Technische Informatik - Eine Einführung
|
|
|
- Harald Peters
- vor 9 Jahren
- Abrufe
Transkript
1 Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Boolesche Funktionen - Grundlagen Aufgabe 1 (0 Punkte) Gegeben sei die durch die ON-Menge ON(f) ={ 000,001,011,100 }. definierte Boolesche Funktion f {0, 1} 3. Geben Sie eine Realisierung von f an, die ausschliesslich mit NAND-Gattern auskommt. Aufgabe 2 (0 Punkte) Seien n und m zwei beliebige natürliche Zahlen. Beantworten Sie die folgenden drei Fragen und beweisen Sie Ihre Aussagen. a) Wieviele verschiedene Boolesche Funktionen f : {0, 1} n {0, 1} gibt es? b) Wieviele verschiedene Boolesche Funktionen g : {0, 1} n {0, 1} m gibt es? c) Wieviele verschiedene total symmetrische Boolesche Funktionen f : {0, 1} n {0, 1} gibt es? Eine Boolesche Funktion f : {0, 1} n {0, 1} heisst hierbei total symmetrisch, wenn für jedes Argument (α 1, α 2,..., α n ) {0, 1} n und jede Permutation π : {1, 2,..., n} {1, 2,..., n} die Gleichung gilt. f(α 1, α 2,..., α n ) = f(α π(1), α π(2),..., α π(n) ) Aufgabe 3 (0 Punkte) Gegeben sei eine Boolesche Funktion f : {0, 1} 2 {0, 1} 2 in zwei Eingängen und zwei Ausgängen mit f(x 1, x 2 ) = (f 1 (x 1, x 2 ), f 2 (x 1, x 2 )). Weiter gelten f 1 (x 1, x 2 ) = 1 (x 1 < x 2 ) f 2 (x 1, x 2 ) = 1 (x 1 == x 2 ). Konstruieren Sie unter ausschließlicher Verwendung der Grundgatter logisches Oder und logisches Nicht einen Schaltkreis, der genau f beschreibt. Das logische Und darf nicht benutzt werden! Dokumentieren Sie Ihre Umformungen von f. Verwenden Sie die Symbole 1 und 1 für die Darstellung der Grundgatter. 1
2 Aufgabe 4 (0 Punkte) Sei M eine Menge, auf der zwei binäre Operationen und und eine unäre Operation definiert ist. Gelten für alle x, y, z M die Gleichungen a) x y = y x x y = y x b) (x y) z = x (y z) (x y) z = x (y z) c) (x y) x = x (x y) x = x d) x (y z) = (x y) (x z) x (y z) = (x y) (x z) e) x (y y) = x x (y y) = x so heißt (M,,, ) Boolesche Algebra. Zeigen Sie, dass die Menge B = {0, 1} mit den Operationen Konjunktion mit Disjunktion mit und Negation mit a, b B : a b = a b, a, b B : a b = a + b a b a B : a = 1 a eine Boolesche Algebra ist. Die Operatoren +, und bezeichnen die Addition, die Subtraktion und die Multiplikation ganzer Zahlen Aufgabe 5 (0 Punkte) Gegeben sei die Menge {0, 1} n der binären Folgen der Länge n und die darauf definierte partielle Ordnung mit (x 1,..., x n ), (y 1,..., y n ) {0, 1} n (x 1,..., x i,..., x n ) (y 1,..., y i,..., y n ) wenn i {1,..., n} : x i y i. Sei weiter die unäre Operation : {0, 1} n {0, 1} n gegeben, die durch definiert ist. (x 1,..., x i,..., x n ) := (1 x 1,..., 1 x i,..., 1 x n ) Zudem seien die zwei folgenden binären Operationen sup, inf : {0, 1} n {0, 1} n {0, 1} n gegeben: Für gegebene x, y {0, 1} n berechnet sich die binäre Operation sup(x, y) als das kleinste Element der Menge, welches größer gleich als x und y ist. Analog ergibt sich inf(x, y) als das größte Element, welches kleiner gleich als x und y ist. Überlegen Sie sich, ob die Menge ({0, 1} n, sup, inf, ) eine Boolesche Algebra ist und begründen Sie Ihre Aussage? Aufgabe 6 (0 Punkte) Gegeben sei eine Menge P von n paarweise verschiedenen Primzahlen p 1, p 2,..., p n. Betrachten Sie die Zahl d = p 1 p 2... p n und die Menge T eiler(d) aller Teiler der Zahl d. 2
