Folgen. Kapitel 2. Folgen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Größe: px
Ab Seite anzeigen:

Download "Folgen. Kapitel 2. Folgen. Peter Becker (H-BRS) Analysis Sommersemester / 543"

Transkript

1 Kapitel 2 Folgen Peter Becker (H-BRS) Analysis Sommersemester / 543

2 Inhalt Inhalt 1 Folgen Definition kriterien in C, R d und C d Peter Becker (H-BRS) Analysis Sommersemester / 543

3 Definition Motivation Von Intelligenztests kennen wir die Aufgabe, eine Abfolge von Zahlen fortzusetzen: 1, 4, 9, 16, 25,... 2, 3, 5, 7, 11, 13, 17,... 1, 2, 3, 4, 5, 6,... 1, 5, 7, 17, 31, 65, , 2, 1 3, 1 4, 1 5,... Solch eine Regelmäßigkeit in der Abfolge der Zahlen drücken wir in der Mathematik durch eine Funktion aus. Peter Becker (H-BRS) Analysis Sommersemester / 543

4 Definition Folge Definition 2.1 Es sei M eine Menge. Eine Folge oder Zahlenfolge in M ist eine Abbildung a : N! M n 7! a(n). Statt a(n) schreibenwiri.d.r.a n und für diese Abbildung (a n ) n2n, (a n ) n 1 oder auch nur (a n ). Das Element a n heißt n-tes Folgenglied der Folge (a n ). Für M = R sprechen wir von einer reellen Folge, für M = C von einer komplexen Folge. Peter Becker (H-BRS) Analysis Sommersemester / 543

5 Definition Beispiele für Folgen Beispiel 2.2 Die Folgen von Folie 91: a n = n 2 b n = n-te Primzahl c n = ( 1) n+1 n d n = 2 n +( 1) n e n = ( 1)n+1. n Peter Becker (H-BRS) Analysis Sommersemester / 543

6 Definition Rekursiv definierte Folgen Folgen müssen nicht wie die vorangegangenen Beispiele explizit definiert sein, sondern können auch rekursiv definiert werden. Definition 2.3 (Fibonacci-Folge) Die Fibonacci-Folge (F n ) n F 0 = 0, F 1 = 1, 0 ist wie folgt definiert: F n = F n 1 + F n 2 für n 2. Typisches Problem bei der Analyse von Algorithmen: Ermittle eine explizite Formel für die Folgenglieder einer rekursiv definierten Folge. Für die Fibonacci-Folge leistet dies die Formel von Moivre-Binet. Peter Becker (H-BRS) Analysis Sommersemester / 543

7 Definition Beispiel 2.4 Wie viele Parkettierungen f n mit Flächen der Größe 1 2bzw.2 1 gibt es für ein Feld der Größe n 2? 1 x 2 f1 = 1 2 x 2 f2 = 2 3 x 2 f3 = 3 4 x 2 f4 = 5 Allgemein: f n = f n 1 + f n 2, n 3. Peter Becker (H-BRS) Analysis Sommersemester / 543

8 Definition Formel von Moivre-Binet Satz 2.5 Für die Fibonacci-Folge (F n ) gilt F n = p 1 1+ p! n p! n! 5. 2 Beweis. Mittels vollständiger Induktion, siehe Mathematische Grundlagen. Der Beweis für die Korrektheit einer expliziten Formel ist i.d.r. viel einfacher als die Herleitung solch einer expliziten Formel. Im Verlauf der Vorlesung lernen Sie auch erste Ansätze zur Herleitung solch expliziter Formeln. Peter Becker (H-BRS) Analysis Sommersemester / 543

9 Grenzwert einer Folge Definition 2.6 Es sei (a n ) eine reelle Zahlenfolge. Eine Zahl a 2 R heißt Grenzwert der Folge (a n ), wenn zu jeder (noch so kleinen) reellen Zahl >0eineZahln 0 2 N existiert, so dass für alle natürlichen Zahlen n n 0 a n a < gilt. Im Folgenden bezeichne stets eine positive reelle Zahl und n eine natürliche Zahl. In Quantorenschreibweise lautet die Bedingung aus Definition 2.6: 8 >0 9n 0 2 N 8n n 0 : a n a < Peter Becker (H-BRS) Analysis Sommersemester / 543

