Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Größe: px
Ab Seite anzeigen:

Download "Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln"

Transkript

1 Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt Euler sche Phi-Funktion und ist für n N + gleich der Anzahl an Elementen aus [0, n 1], die teilerfremd zu n sind. Bemerkung. Seien N, m, n N + und P. 1. ϕ(m) = (Z/mZ), ϕ() = 1 und ϕ( ) = ( 1) ϕ ist multilikativ, das heißt ggt (m, n) = 1 ϕ(m n) = ϕ(m)ϕ(n). Notation. Mit π m : Z Z/mZ wird im Folgenden der kanonische Homomorhismus bezeichnet. Satz. Seien a Z, m N +, P. 1. Euler : ggt (a, m) = 1 a ϕ(m) 1 (mod m). 2. kleiner Fermat : a a (mod ); a a 1 1 (mod ). Beweis. 1. Da ggt (a, m) = 1 ist, ist π m (a) (Z/mZ) und mittels Satz von Lagrange erhält man ord(π m (a)) (Z/mZ) = ϕ(m); daraus folgt aber π m (a) ϕ(m) = 1 (Z/mZ) und schließlich π m (a ϕ(m) ) = π m (a) ϕ(m) = 1 (Z/mZ) = π m (1 Z ), was äquivalent zu a ϕ(m) 1 (mod m) ist. 2. Mittels Fallunterscheidung erhält man schrittweise: a ggt (a, ) = 1 a ϕ() = a 1 1 (mod ) a a (mod ) a a a a a a (mod ). Definition. Seien a Z und m N + mit ggt (a, m) = 1. Dann heißt a genau dann eine Primitivwurzel modulo m, wenn π m (a) = (Z/mZ). 1

2 Bemerkung. Definiert man für a Z und m N + mit ggt (a, m) = 1 die Ordnung von a modulo m via ord m a = min{k N + a k 1 (mod m)}, so folgt daraus 1. ord m a = ord(π m (a)) in der Grue (Z/mZ). 2. a ist eine Primitivwurzel modulo m ord m a = ϕ(m). Beweis. 1. Klar, da ord(π m (a)) = min{k N + π m (a) k = 1 (Z/mZ) }. 2. : a ist eine Primitivwurzel modulo m ϕ(m) = (Z/mZ) = π m (a) = ord(π m (a)) = ord m a. : Aus (Z/mZ) = ϕ(m) = ord m a = ord(π m (a)) = π m (a) und π m (a) (Z/mZ) folgt π m (a) = (Z/mZ) und damit die Behautung. 2 Der Satz von Gauß Lemma. Zu eder Primzahl gibt es eine Primitivwurzel a modulo mit a 1 1 (mod 2 ). Beweis. Sei eine Primzahl, a 1 Z und a 2 := a 1 +. Mithilfe des binomischen Lehrsatzes kann man a 2 schreiben als ( ) a 2 = (a 1 + ) = a 1. Betrachtet man a 2 nun modulo 2, so sieht man, dass 2 eden Summanden für = 0,..., 2 teilt, da 2 ( ) a 1 ; für = 1 ist ( ) a 1 = a 1 1, womit ersichtlich ist, dass auch dieser Term Vielfaches von 2 ist. Da der letzte Summand ( ) a 1 = a 1 ist, erhält man =0 a 2 a 1 (mod 2 ). (1) Aus dem kleinen Fermat schen Satz folgt nun, dass a 1 a 1 (mod ) und a 2 a 2 (mod ) bzw. a 1 = a 1 + b 1 und a 2 = a 2 + b 2 mit b 1, b 2 Z sind. Man erhält, wenn man diese Beziehungen in (1) einsetzt und a 2 = a 1 + beachtet a 2 + b 2 = a b 2 a 1 + b 1 (mod 2 ); dies ist äquivalent zu b 2 b 1 (mod 2 ); kürzt man das in dieser Kongruenz, so erhält man b 2 b 1 1 (mod ). 2