3 a) Zeigen Sie, dass (T eiler(d), kgv, ggt, ) eine Boolesche Algebra ist, wobei für je zwei Elemente x, y T eiler(d) kgv(x, y) das kleinste gemeinsame Vielfache, ggt(x, y) den größten gemeinsamen Teiler und x das inverse Element d/x bezüglich d darstellt. b) Sei nun q = p 1 d. Zeigen Sie, dass (T eiler(q), kgv, ggt, ) keine Boolesche Algebra ist. Aufgabe 7 (0 Punkte) Sei (M, +,, ) eine Boolesche Algebra. Beweisen Sie, dass die Consensus-Regel gilt, d. h. dass für alle x, y, z M die Gleichungen (x y) + (( x) z) = (x y) + (( x) z) + (y z) (x + y) (( x) + z) = (x + y) (( x) + z) (y + z) gelten. Aufgabe 8 (0 Punkte) Sei (M, +,, ) eine Boolesche Algebra. Beweisen Sie, dass die de Morganschen Regeln gilt, d. h. dass für alle x, y M die Gleichungen (x + y) = ( x) ( y) (x y) = ( x) + ( y) gelten. Aufgabe 9 (0 Punkte) Sei (M, +,, ) eine Boolesche Algebra. Zeigen Sie, dass es genau ein Null-Element n M mit x M : x n = n und x + n = x und genau ein Eins-Element e M mit x M : x e = x und x + e = e. Aufgabe 10 (0 Punkte) Sei (M, +,, ) eine Boolesche Algebra. Zeigen Sie die Eindeutigkeit des Komplements, d. h. zeigen Sie, dass die Aussage gilt. x, y, z M : (x y = x z = 0 und x + y = x + z = 1) = y = z. Aufgabe 11 (0 Punkte) Betrachten Sie die Funktion f : {0, 1} 6 {0, 1} mit ( x = (x 2, x 1, x 0 ) {0, 1} 3 ) ( y = (y 2, y 1, y 0 ) {0, 1} 3 ) { f(x, y) = 1 falls 2i=0 x i 2 i + 2 i=0 y i 2 i > 7 0 sonst 3
4 Bestimmen Sie ein Polynom von f. Aufgabe 12 (0 Punkte) Zeigen oder widerlegen Sie die folgende Behauptung: Jede Boolsche Funktion aus B n kann durch ausschließliche Verwendung der Exor-Funktion B 2 und der konstanten Funktion 1 beschrieben werden. Aufgabe 13 (0 Punkte) Ein Farmer befindet sich zusammen mit einem Wolf, einer Ziege und einem Kohlkopf auf einer Flussseite. Er besitzt ein Boot, welches ihn selbst sowie einen weiteren Gegenstand beziehungsweise ein weiteres Tier trägt. Er möchte nun mit Kohlkopf, Ziege und Wolf auf die andere Seite des Flusses gelangen. Unglücklicherweise frisst der Wolf die Ziege beziehungsweise die Ziege den Kohlkopf, wenn er diese unbeaufsichtigt lässt. Damit nun der Bauer nicht versehentlich Wolf und Ziege beziehungsweise Ziege und Kohl alleine lässt, soll ein Warnsystem aufgebaut weden, welches in diesen Fällen Alarm auslöst. a) Die Variablen f, w, z und k bezeichnen Farmer, Wolf, Ziege und Kohlkopf. Ist der Wert einer solchen Variablen 0 (bzw. 1), dann befindet sich der/das Gegenstand/Lebewesen auf der linken (bzw. rechten) Flussseite. Geben Sie die Funktionstabelle der Alarmfunktion a an. b) Geben Sie für die Funktion a einen Booleschen Ausdruck e in disjunktiver Normalform mit Variablen aus V = {f, w, z, k} an. c) Bestimmen Sie auch die Darstellung von a in kanonischer disjunktiver Normalform. Aufgabe 14 (0 Punkte) Realisieren Sie die beiden folgenden Schaltfunktionen mit Hilfe der Konjunktion, Disjunktion und Negation. a) Schaltfunktion f 5, 4 S eines Schwellwertschalters mit fünf Eingängen x 1,..., x 5, einem Ausgangund Schwelle gleich 3, also { f 5, 4 0 : x1 + x S = 2 + x 3 + x 4 + x : sonst b) Paritätsfunktion f (n) P mit n Eingängen und einem Ausgang, also { f (n) 0 : (x1 + x P = x n ) mod 2 = 0 1 : sonst Aufgabe 15 (0 Punkte) Für eine Boolesche Funktion f kann es unterschiedliche Boolesche Ausdrücke geben, die f beschreiben. Zeigen Sie ohne Wahrheitstabellen zu benutzen, dass die folgenden Identitäten für Boolesche Algebren gelten. 4