10 Beispiele für Grenzwerte von Folgen Beispiel 2.7 Die Folge (a n ) n2n mit a n := 1 n hat den Grenzwert 0. Beweis: Sei >0 beliebig. Setze n 0 := d1+ 1 e. Damit folgt für alle n n 0 : 1 n 0 = 1 n apple 1 n 0 apple < 1 1 = 1 Die Folge (b n ) n2n mit b n := 1 n Wegen b n 1 = 1 hat den Grenzwert 1. 1 n verläuft der Beweis analog zur Folge (a n ). 1 = 1 n Peter Becker (H-BRS) Analysis Sommersemester / 543

11 Fortsetzung Beispiel. Die Folge (c n )mitc n := q n hat für alle 0 < q < 1 den Grenzwert 0. Dies folgt direkt aus Satz 1.21 (ii). Die Folge (d n )mitd n := np K hat für alle K 1 den Grenzwert 1. Beweis: Für x n := np K 1 ergibt die Bernoullische Ungleichung K =(1+x n ) n 1+nx n. Damit folgt x n < K n und es gilt np K 1 = xn < für alle n > n 0 := K. Peter Becker (H-BRS) Analysis Sommersemester / 543

12 Negation der Grenzwertdefintion (1) Aus den mathematischen Grundlagen kennen Sie (strenge) prädikatenlogische Formeln der Form Die Formel 8x A(x) bzw. 9x A(x). 8x > 0:A(x) entspricht eigentlich nicht der strengen Syntax der Prädikatenlogik. Sie ist eine Kurzform für 8x (x > 0! A(x)). Wie lautet die Negation dieser Formel? Peter Becker (H-BRS) Analysis Sommersemester / 543

13 Negation der Grenzwertdefintion (2) Negation: (8x (x > 0! A(x))) 9x (x > 0! A(x)) 9x ( (x > 0) _ A(x)) 9x (x > 0 ^ A(x)) 9x > 0: A(x) Damit lautet die Charakterisierung für a ist nicht Grenzwert der Folge (a n ) : 9 >0 8n 0 2 N 9n n 0 : a n a Peter Becker (H-BRS) Analysis Sommersemester / 543

14 Definition 2.8 Die reelle Folge (a n )heißtkonvergent, wennsieeinengrenzwertbesitzt. Eine konvergente Folge mit Grenzwert 0 heißt Nullfolge. Wenn (a n ) nicht konvergent ist, dann heißt (a n ) divergent. In Quantorenschreibweise lautet konvergent 9a 2 R 8 >0 9n 0 2 N 8n n 0 : a n a < und dementsprechend divergent 8a 2 R 9 >0 8n 0 2 N 9n n 0 : a n a. Peter Becker (H-BRS) Analysis Sommersemester / 543

15 Beispiele für divergente Folgen Beispiel 2.9 Die Folge (a n )mita n = q n ist für alle q > 1 divergent. Dies folgt direkt aus Satz 1.21 (i). Die Folge (b n )mitb n =( 1) n ist divergent. Beweis: Für jedes a /2 {1, 1} gilt mit = 1 2 min{ a 1, a + 1]} > 0, dass a n a für alle n 2 N. Also kommen nur 1 und 1alsGrenzwert in Frage. Sei a = 1. Wähle = 1. Sei n 0 2 N beliebig. Wähle n =2n Damit gilt a n a = ( 1) 2n = 1 1 =2> =1. Analog für a = 1: Wähle hier n =2n 0. Peter Becker (H-BRS) Analysis Sommersemester / 543

16 Eindeutigkeit von Grenzwerten Satz 2.10 Es sei (a n ) eine konvergente Folge und a und a 0 seien Grenzwerte von (a n ). Dann gilt a = a 0. Damit ist der Grenzwert einer konvergenten Folge stets eindeutig bestimmt. Definition 2.11 Für den (eindeutigen) Grenzwert a einer Folge (a n )schreibenwir lim a n = a. n!1 Weitere geläufige Schreibweise: a n! a für n!1. Peter Becker (H-BRS) Analysis Sommersemester / 543