3 Das heißt nun, dass höchstens eines der beiden b i, i {1, 2} durch teilbar sein kann; denn sonst wäre 0 1 (mod ), woraus = 1 folgen würde - ein Widersruch. Man wähle nun a 1 als eine Primitivwurzel modulo, was nach den Erkenntnissen in den vorigen Abschnitten möglich ist; dann gilt a 2 = a 1 + a 2 a 1 (mod ) π (a 2 ) = π (a 1 ). Da (Z/Z) = π (a 1 ) = π (a 2 ), ist auch a 2 eine Primitivwurzel modulo. Sei nun b 2 enes der beiden b i von vorhin, das kein Vielfaches von ist, dann gilt b 2 2 b 2 2 a 2 a 2. Das besagt aber gerade, dass 2 a 2 (a 1 2 1) und insbesondere 2 (a 1 2 1) gilt. Da die letzte Aussage äquivalent zu a (mod 2 ) ist, und a 2 eine Primitivwurzel modulo ist, ist das Lemma bewiesen. Der folgende Satz - der Satz von Gauss - ist in dieser Form das Gegenstück zum Satz über die notwendige Bedingung für die Existenz von Primitivwurzeln modulo einer natürlichen Zahl; er besagt, dass diese notwendige Bedingung gleichzeitig hinreichend ist. Satz. Modulo m N + existieren genau dann Primitivwurzeln, wenn m {1, 2, 4, α, 2 α P\{2}, α N + }. Beweis. Wie eben bemerkt, bleibt nur noch zu zeigen, dass es modulo dieser seziellen natürlichen Zahlen tatsächlich Primitivwurzeln gibt. Für m = 1 ist a = 1 eine Primitivwurzel, da (Z/Z) = {0} = {0} = {1}; ebenso ist a = 1 eine Primitivwurzel modulo m = 2, da (Z/2Z) = {0, 1} = {1}, und a = 3 eine Primitivwurzel modulo m = 4, da (Z/4Z) = {1, 3} = 3. Im Folgenden seien eine ungerade Primzahl und α eine natürliche Zahl. Zunächst wird der Fall m = α behandelt und gezeigt, dass es modulo α Primitivwurzeln gibt. Zu diesem Zweck wähle man a N + als eine Primitivwurzel modulo mit a 1 1 (mod 2 ), das heißt wie im vorangegangenen Lemma. Im nächsten Schritt beweist man mittels vollständiger Induktion die Aussage ( α N +, α 2) a ( 1)α 2 1 (mod α ). (2) In diesem Fall startet der Induktionsbeweis bei α = 2 und man hat als Induktionsverankerung a 1 1 (mod 2 ) zu zeigen; diese Aussage erledigt sich aber von selbst, da a a genauso gewählt wurde, dass es diese Eigenschaft hat. Im folgenden Induktionsschritt setzt man (2) für ein gegebenes α 2 als richtig voraus und behält dies im Auge; denn einerseits folgt aus dem Euler schen Satz a ϕ(α 1) 1 (mod α 1 ) und andererseits ϕ( α 1 ) = ( 1) α 2 aus den Eigenschaften der Euler schen Phi-Funktion. Zusammen ergibt sich a ( 1)α 2 1 (mod α 1 ) 3

4 oder äquivalent dazu a ( 1)α 2 = 1 + b α 1, (3) wobei hier zu beachten ist, dass b zwar ganz ist, aber nach Induktionsannahme kein Vielfaches von sein kann, da sonst a ( 1)α 2 = 1 + b α gelten würde mit b Z, was a ( 1)α 2 1 (mod α ) zur Folge hätte - ein Widersruch zur Induktionsannahme. Durch Potenzieren von (3) mit erhält man mittels binomischem Lehrsatz a ( 1)α 1 = (1 + b α 1 ) = =0 diese letzte Summe anders angeschrieben ergibt =0 ( ) b (α 1) = 1 + b α 1 + =2 = 1 + b α + 2(α 1) ( ) b (α 1) ; ( ) b (α 1) = ( ) b ( 2)(α 1). Da α 2, ist für 3 eder Summand Vielfaches von, da ( 2)(α 1) ( ) b ( 2)(α 1) ; beachtet man aber, dass ( ) 2 = ( 1) 2 und 1 gerade ist, so sieht man, dass ein Teiler von ( 2) ist - was nach einem Resultat aus der Vorlesung Einführung in die Algebra ohnehin klar ist (n ist rim ( m {1,..., n 1}) n ( n m) ). Insgesamt heißt das also, dass die Summe ) b ( 2)(α 1) Vielfaches von ist; schließlich liefert das ( =2 1 + b α + 2(α 1) =2 mit c Z und nochmals zusammengefasst a ( 1)α 1 =2 ( ) b ( 2)(α 1) = 1 + b α + c 2α 1 = 1 + b α + c 2α 1 Da aber α 2 2α 1 α + 1, folgt daraus, dass α+1 c 2α 1, aber α+1 b α, da b wie bereits weiter oben bemerkt wurde. Das heißt also a ( 1)α b α 1 (mod α+1 ), was genau der Aussage in (2) entsricht mit α + 1 anstelle von α. Damit ist der Induktionsbeweis abgeschlossen und die Richtigkeit von (2) gezeigt. Sei a im Weiteren wie bisher gewählt; dann sind a und α teilerfremd, denn ein ggt (a, α ) > 1 hätte einen gemeinsamen Teiler zur Folge, womit a ein Vielfaches von wäre - ein Widersruch, da a eine Primitivwurzel modulo ist und somit ggt (a, ) = 1 gilt. Also ist es möglich l := ord αa zu definieren. 4