5 a) (a b) + (c d) = ((a b) + c)((a b) + d) b) (a b) + (a c) = (a b) + (c (a + b)) + (b c) c) b c (a + b) (a + c) = 0 d) (a + c) (b + c) = (a b) + (a b c) + c Hierbei steht + für die Disjunktion, für die Konjunktion und für die Komplementbildung. Aufgabe 16 (0 Punkte) Vorbemerkungen (R, +, ) ist der Körper der natürlichen Zahlen. Der Grad eines Polynoms ist definiert als die Summe der, in einem mit verknüpften Term, vorkommenden Variablenexponenten. Ein Polynom fünften Grades über diesen Körper in den Variablen a, b und c ist beispielsweise a b + 4 a 2 b c + 3 b 3 c 2 + c 4. Satz: ({0, 1},, ) bildet den Körper Z 2. Unter der Ring-Summen-Expansion (RSE) einer Booleschen Funktion f : {0, 1} n {0, 1} versteht man nun ein Z 2 -Polynom über den Variablen x 1,..., x n, das f beschreibt. (Bemerkung: Der Boolesche Ausdruck 1 (x 1 x 2 x 4 ) (x 2 x 5 ) ist beispielsweise eine Ring-Summen-Expansion der entsprechenden Booleschen Funktion.) Zeigen Sie im Folgenden, dass die Darstellung durch Ring-Summen-Expansion eine kanonische Darstellung Boolescher Funktionen ist, indem Sie die folgenden Fragen beantworten. a) Welchen Grad kann ein beliebiges Z 2 -Polynom in den Variablen x 1,..., x n maximal besitzen? b) Wieviele verschiedene Z 2 -Polynome in den Variablen x 1,..., x n gibt es? c) Sei f : {0, 1} n {0, 1} eine Boolesche Funktion, a {0, 1} n und mint(a, x) der zu a gehörige Minterm. Dann gilt: f(x) = a f 1 (1) mint(a, x) = a f 1 (1) mint(a, x). Betrachten Sie die Funktion f : {0, 1} 3 {0, 1} mit ON(f) ={ 000,010,011,101,110,111 }. Wandeln Sie f in ein Z 2 -Polynom um. Welchen Grad hat dieses Polynom? d) Zeigen Sie, dass jede Boolesche Funktion f eine eindeutige Darstellung als Z 2 -Polynom hat. 5
Boolesche Algebra (1)
Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),
Informationsverarbeitung auf Bitebene
Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung
Grundlagen der Informationverarbeitung
Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,
5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch
5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für
Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen
Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung
Lineare Algebra I 5. Tutorium Die Restklassenringe /n
Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll
Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr
Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen
Einführung in die Boolesche Algebra
Einführung in die Boolesche Algebra Einführung in Boole' sche Algebra 1 Binäre Größe Eine Größe (eine Variable), die genau 2 Werte annehmen kann mathematisch: falsche Aussage wahre Aussage technisch: ausgeschaltet
Einführung in die Informatik I
Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen
1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik
1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen, Darstellung von
Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen
Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch
3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation
3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): Häufig verwendeten Umformungen sind: Idempotenz doppelte Negation De Morgan a = a a a = a a + b = a b ADS-EI 3.6 Bemerkungen zur Umformung boolescher
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage
Allgemeingültige Aussagen
Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery. WOCHE 4 AM
DuE-Tutorien 4 und 6 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery WOCHE 4 AM 13.11.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik
Zusammenfassung Einführung in die Theoretische Informatik Woche 5 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung der letzten LV Jede binäre Operation hat maximal ein
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
6. Boolesche Algebren
6. Boolesche Algebren 6.1 Definitionen Eine Boolesche Algebra ist eine Algebra S,,,, 0, 1,, sind binäre, ist ein unärer Operator, 0 und 1 sind Konstanten. Es gilt: 1 und sind assoziativ und kommutativ.