17 Beweis. Folgen Es sei (a n ) eine konvergente Folge und sowohl a als auch a 0 sei ein Grenzwert von (a n ). Ann.: a 6= a 0.Dannist a a 0 > 0. Wir wählen 0 < < 1 2 a a0.dann existieren n 1 und n 2 mit 8n n 1 : a n a < 8n n 2 : a n a 0 <. Für n max{n 1, n 2 } =: n 0 folgt a a 0 = a a n + a n a 0 apple a a n + a n a 0 < 2 < a a 0 Widerspruch! Also gilt a = a 0. Peter Becker (H-BRS) Analysis Sommersemester / 543

18 Beschränktheit Definition 2.12 Es sei (a n ) eine reelle Zahlenfolge. (i) (a n )heißtnach oben beschränkt, wenn es eine Konstante K 2 R gibt, so dass a n apple K für alle n 2 N gilt. (ii) (a n )heißtnach unten beschränkt, wenn es eine Konstante K 2 R gibt,so dass a n K für alle n 2 N gilt. (iii) (a n )heißtbeschränkt, wenn es eine Konstante K 2 R + gibt (also K > 0), so dass a n applek für alle n 2 N gilt. Eine beschränkte Folge ist stets sowohl nach oben als auch nach unten beschränkt. Warum? Peter Becker (H-BRS) Analysis Sommersemester / 543

19 Beispiele für beschränkte Folgen Beispiel 2.13 Die Folgen (a n ), (b n ), (c n )mit a n := ( 1) n 1 1 b n := n wenn n keine Primzahl ist 0 sonst c n := ( 1) n (1 q n )mit0< q < 1 sind alle beschränkt und divergent. Peter Becker (H-BRS) Analysis Sommersemester / 543

20 Konvergente Folgen sind beschränkt Satz 2.14 Jede konvergente reelle Zahlenfolge (a n ) ist beschränkt. Beweis. Es sei (a n ) eine konvergente Folge mit lim n!1 a n = a. N.V. existiert n 0 mit a n a < 1für alle n n 0. Es folgt für alle n n 0 : a n = a n a + a apple a n a + a apple 1+ a. Setze K := max{ a 1, a 2,..., a n0 für alle n 2 N. 1, 1+ a }. Damit gilt dann a n applek Peter Becker (H-BRS) Analysis Sommersemester / 543

21 Rechenregeln für Grenzwerte Satz 2.15 Es seien (a n ) und (b n ) konvergente Folgen in R mit lim n!1 a n = a und lim n!1 b n = b. Dann gilt: (i) Die Folge (a n ± b n ) ist konvergent mit Grenzwert a ± b. (ii) Die Folge ( a n ) für 2 R ist konvergent mit Grenzwert a. (iii) Die Folge (a n b n ) ist konvergent mit Grenzwert ab. (iv) Wenn a 6= 0ist, dann existiert ein n 0 2 N, sodassa n 6=0für alle n n 0 ist. Die Folge 1 ist dann konvergent mit Grenzwert 1 an n n a. 0 (v) Die Folge ( a n ) ist konvergent mit Grenzwert a. Peter Becker (H-BRS) Analysis Sommersemester / 543

22 Beweis von (i). Es sei >0 beliebig. Weil die Folgen (a n )und(b n ) konvergent sind mit den Grenzwerten a und b gilt: 9n 1 2 N : a n a < 2 für alle n n 1 9n 2 2 N : b n b < 2 für alle n n 2 Wähle n 0 := max{n 1, n 2 }. Dann gilt für alle n n 0 : (a n + b n ) (a + b) = (a n a)+(b n b) apple a n a + b n b < =. Peter Becker (H-BRS) Analysis Sommersemester / 543

23 Werkzeug für Grenzwertbeweise Lemma 2.16 Es sei (a n ) eine reelle Folge. Dann sind die folgenden Aussagen äquivalent: (i) (a n ) ist konvergent mit Grenzwert a. (ii) 9apple >0 8 >09n 0 2 N 8n n 0 : a n a <apple. Nach Satz 2.16 genügt es, a n a <apple für irgendein positives und von unabhängiges apple zu zeigen, um damit auf schließen zu können. Peter Becker (H-BRS) Analysis Sommersemester / 543

24 Beweis. (i))(ii): Mit apple = 1 entspricht (ii) der Grenzwertdefinition. (ii))(i): Es sei >0 beliebig. Wähle 0 := apple.nach(ii)existierteinn 0,so dass für alle n n 0 gilt: a n a <apple 0. Also gilt für alle n n 0 : a n a < apple 0 = apple apple =. Mit Lemma 2.16 werden Grenzwertbeweise einfacher, weil wir nun nicht mehr umständlich ein n 0 konstruieren müssen, um damit a n a < für alle n n 0 zu zeigen. Wir werden Lemma 2.16 in vielen zukünftigen Beweisen nutzen. Peter Becker (H-BRS) Analysis Sommersemester / 543