5 Da ord αa n für alle n Z mit a n 1 (mod α ), gilt insbesondere l ϕ( α ) = ( 1) α 1 nach Euler schem Satz und Eigenschaften der Euler schen Phi-Funktion. Allerdings gilt wegen a l 1 (mod α ) erst recht a l 1 (mod ), da α a l 1. Wegen ord a = ϕ() = 1 und ord a l gilt zusätzlich auch 1 l, zusammen also 1 l ( 1) α 1 ; damit kann l nur von der Form l = ( 1) β mit β {0,..., α 1} sein. Daher folgt daraus a l = a ( 1)β 1 (mod α ); laut (2) ist β α 2 aber nicht möglich, da a ( 1)β 1 (mod α ) mit β α 2 β+2 α a ( 1)β 1 a ( 1)β 1 (mod β+2 ), was ein Widersuch zu (2) mit α = β + 2 ist. Damit bleibt nur die Möglichkeit β = α 1 übrig, woraus ord αa = l = ( 1) α 1 = ϕ( α ) folgt. Dies ist aber nach der Charakterisierung von Primitivwurzeln äquivalent damit, dass a eine Primitivwurzel modulo α ist, womit gezeigt ist, dass es modulo α mit ungerader Primzahl und natürlichem α Primitivwurzeln gibt. Zuletzt muss noch gezeigt werden, dass es auch modulo 2 α, mit und α wie vorhin, Primitivwurzeln gibt. Sei dazu a eine Primitivwurzel modulo α ; ferner wähle man eine ungerade Primitivwurzel â modulo α. Solch ein â kann man unter den bisherigen Voraussetzungen auch immer finden: Falls a ohnehin ungerade ist, wählt man â := a, andernfalls â := a + α ; â ist dann ungerade und Primitivwurzel modulo α, da a â (mod α ) π α(a) = π α(â) (Z/ α Z) = π α(a) = π α(â). Wegen ggt (2, α ) = 1 folgt aus dem chinesischen Restsatz, dass (Z/2 α Z) = (Z/2Z) (Z/ α Z) = (Z/ α Z), (4) wobei die zweite Isomorhie trivial ist, da (Z/2Z) = {1}. Man wähle nun folgenden Gruenisomorhismus f : (Z/2 α Z) (Z/ α Z), definiert via π 2 α(x) (π 2 (x), π α(x)) π α(x) für x Z, wobei die Abbildungsfeile für die einzelnen Gruenisomorhismen in (4) stehen. Beachtet man die folgenden Äquivalenzen (Z/2 α Z) = π 2 α(â) (5) f((z/2 α Z) ) = f( π 2 α(â) ) (6) (Z/ α Z) = f(π 2 α(â)), (7) so sieht man, dass â genau dann eine Primitivwurzel modulo 2 α ist, wenn f(π 2 α(â)) die Grue (Z/ α Z) erzeugt. Dazu untersucht man die Wirkung von f auf π 2 α(â): π 2 α(â) (π 2 (â), π α(â)) π α(â), und erkennt, dass f(π 2 α(â)) = π α(â) und Gleichung (7) somit erfüllt ist. Damit sind aber auch (6) und schließlich Aussage (5) wahr, womit gezeigt ist, dass â eine Primitivwurzel modulo 2 α ist. 5