II. Grundlagen der Programmierung
II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123
Algebraische Strukturen und Verbände
KAPITEL 4 Algebraische Strukturen und Verbände Definition 4.1. Sei M eine Menge. Eine Abbildung : M M M nennt man eine (zweistellige) Verknüpfung in M. Man schreibt dafür auch a b := (a, b) mit a, b M.
Technische Informatik I
Rechnerstrukturen Dario Linsky Wintersemester 200 / 20 Teil 2: Grundlagen digitaler Schaltungen Überblick Logische Funktionen und Gatter Transistoren als elektronische Schalter Integrierte Schaltkreise
Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche
Übungen zu Einführung in die Lineare Algebra und Geometrie
Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil
Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0
Satz von De Morgan A + = A A A + A + A A 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 Transistoren: A U a A 0 0 Vcc 1 0 1 Vcc 1 1 0 Vcc 1 1 1 0 V 0 eispiel: Schaltung zur Erkennung gültiger
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für
A.1 Schaltfunktionen und Schaltnetze
Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware
x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008
Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 3. November 008 1 / 47 / 47 jede Boolesche Funktion lässt mit,, realisieren wir wollen wir uns jetzt in Richtung Elektrotechnik und
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen
Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage
Kapitel 6 Programmierbare Logik Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6: Programmierbare Logik und VLSI Seite Kapitel 6: Programmierbare Logik
Antwort: h = 5.70 bit Erklärung: Wahrscheinlichkeit p = 1/52, Informationsgehalt h = ld(1/p) => h = ld(52) = 5.70 bit
Übung 1 Achtung: ld(x) = Logarithmus dualis: ld(x) = log(x)/log(2) = ln(x)/ln(2)! Aufgabe 1 Frage: Wie gross ist der Informationsgehalt einer zufällig aus einem Stapel von 52 Bridgekarten gezogenen Spielkarte?
Logik (Teschl/Teschl 1.1 und 1.3)
Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.
Physikalisches Praktikum für Vorgerückte. an der ETH Zürich. vorgelegt von. Mattia Rigotti Digitale Elektronik
Physikalisches Praktikum für Vorgerückte an der ETH Zürich vorgelegt von Mattia Rigotti [email protected] 14.02.2003 Digitale Elektronik Versuchsprotokoll 1 Inhaltverzeichnis 1. Zusammenfassung...
2. Schaltfunktionen und ihre Darstellung
2. Schaltfunktionen und ihre Darstellung x y z Schaltalgebra Schaltkreise und -terme Schaltfunktionen Dualitätsprinzip Boolesche Algebra Darstellung von Schaltfunktionen 58 Schaltalgebra Wir untersuchen
2. Schaltfunktionen und ihre Darstellung
2. Schaltfunktionen und ihre Darstellung x y z Schaltalgebra Schaltkreise und -terme Schaltfunktionen Dualitätsprinzip Boolesche Algebra Darstellung von Schaltfunktionen 60 Schaltalgebra Wir untersuchen
BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom
Prof. Dr. Norbert Blum Elena Trunz Informatik V BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom 5.2.2014 Bitte beachten Sie, dass die tatsächlichen Klausuraufgaben
Übungen zu Einführung in die Lineare Algebra und Geometrie
Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax
Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz
Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige
2. Funktionen und Entwurf digitaler Grundschaltungen
2. Funktionen und Entwurf digitaler Grundschaltungen 2.1 Kominatorische Schaltungen Kombinatorische Schaltungen - Grundlagen 1 Grundgesetze der Schaltalgebra UND-Verknüpfung ODER-Verknüpfung NICHT-Verknüpfung
Algorithmen & Programmierung. Logik
Algorithmen & Programmierung Logik Aussagenlogik Gegenstand der Untersuchung Es werden Verknüpfungen zwischen Aussagen untersucht. Aussagen Was eine Aussage ist, wird nicht betrachtet, aber jede Aussage
Einführung in die Logik, Übungsklausur 2016/07/11
Institut für Theoretische Informatik ITI Dr. Jürgen Koslowski Einführung in die Logik, Übungsklausur 2016/07/11 Diese Aufgaben werden in der Extra-Übung am Freitag, 2016-07-15, 13:15, im SN 19.4 besprochen,
4.2 Grenzen Effizienter Schaltkreise
4.2 Grenzen Effizienter Schaltkreise Definition 19 Sei F eine Boolesche Formel. Ein Literal ist eine Variable oder deren Negation. Eine Klausel ist eine Disjunktion, d.h. eine or-verknüpfung, von Literalen.
Rechnerstrukturen WS 2012/13
Rechnerstrukturen WS 202/3 Boolesche Funktionen und Schaltnetze Repräsentationen boolescher Funktionen (Wiederholung) Normalformen boolescher Funktionen (Wiederholung) Repräsentation boolescher Funktionen
Allgemeine Algebren. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden
Allgemeine Algebren Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Operationen Eine Operation auf einer Menge A ist eine Abbildung f : A n A. A n ist dabei
3. Klausur Einführung in die Theoretische Informatik Seite 1 von 14
3. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Welche der folgenden Aussagen zur Verifikation nach Hoare ist richtig? A. Eine Formel, die sowohl vor der Ausführung des Programmes,
Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)
Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,
Vorlesung Diskrete Strukturen Rechnen mit 0 und 1
Vorlesung Diskrete Strukturen Rechnen mit 0 und 1 Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung
für alle a, b, x, y R.
Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes
3 Verarbeitung und Speicherung elementarer Daten
3 Verarbeitung und Speicherung elementarer Daten 3.1 Boolsche Algebra Definition: Eine Boolsche Algebra ist eine Menge B mit den darauf definierten zweistelligen Verknüpfungen (+,*) sowie der einstelligen
Binary Decision Diagrams
Hauptseminar Model Checking Binary Decision Diagrams Kristofer Treutwein 23.4.22 Grundlagen Normalformen Als kanonische Darstellungsform für boolesche Terme gibt es verschiedene Normalformen, u.a. die
Informatik A (Autor: Max Willert)
2. Aufgabenblatt Wintersemester 2012/2013 - Musterlösung Informatik A (Autor: Max Willert) 1. Logik im Alltag (a) Restaurant A wirbt mit dem Slogan Gutes Essen ist nicht billig!, das danebenliegende Restaurant
Darstellung von negativen binären Zahlen
Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------
Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie
Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen
Die umgekehrte Richtung
Die umgekehrte Richtung Satz 95 Sei n N, n 2. Dann gilt: b n 1 1 mod n für alle b Z n \ {0} = n ist prim. Beweis: [durch Widerspruch] Annahme: r n für ein r N, r > 1. Dann also r n 1 1 (r mod n) n 1 1
8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze
82 8 Boolesche Algebra Die Boolesche Algebra ist eine Algebra der Logik, die George Boole (1815 1864) als erster entwickelt hat. Sie ist die Grundlage für den Entwurf von elektronischen Schaltungen und
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist
Klausur zur Vorlesung Technische Informatik 1 im WS 06/07 Donnerstag, den von Uhr Uhr, HS 5
Philipps-Universität Marburg Fachbereich Mathematik und Informatik AG Verteilte Systeme http://ds.informatik.uni-marburg.de Prof. Dr. Helmut Dohmann Prof. Dr. Bernd Freisleben Klausur zur Vorlesung Technische
Digitalelektronik - Inhalt
Digitalelektronik - Inhalt Grundlagen Signale und Werte Rechenregeln, Verknüpfungsregeln Boolesche Algebra, Funktionsdarstellungen Codes Schaltungsentwurf Kombinatorik Sequentielle Schaltungen Entwurfswerkzeuge
8. Musterlösung zu Mathematik für Informatiker II, SS 2004
8. Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 8.1 (Polynomdivision). (8 Punkte) Dividiere a mit Rest durch b für (i) a = x 7 5x 6 +3x 2 +1, b = x 2 +1in
Kapitel III Ringe und Körper
Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem
kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen
5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,
C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3)
5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,
Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4)
Algebraische Strukturen Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Idee Formalisierung von Strukturen, die in verschiedenen Bereichen der Mathematik und ihrer Anwendungen
1 Algebraische Strukturen
Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen
Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)
Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden
Signalverarbeitung 1
TiEl-F000 Sommersemester 2008 Signalverarbeitung 1 (Vorlesungsnummer 260215) 2003-10-10-0000 TiEl-F035 Digitaltechnik 2.1 Logikpegel in der Digitaltechnik In binären Schaltungen repräsentieren zwei definierte
Konjunktive und disjunktive Normalformen
Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,
Aussagenlogik. Aussagen und Aussagenverknüpfungen
Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,
1. Grundlegende Konzepte der Informatik
1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Aussagenlogik
Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10
Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige
Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.
