn gilt: ( x, y U)[x y f(x) f(y)] Eine Funktion f : U V heißt surjektiv, wenn gilt: ( y V x U)[y = f(x)]
Kapitel 1. Aussagenlogik
Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax
Musterloesung: Uebung 3
Musterloesung: Uebung 3 Sebastian Scherer December 10, 2012 Aufgabe 1 Die gegebene Funktion ist durch f((b 1, b 2, b 3 )) = 1 b 1 b 2 b 3 (1) definiert. Um die DNF anzugeben muessen wir einfach die Formel
Boolesche Algebra (1)
Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16
Rechnerstrukturen, Teil Vorlesung 4 SWS WS 5/6 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls-www.cs.tu-.de Übersicht. Organisatorisches 2.
Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:
Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.
TU9 Aussagenlogik. Daniela Andrade
TU9 Aussagenlogik Daniela Andrade [email protected] 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /
Logik für Informatiker
Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische
Logik (Teschl/Teschl 1.1 und 1.3)
Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.
TU5 Aussagenlogik II
TU5 Aussagenlogik II Daniela Andrade [email protected] 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)
Logik (Prof. Dr. Wagner FB AI)
Logik (Prof. Dr. Wagner FB AI) LERNZIELE: Über die Kenntnis und das Verständnis der gegebenen Definitionen hinaus verfolgt dieser Teil der Lehrveranstaltung die folgenden Lernziele: Bei gegebenen sprachlichen
Erfüllbarkeit und Allgemeingültigkeit
Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ
Schaltfunktion, Definition
Schaltfunktion, Definition Sei S = { 0,1}. Dann heißt eine Abbildung f: S n S eine Schaltfunktion. = f(x n-1,x n-2,...,,, ), x n-1, x n-2,...,,, S x i X = (x n-1,x n-2,...,,, ) Eingangsvariable Eingangsvektor
Logische Äquivalenz. Definition Beispiel 2.23
Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt
Vorlesung. Logik und Diskrete Mathematik
Vorlesung Logik und Diskrete Mathematik (Mathematik für Informatiker I) Wintersemester 2008/09 FU Berlin Institut für Informatik Klaus Kriegel 1 Literatur zur Vorlesung: C. Meinel, M. Mundhenk, Mathematische
b= NaN
42 Beispiel: IEEE single precision: 0 10000000 00000000000000000000000 b= + 2 128 127 1.0 2 = 2 0 10000001 10100000000000000000000 b= + 2 129 127 1.101 2 = 6.5 1 10000001 10100000000000000000000 b= 2 129
Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln
Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht
Rechnerstrukturen WS 2012/13
Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation von Texten (Wiederholung) Repräsentation ganzer Zahlen (Wiederholung) Repräsentation rationaler Zahlen (Wiederholung) Repräsentation
DisMod-Repetitorium Tag 1
DisMod-Repetitorium Tag 1 Aussagenlogik, Mengen 19. März 2018 1 Organisatorisches 2 Tipps zur Klausur 3 Aussagenlogik Was gehört in die Aussagenlogik, was nicht? Notationen für viele Terme Belegungen,
Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1
Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
Übung 4: Aussagenlogik II
Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F
Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik SS 2013 Hinweis: Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 15. April 2013 1 Repräsentation
Mathematische Grundlagen I Logik und Algebra
Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte
Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik
Zusammenfassung Einführung in die Theoretische Informatik Woche 5 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung der letzten LV Jede binäre Operation hat maximal ein
1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.
Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)
Zusammenfassung Syntax: Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln. Zusammenfassung
Formale der Informatik 1 Kapitel 15 und Frank Heitmann [email protected] 30. Mai 2016 Zusammenfassung Syntax Zusammenfassung Syntax: Motivation Definition der Syntax: Alphabet, Junktor
Boolesche Funktionen und Schaltkreise
Boolesche Funktionen und Schaltkreise Die Oder-Funktion (Disjunktion) und die Und-Funktion (Konjunktion), x y 0 0 0 0 1 1 1 0 1 1 1 1 x y 0 0 0 0 1 0 1 0 0 1 1 1 1 (Implikationsfunktion), ( umgekehrte
1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.
Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)
Rechnerstrukturen WS 2012/13
Rechnerstrukturen WS 202/3 Boolesche Funktionen und Schaltnetze Repräsentationen boolescher Funktionen (Wiederholung) Normalformen boolescher Funktionen (Wiederholung) Repräsentation boolescher Funktionen
Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1
Aussagenlogik Formale Methoden der Informatik WiSe 22/23 teil 6, folie Teil VI: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning, Fakultät
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann [email protected] 9. Juni 2015 Frank Heitmann [email protected] 1/36 Ersetzbarkeitstheorem
Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =?
Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 2 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl.
Grundlagen der Informationverarbeitung
Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,
Beispiel Aussagenlogik nach Schöning: Logik...
Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit
Aussagenlogik. (MAF2) MAF(I, t) = t und MAF(I, f ) = f. Die Semantik aussagenlogischer Formeln ist durch die Funktion
43 Vergleiche mit MBA! (MAF4) MAF(I, (F G)) = MAF(I, F) MAF(I, G), wobei die zum Symbol gehörende Funktion ist. (MAF3) MAF(I, F) = MAF(I, F) (MAF2) MAF(I, t) = t und MAF(I, f ) = f (MAF1) MAF(I, A) = I(A),
Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln
Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Frank Heitmann [email protected] 30. Mai 2016 Frank Heitmann [email protected] 1/42 Zusammenfassung Syntax
Bisher. minimale DNF. logischen Formeln Booleschen Funktionen Schaltungen
Bisher Klassische Aussagenlogik (Syntax, Semantik) semantische Äquivalenz von Formeln äquivalentes Umformen von Formeln (syntaktisch) Normalformen: NNF, DNF, CNF, kanonische DNF und CNF Ablesen kanonischer
Ersetzbarkeitstheorem
Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen
Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen
Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für
Verwendung eines KV-Diagramms
Verwendung eines KV-Diagramms Ermittlung einer disjunktiven Normalform einer Schaltfunktion Eine Disjunktion von Konjunktionen derart, dass jeder Konjunktion ein Block in dem KV-Diagramm entspricht, der
11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks!
Kapitel 3 Logik Verständnisfragen Sachfragen 1. Was ist eine logische Aussage? 2. Wie ist die Konjunktion und die Disjunktion definiert? 3. Beschreiben Sie das Exklusive Oder, die Implikation und die Äquivalenz!
Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen
Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung
Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.
Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.
Computational Logic Algorithmische Logik Boolesche Algebra und Resolution
Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch
Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann [email protected] 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei
Boolesche Terme und Boolesche Funktionen
Boolesche Terme und Boolesche Funktionen Aussagen Mit dem Begriff der Aussage und der logischen Verknüpfung von Aussagen beschäftigte man sich schon im alten Griechenland. Die Charakterisierung einer Aussage
Aussagenlogik. Aussagen und Aussagenverknüpfungen
Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,
DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery. WOCHE 4 AM
DuE-Tutorien 4 und 6 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery WOCHE 4 AM 13.11.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen
Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke
Informatik I Tutorium WS 07/08
Informatik I Tutorium WS 07/08 Vorlesung: Prof. Dr. F. Bellosa Übungsleitung: Dipl.-Inform. A. Merkel Tutorium: 2 Tutor: Jens Kehne Tutorium 7: Dienstag,. Dezember 2007 Agenda des heutigen Tutoriums Übersicht
Logic in a Nutshell. Christian Liguda
Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung
1 Aussagenlogischer Kalkül
1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln
Logik für Informatiker Logic for computer scientists
Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 23 Die Logik der Booleschen Junktoren Till Mossakowski Logik 2/ 23 Aussagenlogische
Grundlagen der Informationsverarbeitung:
Grundlagen der Informationsverarbeitung: Schaltungsentwurf und Minimierungsverfahren Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild
Was bisher geschah: klassische Aussagenlogik
Was bisher geschah: klassische Aussagenlogik klassische Aussagenlogik: Syntax, Semantik Äquivalenz zwischen Formeln ϕ ψ gdw. Mod(ϕ) = Mod(ψ) wichtige Äquivalenzen, z.b. Doppelnegation-Eliminierung, DeMorgan-Gesetze,
Klauselmengen. Definition Sei
Klauselmengen Definition 2.38 Sei α = (p 11... p 1k1 )... (p n1... p nkn ) eine in aussagenlogische Formel in KNF. Dann heißen die Mengen {p i1,..., p iki }, 1 i n, der jeweils disjunktiv verknüpften Literale
Technische Informatik - Eine Einführung
Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Boolesche Funktionen - Grundlagen
Informatik I WS 07/08 Tutorium 24
Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: [email protected] Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben
Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =
Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min
Die Prädikatenlogik erster Stufe: Syntax und Semantik
Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,
Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie
Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf
KAPITEL 5. Damit wird F n (B) selbst zu einer Booleschen Algebra und es gilt f(x) := f(x) 0(x) := 0 B 1(x) := 1 B
KAPITEL 5 Boolesche Polynome Polynome über R, d.h. reelle Funktionen der Form p(x) = a 0 + a 1 x + + a n x n, x R, sind schon aus der Schulmathematik bekannt. Wir beschäftigen uns nun mit Booleschen Polynomen,
Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage
Kapitel 6 Programmierbare Logik Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6: Programmierbare Logik und VLSI Seite Kapitel 6: Programmierbare Logik
Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung
Informatik III Christian Schindelhauer Wintersemester 2006/07 20. Vorlesung 12.01.2007 1 Komplexitätstheorie - Zeitklassen Die Komplexitätsklassen TIME DTIME, NTIME P NP Das Cook-Levin-Theorem Polynomial-Zeit-Reduktion
Definition (Modus Ponens) Wenn A, dann B. A gilt Also, gilt B
Zusammenfassung der letzten LVA Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Fakt Korrektheit dieser Schlussfigur ist unabhängig von den konkreten Aussagen Einführung
Boolesche (Schalt-) Algebra (1)
Boolesche (Schalt-) Algebra (1) Definition 1: Sei B = SS 2 = 0,1 das Alphabet mit den Elementen 0 und 1. Seien auf BB die folgenden 3 Operatoren definiert für xx, yy B: xx + yy max xx, yy xx yy min xx,
Induktive Definitionen
Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive
Technische Grundlagen der Informatik
Technische Grundlagen der Informatik WS 2008/2009 6. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Boolesche Gesetze Boolesche Kürzungsregeln Antivalenz und
Was bisher geschah: klassische Aussagenlogik
Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur, Junktoren: t, f,,,,, Prinzip der strukturellen Induktion über Baumstruktur von Formeln, arithmetischen Ausdrücken usw. induktive
Was bisher geschah: klassische Aussagenlogik
Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f,,,,, aussagenlogische Formeln AL(P) induktive Definition: IA Atome (Aussagenvariablen) p, q, r,... P IS zusammengesetzte
Mathematische Logik. Grundlagen, Aussagenlogik, Semantische Äquivalenz. Felix Hensel. February 21, 2012
Mathematische Logik Grundlagen, Aussagenlogik, Semantische Äquivalenz Felix Hensel February 21, 2012 Dies ist im Wesentlichen eine Zusammenfassung der Abschnitte 1.1-1.3 aus Wolfgang Rautenberg s Buch
Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??
Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten
Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung
Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele
Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik
Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Aussagen Begriff Aussage: Ausdruck, welcher entweder wahr oder falsch ist e Die RWTH Aachen hat
ÜBUNG ZUM GRUNDKURS LOGIK WS 2015/16 GÜNTHER EDER
ÜBUNG ZUM GRUNDKURS LOGIK WS 2015/16 GÜNTHER EDER SPARSAMKEIT BEI DER WAHL DER JUNKTOREN Wie sich mit Wahrheitstaeln zeigen lässt, benötigen wir nicht gar nicht alle Junktoren die oiziell in unserer Sprache
Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung
Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage
Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen
Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification