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16

Mehr

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson Stefan Rosenberger November 16, 2009 1 Notationen und Vorbemerkungen 1.1 Erinnerung an bekannte Definitionen a) Für alle

Mehr

(M1) x N : m(x,1) = x. (M2) x, y N : m(x, y ) = s(m(x, y), x)

(M1) x N : m(x,1) = x. (M2) x, y N : m(x, y ) = s(m(x, y), x) Aufgabe 1 3 Punkte) Erinnerung: Die Addition s und die Multilikation m auf N sind die eindeutigen Funktionen s bzw. m: N N N, für die gilt S1) x N : sx,1) x S) x, y N : sx, y ) sx, y) M1) x N : mx,1) x

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7

Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7 Quadratische Reste Michael Partheil 19. Mai 008 Inhaltsverzeichnis 1 Hintergrund Quadratische Reste 4 3 Gauß sche Summen 7 4 Quadratisches Rezirozitätsgesetz 10 5 Literaturverzeichnis 1 1 1 Hintergrund

Mehr

Charaktere. 1 Die Charaktergruppe

Charaktere. 1 Die Charaktergruppe Vortrag zum Seminar zur Funktionentheorie, 28.01.2008 Elisabeth Peternell Zu den wichtigsten Dirichletschen Reihen gehören die L-Reihen, welche insbesondere gewöhnliche Dirichletsche Reihen darstellen,

Mehr

Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen

Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 14 Fermatsche Primzahlen Definition 14.1. Eine Primzahl der Form 2 s + 1, wobei s eine positive natürliche Zahl ist, heißt Fermatsche Primzahl.

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch:

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch: 7. Kongruenzrechnung 7. 1. Definition: Für n N sei die Relation: n a n b ( a kongruent b modulo n ) auf Z, definiert durch: a n b : n ( a b) a b ( mod n) Dies ist eine Äquivalenzrelation auf Z. Die Menge

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

2 Das Quadratische Reziprozitätsgesetz

2 Das Quadratische Reziprozitätsgesetz Das Quadratische Rezirozitätsgesetz Anna Sökeland, Natalie Graßmuck 6.0.007 1 Vorbemerkungen 3 mod 13, d.h. modulo 13 ist 3 ein Quadrat. Definition : Sei eine Primzahl. x F y F mit ist Quadrat modulo,

Mehr

Beweis des Satzes von Euler

Beweis des Satzes von Euler (Z/nZ) hat '(n) Elemente g 1, g 2,...,g '(n). Nach Teil c) des Satzes aus Einheit 26 definiert x 7! ax eine Bijektion auf Z/nZ und daher auch auf (Z/nZ). Also gilt: Beweis des Satzes von Euler (Z/nZ) =

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage Das Quadratische Rezirozitätsgesetz Stefanie Beule Sebastian Schrage 06. November 007 Inhaltsverzeichnis 3 Das Quadratische Rezirozitätsgesetz Notation.............................................. A Das

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

1 Kryptographie - alt und neu

1 Kryptographie - alt und neu 1 Krytograhie - alt und neu 1.1 Krytograhie - alt [H] S. 9-14 und S. 18:.3.1. (Idee) - olyalhabetische Verschlüsselung, Vigenère (1550) 1. Primzahlen [RS] S. 89-93, wohl im wesenlichen ohne Beweise. Ausnahme

Mehr

Lösungsvorschlag zur Nachklausur. Zeigen Sie die folgenden voneinander unabhängigen Aussagen:

Lösungsvorschlag zur Nachklausur. Zeigen Sie die folgenden voneinander unabhängigen Aussagen: Lösungsvorschlag zur Nachklausur Aufgabe 1 Es seien G eine Gruppe und H, K zwei Untergruppen von G. Weiterhin gelte G = {hk h H, k K}. Zeigen Sie die folgenden voneinander unabhängigen Aussagen: a) Sind

Mehr

7 Die Sätze von Fermat, Euler und Wilson

7 Die Sätze von Fermat, Euler und Wilson 53 7 Die Sätze von Fermat, Euler und Wilson Es gibt einige Sätze aus der elementaren Zahlentheorie, die Spezialfälle von Aussagen über endliche Gruppen sind. Z.B. gilt für ein beliebiges Element x einer