Logische Operationen Logische ussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. ezeichnung Schreibweise (Sprechweise) wahr, genau dann wenn Negation (nicht ) falsch
Vorlesung Diskrete Strukturen Die natürlichen Zahlen
Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen
Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie
Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf
Schaltalgebra und kombinatorische Logik
Schaltalgebra und kombinatorische Logik. Digitale elektrische Schaltungen 2. Beschreibung durch logische Ausdrücke 3. Boolesche Algebra 4. Schaltfunktionen 5. Synthese von Schaltungen 6. Schaltnetze *Die
5.1 Operationen 5.2 Boolsche Algebren 5.3 Monoide, Gruppen, Ringe, Körper 5.4 Quotientenalgebren
5. Algebra 5.1 Operationen 5.2 Boolsche Algebren 5.3 Monoide, Gruppen, Ringe, Körper 5.4 Quotientenalgebren 5. Algebra GM 5-1 Black Box Allgemein ist eine Black Box ein Objekt, dessen innerer Aufbau und
4. Induktives Definieren - Themenübersicht
Induktives Definieren 4. Induktives Definieren - Themenübersicht Induktives Definieren Natürliche Zahlen Operationen auf natürlichen Zahlen Induktive Algorithmen Induktiv definierte Mengen Binärbäume Boolesche
5. Vorlesung: Normalformen
5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1
1. Welche der folgenden Aussagen zur Verifikation nach Hoare ist richtig?
1. Welche der folgenden Aussagen zur Verifikation nach Hoare ist richtig? A. Eine Formel, die sowohl vor der Ausführung des Programmes, wie auch nachher falsch ist, nennt man Invariante. B. Mit Hilfe der
Kanonische Primfaktorzerlegung
Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N
Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014
Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen WS 2013/14 Klausur 29. März 2014 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Pseudonym (zur Veröffentlichung der Klausurergebnisse):
Technische Universität München Zentrum Mathematik. Übungsblatt 7
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion
Informatik I Tutorium WS 07/08
Informatik I Tutorium WS 07/08 Vorlesung: Prof. Dr. F. Bellosa Übungsleitung: Dipl.-Inform. A. Merkel Tutorium: 2 Tutor: Jens Kehne Tutorium 7: Dienstag,. Dezember 2007 Agenda des heutigen Tutoriums Übersicht
Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4
Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 20 Multiplikative Systeme Wir wollen zeigen, dass es zu jedem Integritätsbereich R einen Körper K gibt derart, dass R ein Unterring
a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.
Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.
2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).
17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften
183.580, WS2012 Übungsgruppen: Mo., 22.10.
VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A
Systemorientierte Informatik 1
Systemorientierte Informatik. Grundlagen Digitaler Schaltungen.8 Schaltnetze aus Gattern und Leitungen.9 Boole sche Algebra. Minimierung Boole scher Funktionen. CMOS Komplegatter Die nächste Funktion,
Technische Informatik - Eine Einführung
Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Darstellung von Zeichen und
Mathematische Grundlagen I Logik und Algebra
Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte
Mengenoperationen, Abbildungen
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Z6 Rechengesetze für Mengenoperationen Lineare Algebra 1 WS 2006/07 en Blatt 3 06.11.2006 Mengenoperationen,
Ringe. Kapitel Einheiten
Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,
Analysis für Informatiker
Analysis für Informatiker Wintersemester 2017/2018 [email protected] 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während
1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt:
1 Körper Sie kennen bereits 2 Beispiele von Zahlkörpern: (Q, +, ) (R, +, ) die rationalen Zahlen mit ihrer Addition und Multiplikation die reellen Zahlen mit ihrer Addition und Multiplikation Vielleicht