25 Beweis von Satz 2.15 (iii) Man beachte: Als konvergente Folge ist (b n )beschränkt, d.h. es existiert ein B > 0mit b n appleb für alle n 2 N. Es sei >0 beliebig. Da (a n )und(b n ) konvergent sind, existieren n 1 und n 2 mit a n a < bzw. b n b < für alle n n 1 bzw. n n 2.Damit folgt: a n b n ab = a n b n ab n + ab n ab apple a n b n ab n + ab n ab = b n (a n a) + a(b n b) = b n a n a + a b n b < B + a für n n 0 := max{n 1, n 2 } = (B + a ). Mit Lemma 2.16 folgt, dass ab Grenzwert der Folge (a n b n )ist. Peter Becker (H-BRS) Analysis Sommersemester / 543

26 Beweis von Satz 2.15 (ii), (iv), (v) Übungsaufgabe. Folgerung 2.17 Es sei (a n ) eine konvergente Folge mit Grenzwert a. Beweis. Für alle k 2 N 0 ist die Folge an k konvergent mit Grenzwert a k. 1 Für alle k 2 N ist die Folge eine Nullfolge. n k Übungsaufgabe. Peter Becker (H-BRS) Analysis Sommersemester / 543

27 Anwendung der Grenzwertregeln Beispiel 2.18 Wir betrachten die Folgen (a n ), (b n ), (c n )und(d n )mit Tafel.. a n = 1 n + 3 n 2 b n = ( n ) c n = d n = 2n 2 3 n 2 + n +1 5n +1 4n n 3 Peter Becker (H-BRS) Analysis Sommersemester / 543

28 Bestimmte Divergenz Definition 2.19 Es sei (a n ) eine Folge in R. Wir sagen, dass (a n ) bestimmt gegen +1 divergiert (in Zeichen: lim a n =+1), wenn es zu jeder Konstanten M > 0einn 0 gibt, so dass n!1 a n > M für alle n n 0 ist. Wir nennen (a n ) bestimmt divergent gegen 1 (in Zeichen: lim a n = 1), wenn die Folge ( a n ) bestimmt gegen +1 divergiert. n!1 Peter Becker (H-BRS) Analysis Sommersemester / 543

29 Beispiele für bestimmte Divergenz Beispiel 2.20 Wir betrachten die Folgen (a n ), (b n ), (c n )und(d n )mit a n = 2 n b n = n 2 c n = ( 1) n n 2 d n = n +( 1) n (a n ), (b n ), (d n ) sind bestimmt divergent, (c n )nicht. Peter Becker (H-BRS) Analysis Sommersemester / 543

30 Rechenregeln für bestimmte Divergenz Wir können Satz 2.15 auch für bestimmt divergente Folgen verwenden, wenn wir dabei die folgenden Regeln berücksichtigen: c ±1 = ±1 für c 2 R ±c 1 = ±1 für c > 0 ±c ( 1) = 1 für c > 0 c ±1 = 0 für c 2 R = = = = 1 ( 1) ( 1) = 1 Peter Becker (H-BRS) Analysis Sommersemester / 543

31 Unbestimmte Verknüpfungen bei bestimmter Divergenz Folgende Verknüpfungen mit 1 können wir nicht ohne weitere Untersuchung vereinfachen: 0 1, 1 1, 0 0, 1 1. Wenn wir auf einen dieser Ausdrücke stoßen, müssen wir die Folge so lange umformen, bis wir entscheiden können, ob sie konvergent oder divergent ist. Peter Becker (H-BRS) Analysis Sommersemester / 543

Absolute Konvergenz. Definition 3.8. Beispiel 3.9. Eine Reihe. a n. konvergent ist. Die alternierende harmonische Reihe aber nicht absolut konvergent.