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

Übungsaufgaben zur Zahlentheorie (Holtkamp)

Übungsaufgaben zur Zahlentheorie (Holtkamp) Ruhr-Universität Bochum Fakultät für Mathematik Sommersemester 2005 Übungsaufgaben zur Zahlentheorie (Holtkamp) Sonderregelung: Zur vollständigen Lösung jeder Aufgabe gehört die Kennzeichnung der (maximal

Mehr

Vortrag 13: Der Cayley-Graph von PSL 2 ( q ) ist regulär und zusammenhängend

Vortrag 13: Der Cayley-Graph von PSL 2 ( q ) ist regulär und zusammenhängend Vortrag 13: Der Cayley-Grah von PSL 2 ( ) ist regulär und zusammenhängend 1. Erinnerung Seien und unterschiedliche, ungerade Primzahlen. Im letzten Vortrag wurden Grahen X, wie untenstehend definiert.

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung

Mehr

PROSEMINAR LINEARE ALGEBRA

PROSEMINAR LINEARE ALGEBRA PROSEMINAR LINEARE ALGEBRA von Daniel Cagara Zunächst benötigen wir einige Elemente der Gruppentheorie. Definition 1. Eine Gruppe ist ein Tupel, bestehend aus einer nicht leeren Menge G und einer Verknüpfung,

Mehr

6 Zahlentheoretische Grundlagen

6 Zahlentheoretische Grundlagen 6 Zahlentheoretische Grundlagen 89 6 Zahlentheoretische Grundlagen In diesem Abschnitt stellen wir die Hilfsmittel aus der Zahlentheorie bereit, die wir zum Verständnis der Public-Key Verfahren, die im

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

Algebra. 1 = a u + b,

Algebra. 1 = a u + b, Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 11. November 2008 Algebra 5. Übung mit Lösungshinweisen Aufgabe 23 Es sei R ein euklidischer Integritätsbereich.

Mehr

Übungen zu Zahlentheorie, SS 2017

Übungen zu Zahlentheorie, SS 2017 Übungen zu Zahlentheorie, SS 017 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. ) Zeige (a b) (a n b n ) für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n ) (mit

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Übungen zu Zahlentheorie für TM, SS 2013

Übungen zu Zahlentheorie für TM, SS 2013 Übungen zu Zahlentheorie für TM, SS 2013 zusammengestellt von Johannes Morgenbesser Übungsmodus: Ausarbeitung von 10 der Beisiele 1 38, 5 der Beisiele A O und 15 der Beisiele i xxxi. 1. Zeigen Sie, dass

Mehr

Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt:

Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt: 5.6 Satz von Fermat Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt: b p b mod p, (falls b 0 mod p : b p 1 1 mod p) (gemeint ist: die Gleichung b p = b gilt modulo p) Diskrete Strukturen 5.6 Satz von

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen.

Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen. Was ist Zahlentheorie? Ursprünglich ist die Zahlentheorie (auch: Arithmetik) ein Teilgebiet der Mathematik, welches sich allgemein mit den Eigenschaften der ganzen Zahlen und insbesondere mit den Lösungen

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

Fibonacci-Zahlen und goldener Schnitt

Fibonacci-Zahlen und goldener Schnitt Fibonacci-Zahlen und goldener Schnitt Suche eine Darstellung der Form F n = x n für reelle Zahl x > 0. Aus der definierenden Gleichung folgt sofort x 2 = x + 1. Dann liefert die p-q-formel: x 1,2 = 1 2

Mehr

Tim Behnke. 09. November Wintersemester 2017/2018 Proseminar Das Buch der Beweise. 4 Beweise für die Unendlichkeit der Primzahlen.

Tim Behnke. 09. November Wintersemester 2017/2018 Proseminar Das Buch der Beweise. 4 Beweise für die Unendlichkeit der Primzahlen. 4 e für 4 e für Dritter Vierter 09. November 2017 Wintersemester 2017/2018 Proseminar Das Buch e 4 e für Dritter Vierter 1 2 3 4 Dritter 5 Vierter Definitionen [I] 4 e für Dritter Vierter Definition Primzahl

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrüc SS 2015 Elemente der Algebra Vorlesung 16 Der Chinesische Restsatz für Z Satz 16.1. Sei n eine positive natürliche Zahl mit anonischer Primfatorzerlegung 1 p r 2 2 p r (die

Mehr

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung

Mehr

WS 2003/04. Diskrete Strukturen I

WS 2003/04. Diskrete Strukturen I WS 2003/04 Ernst W. Mayr mayr@in.tum.de Institut für Informatik Technische Universität München 11-07-2004 Satz Sei b N 0 und p N eine Primzahl. Dann gilt: b p b mod p, (falls b 0 : b p 1 1 mod p) (gemeint

Mehr

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen 621.242 Vorlesung mit Übung im WS 2015/16 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen.

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Seminarausarbeitung Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Andre Eberhard Mat. Nr. 25200607 5. November 207 Inhaltsverzeichnis

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994).

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994). Primzahltest Wir wollen testen, ob eine gegebene Zahl n eine Primzahl ist Effizienter Algorithmus zum Faktorisieren ist unbekannt Kontraposition des Kleinen Satzes von Fermat liefert: Falls a n 1 1 mod

Mehr

Diskrete Strukturen Nachholklausur

Diskrete Strukturen Nachholklausur Technische Universität München Winter 0/7 Prof. H. J. Bungartz / Dr. M. Luttenberger, J. Bräckle, K. Röhner HA- Diskrete Strukturen Nachholklausur.04.07 Beachten Sie: Soweit nicht anders angegeben, ist

Mehr

Beweis des Satzes von Euler

Beweis des Satzes von Euler (Z/nZ) hat '(n) Elemente g 1, g 2,...,g '(n). Nach Teil c) des Satzes aus Einheit 26 definiert x 7! ax eine Bijektion auf Z/nZ und daher auch auf (Z/nZ). Also gilt: Beweis des Satzes von Euler (Z/nZ) =

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

3. Quadratische Zahlkörper

3. Quadratische Zahlkörper Ein quadratischer Zahlkörer K ist ein algebraischer Zahlkörer vom Grad. Ein solcher Körer lässt sich stets schreiben als K = Q( d, wobei d Z {0, 1} eine quadratfreie ganze Zahl ist. Der Zahlkörer Q( d

Mehr

Zusammenfassung: Beweisverfahren

Zusammenfassung: Beweisverfahren LGÖ Ks VMa 11 Schuljahr 217/218 Zusammenfassung: Beweisverfahren Inhaltsverzeichnis Teilbarkeitslehre... 1 Mathematische Sätze... 1 Bedingungen für Extremstellen und Wendestellen... 2 Beweisverfahren...

Mehr

Leitfaden. a ist Vielfaches von d und schreiben verkürzt: d a. Ist d kein Teiler von a, so schreiben wir auch: d a. d teilt a oder

Leitfaden. a ist Vielfaches von d und schreiben verkürzt: d a. Ist d kein Teiler von a, so schreiben wir auch: d a. d teilt a oder Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

Angewandte Diskrete Mathematik

Angewandte Diskrete Mathematik Vorabskript zur Vorlesung Angewandte Diskrete Mathematik Wintersemester 2010/ 11 Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Universität

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

Übungen zu Zahlentheorie, SS 2008

Übungen zu Zahlentheorie, SS 2008 Übungen zu Zahlentheorie, SS 2008 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. 2) Zeige (a b) (a n b n )für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n )

Mehr

1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen)

1.1.1 Konstruktion der ganzen Zahlen, Vertretersystem (nicht-negative und negative ganze Zahlen) Zahlentheorie LVA 405.300 C. Fuchs Inhaltsübersicht 26.06.2013 Inhaltsübersicht Die Zahlentheorie gehört zu den Kerngebieten der Mathematik und steht historisch und thematisch in ihrem Zentrum. Es geht

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2010 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 15 Der Hauptsatz der elementaren Zahlentheorie Wir beweisen nun, dass sich jede natürliche Zahl in eindeutiger Weise als Produt

Mehr

3-9 Elementare Zahlentheorie

3-9 Elementare Zahlentheorie 3-9 Elementare Zahlentheorie 332 Satz (Charakterisierung zyklischer Gruppen) Sei G eine Gruppe der Ordnung n Die folgenden Aussagen sind äquivalent: (1) G ist zyklisch (2) Die Anzahl der Elemente der Ordnung

Mehr

Legendre-Symbol von 2

Legendre-Symbol von 2 Legendre-Symbol von Lemma Legendre-Symbol von Sei P\{}. Dann gilt ( ) = { +1 falls ±1 mod 8 1 falls ±3 mod 8. Beweis: Nach Euler-Identität wissen wir, dass ( ) 1 mod. In Z[i] gilt = ( i) i = ( i)(1+i).