Absolute Konvergenz. Definition 3.8. Beispiel 3.9. Eine Reihe. a n. konvergent ist. Die alternierende harmonische Reihe aber nicht absolut konvergent. Definition 3.8 Eine Reihe n=1 a n heißt absolut konvergent, wenn die Reihe konvergent ist. a n n=1 Beispiel 3.9 Die alternierende harmonische Reihe aber nicht absolut konvergent. n=1 ( 1)n 1 n ist zwar

Mehr

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 3 Reihen, Potenzreihen und elementare Funktionen Peter Becker (H-BRS) Analysis Sommersemester 2016 160 / 543 Inhalt Inhalt 3 Reihen Absolute Konvergenz Potenzreihen Elementare Funktionen Anwendung:

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt.

p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. p 2istirrational Satz 1.15 Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. Beweis. Annahme: Es existiert x 2 Q mit x 2 = 2. Wegen x 2 Q folgt x = p q und p und q sind teilerfremde ganze Zahlen.

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

die gewünschte Schranke gefunden, denn es gilt (trivialerweise) für n N

die gewünschte Schranke gefunden, denn es gilt (trivialerweise) für n N .5. VOLLSTÄNDIGKEIT VON R 37 Lemma.5. (Beschränktheit konvergenter Folgen) Konvergente Folgen in R sind beschränkt. Beweis. Angenommen die Folge a n n N konvergiert gegen A R. Zu ε > 0 existiert ein N

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade. $Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also

Mehr

Analysis I - Einige Lösungen und Ergänzungen

Analysis I - Einige Lösungen und Ergänzungen Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaftliche Fakultät Mathematisches Seminar Analysis I - Einige Lösungen und Ergänzungen von Dipl.-Math. Joscha Prochno Dipl.-Math. Dennis

Mehr

Zusammenfassung zur Konvergenz von Folgen

Zusammenfassung zur Konvergenz von Folgen Zusammenfassung zur Konvergenz von Folgen. Definition des Konvergenzbegriffs Eine Folge reeller Zahlen a n n heißt konvergent gegen a in Zeichen a n = a, falls gilt > 0 n 0 n n 0 : an a < Hinweise: Bei

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Nachklausur Analysis 1

Nachklausur Analysis 1 Nachklausur Analysis 1 Die Nachklausur Analysis 1 für Mathematiker, Wirtschaftsmathematiker und Lehrämtler findet als 90-minütige Klausur statt. Für Mathematiker und Wirtschaftsmathematiker ist es eine

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen Dr. Thomas Zehrt Folgen und Reihen Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band, 7. Auflage,

Mehr

VO Mathematik I für Studierende der Wirtschaftswissenschaften

VO Mathematik I für Studierende der Wirtschaftswissenschaften VO Mathematik I für Studierende der Wirtschaftswissenschaften ao. Univ.-Prof. Mag. Dr. Andreas J. Novák December 3, 015 1 Einleitung 1.1 Mathematische Schreibweisen: für alle es existiert ein/eine n n

Mehr

Folgen und Reihen. Kapitel Zahlenfolgen

Folgen und Reihen. Kapitel Zahlenfolgen Kapitel 2 Folgen und Reihen 2. Zahlenfolgen Definition. Eine Folge reeller Zahlen a 0,a,a 2,..., die gewonnen wird durch eine Vorschrift, die jeder natürlichen Zahl n N genau eine reelle Zahl a n zuordnet,

Mehr

Alternativ kann man auch die Differenz a n+1 a n betrachten:

Alternativ kann man auch die Differenz a n+1 a n betrachten: Aufgabe 1 Folgen auf Monotonie und Beschränktheit prüfen. a) Beschränktheit? Die Folge ( ) n N mit = n + ( 1) n ist nach unten beschränkt, denn es gilt n + ( 1) n n 1 1 für alle n N. Allerdings ist die

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Folgen und Reihen. 1 Konvergenz

Folgen und Reihen. 1 Konvergenz Folgen und Reihen Man betrachte viele Zahlen hintereinander geschrieben. Solche Folgen von Zahlen können durch nummeriert werden. Es entsteht eine Zuordnung der natürlichen Zahlen zu den Gliedern der Folge.

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) Fragen und Antworten Folgen und Reihen (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Folgen und Reihen 2 1.1 Fragen............................................... 2 1.1.1 Folgen...........................................