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Skriptum zur Vorlesung Elementare Zahlentheorie. Sommersemester Prof. Dr. Helmut Maier Dipl.-Math. Daniel Haase

Skriptum zur Vorlesung Elementare Zahlentheorie. Sommersemester Prof. Dr. Helmut Maier Dipl.-Math. Daniel Haase Skriptum zur Vorlesung Elementare Zahlentheorie Sommersemester 006 Prof Dr Helmut Maier Dipl-Math Daniel Haase Inhaltsverzeichnis Einleitung 4 Teilbarkeit 5 Teilbarkeit ganzer Zahlen 5 Primzahlen 8 Kongruenzen

Mehr

Beispiel für simultane Kongruenz

Beispiel für simultane Kongruenz Beispiel für simultane Kongruenz Jetzt wollen wir das Lemma der letzten Einheit anwenden. Wenn man eine Zahl sucht, die kongruent zu y modulo m und kongruent zu z modulo n ist, so nehme man zam + ybn wobei

Mehr

Wenn nicht anders angegeben sei im Folgendem stets p eine Primzahl, q := p n und F q der Körper mit q Elementen.

Wenn nicht anders angegeben sei im Folgendem stets p eine Primzahl, q := p n und F q der Körper mit q Elementen. : Ergänzungssätze zum Rezirozitätsgesetz I Vorbereitung 1.1 Notation Wenn nicht anders angegeben sei im Folgendem stets eine Primzahl, q := n und F q der Körer mit q Elementen. 1. Erinnerung Aus Algebra

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Zahlentheorie Vorbereitungskurs zur Österreichischen Mathematischen Olympiade Clemens Heuberger

Zahlentheorie Vorbereitungskurs zur Österreichischen Mathematischen Olympiade Clemens Heuberger Zahlentheorie Vorbereitungskurs zur Österreichischen Mathematischen Olympiade Clemens Heuberger Inhaltsverzeichnis 1 Teilbarkeit 2 1.1 Grundbegriffe.................................. 2 1.2 Größter gemeinsamer

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 2002/03 Institut für Informatik Aufgabenblatt 8 Prof. Dr. J. Csirik 2. Dezember 2002 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Der chinesische Restsatz mit Anwendung

Der chinesische Restsatz mit Anwendung Der chinesische Restsatz mit Anwendung Nike Garath n.garath@gmx.de Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Viel Erfolg! Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) Name:... Matr.-Nr.:...

Viel Erfolg! Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) Name:... Matr.-Nr.:... 8. März 2011 Prof. Dr. W. Bley Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) 1 2 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

Carmichael-Zahlen und Miller-Rabin-Test

Carmichael-Zahlen und Miller-Rabin-Test Institut für Mathematik Universität Hannover Proseminar: Zahlentheorie und Kryptographie Prof. Dr. C. Bessenrodt Carmichael-Zahlen und Miller-Rabin-Test Felix Pape 15. Mai 2003 1 Carmichael-Zahlen 1.1

Mehr

Elemente der Mathematik - Sommer 2017

Elemente der Mathematik - Sommer 2017 Elemente der Mathematik - Sommer 2017 Prof. Dr. Peter Koepke, Thomas Poguntke Lösung 1 Aufgabe 54 (4+2 Punkte). In der Vorlesung wurde die Multiplikation auf den ganzen Zahlen definiert durch (a, b) (a,

Mehr

Mathematische Grundlagen der Kryptografie (1321) SoSe 06

Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Klausur am 19.08.2006: Lösungsvorschläge zu den Aufgaben zu Aufgabe I.1 (a) Das numerische Äquivalent zu KLAUSUR ist die Folge [10, 11, 0, 20, 18,

Mehr

Zusammenfassung: Beweisverfahren

Zusammenfassung: Beweisverfahren LGÖ Ks VMa 11 Schuljahr 216/217 Zusammenfassung: Beweisverfahren Inhaltsverzeichnis Teilbarkeitslehre... 1 Mathematische Sätze... 1 Bedingungen für innere Extremstellen... 3 Beweisverfahren... 3 Für Experten...

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Vorlesung Diskrete Strukturen Gruppe und Ring

Vorlesung Diskrete Strukturen Gruppe und Ring Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 ***

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2009 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Zahlentheorie Vorbereitungskurs zur Österreichischen Mathematischen Olympiade

Zahlentheorie Vorbereitungskurs zur Österreichischen Mathematischen Olympiade Zahlentheorie Vorbereitungskurs zur Österreichischen Mathematischen Olympiade Inhaltsverzeichnis Clemens Heuberger 1 Teilbarkeit 2 1.1 Grundbegriffe....................................... 2 1.2 Größter

Mehr

Zahlentheorie für den Gebietswettbewerb für Fortgeschrittene der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Gebietswettbewerb für Fortgeschrittene der Österreichischen Mathematik-Olympiade Zahlentheorie für den Gebietswettbewerb für Fortgeschrittene der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Zifferndarstellungen in anderen Basen 1

Mehr

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist.

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist. 5.4 Untergruppen Definition 84 Eine Unteralgebra T,, 1 einer Gruppe G = S,, 1 heißt Untergruppe von G, falls T,, 1 eine Gruppe ist. Bemerkung: Nicht jede Unteralgebra einer Gruppe ist eine Untergruppe!

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE FB 3: Mathematik/Naturwissenschaften Prof. Dr. P. Ullrich/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 06.04.2016 Name: Vorname:

Mehr

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen Miller-Rabin Test Primzahl- und Zerlegbarkeitstests Sei N eine positive ganze Zahl. Wie kann man möglichst effizient feststellen, ob N eine Primzahl oder zerlegbar ist? Dies ist die Aufgabe von Primzahlund

Mehr

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung 1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.

Mehr

Zahlen. Vorlesung Mathematische Strukturen. Sommersemester Zahlen. Zahlen

Zahlen. Vorlesung Mathematische Strukturen. Sommersemester Zahlen. Zahlen Vorlesung Mathematische Strukturen Sommersemester 2016 Prof. Barbara König Übungsleitung: Christine Mika & Dennis Nolte Division mit Rest Seien a, b Z zwei ganze mit a 0. Dann gibt es eindeutig bestimmte

Mehr

Primzahltest für Mersenne-Primzahlen

Primzahltest für Mersenne-Primzahlen Primzahltest für Mersenne-Primzahlen Satz Lucas-Lehmer Test Sei n = 2 p 1 N für p P\{2}. Wir definieren die Folge S k durch S 1 = 4 und S k = S 2 k 1 2. Falls n S p 1, dann ist n prim. Beweis: Seien ω

Mehr

2.4. Kongruenzklassen

2.4. Kongruenzklassen DEFINITION 2.4.1. kongruent modulo 2.4. Kongruenzklassen Wikipedia:1707 wurde Euler als der älteste Sohn des Pfarrers Paul Euler geboren. Er besuchte das Gymnasium in Basel und nahm gleichzeitig Privatunterricht

Mehr

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein.

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Klausur zur Vorlesung Zahlentheorie 21. Juli 2010 12 Uhr 15 14 Uhr 00 Ruhr-Universität Bochum PD. Dr. Claus Mokler Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Name,

Mehr

Zusatzkapitel Algebra Anton Deitmar

Zusatzkapitel Algebra Anton Deitmar Zusatzkapitel Algebra 1 Zusatzkapitel Algebra Anton Deitmar 1 Gruppen 1.9 Kommutatoren Definition 1.9.1. Sind a, b Elemente einer Gruppe G, so sei [a, b] = aba 1 b 1 der Kommutator von a und b. Sei [G,

Mehr

5-1 Elementare Zahlentheorie

5-1 Elementare Zahlentheorie 5-1 Elementare Zahlentheorie 5 Summen von Quadraten Wir interessieren uns hier für die Frage, ob sich eine (natürlich positive) Zahl n als Summe von sagen wir t Quadraten ganzer Zahlen schreiben lässt,

Mehr