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Oliver Matte Max Lein Zentralübung Mathematik für Physiker 2 Analysis ) Wintersemester 200/20 Lösungsblatt 5 2..200) 32. Häufungspunkte Sei a

Mehr

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Folgen und Reihen Bernhard Ganter Institut für Algebra TU Dresden D-0062 Dresden bernhard.ganter@tu-dresden.de Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung f : N R. Statt f (n) schreibt man

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Stefan Etschberger Hochschule Augsburg Grundlagentest Polynome! Testfrage: Polynome 1 Die Summe

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

Teil I Auswahlfragen

Teil I Auswahlfragen UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Grundlagen der Analysis Sommersemester 010 Klausur vom 07.09.010 Teil I Auswahlfragen Name: Hinweise: Bei den folgenden Auswahlfragen

Mehr

Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T.

Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T. Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T. Streubel Lösungsalternativen für die Übungsaufgaben zur Vorlesung

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Hochschule Darmstadt FB Mathematik und Naturwissenschaften Wirtschaftsmathematik für die Betriebswirtschaftslehre (B.Sc.) Sommersemester 207 Adam Georg Balogh Dr. rer. nat. habil. Adam Georg Balogh E-mail:

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,

Mehr

2 - Konvergenz und Limes

2 - Konvergenz und Limes Kapitel 2 - Folgen Reihen Seite 1 2 - Konvergenz Limes Definition 2.1 (Folgenkonvergenz) Eine Folge komplexer Zahlen heißt konvergent gegen, wenn es zu jeder positiven Zahl ein gibt, so dass gilt: Die

Mehr

Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder.

Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder. Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung Statt dann als schreibt man auch oder ähnlich, die Folge wird notiert, und das wird abgekürzt mit. Die nennt man die Folgenglieder. Mathematik

Mehr

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen 7. Vorlesung im Brückenkurs Mathematik 2017 Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen Dr. Markus Herrich Markus Herrich Kombinatorik, Vollständige Induktion, Zahlenfolgen

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 Skript Ferienkurs Analysis 1 Fabian Hafner und Thomas Baldauf TUM Wintersemester 2016/17 04.04.2017 Das Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfasst von Andreas Wörfel.

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Folgen und Reihen. Mathematik-Repetitorium

Folgen und Reihen. Mathematik-Repetitorium Folgen und Reihen 1.1 Vollständige Induktion 1.2 Zahlenfolgen 1.3 Eigenschaften konvergenter Zahlenfolgen 1.4 Konvergenzkriterien 1.5 Unendliche Reihen 1.6 Eigenschaften unendlicher Reihen 1.7 Rechnen

Mehr

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

3.3 Konvergenzkriterien für reelle Folgen

3.3 Konvergenzkriterien für reelle Folgen 3.3 Konvergenzkriterien für reelle Folgen Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge a n ) n N ist konvergent mit Grenzwert lim a n = sup{a n n N} Beweis: Sei a n ) n N nach oben

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung Kapitelgliederung 3. Folgen und Reihen 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung 3.5 Reihen 3.6 Absolut

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1

3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1 Kapitel 3. Folgen und Reihen 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als a = (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index

Mehr

4 Reelle und komplexe Zahlenfolgen

4 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.2 203//29 2:06:38 hk Exp hk $ 4 Reelle und komplexe Zahlenfolgen 4. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Folgenkonvergenz und die Grenzwerte von Folgen eingeführt.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 14. Gruppenübung zur Vorlesung Höhere Mathematik 1 Sommersemester 009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position. Die Folge 2,1,4,3,... ist eine andere als 1,2,3,4,...

1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position. Die Folge 2,1,4,3,... ist eine andere als 1,2,3,4,... 9 Folgen Eine (unendliche) Folge im herkömmlichen Sinn entsteht durch Hintereinanderschreiben von Zahlen, z.b.: 1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position.

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

$Id: folgen.tex,v /06/07 13:16:35 hk Exp $ n qn = 0.

$Id: folgen.tex,v /06/07 13:16:35 hk Exp $ n qn = 0. $Id: folgen.tex,v 1.13 01/06/07 13:16:35 hk Exp $ 6 Folgen 6.4 Folgen reeller Zahlen Wir waren gerade mit der Besprechung diverser Beispiele zur Folgenkonvergenz beschäftigt, und wollen jetzt noch zwei

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Einführung in die Analysis

Einführung in die Analysis Ergänzungen zur Vorlesung Einführung in die Analysis Christian Schmeiser 1 Vorwort In dieser Vorlesung werden Grundbegriffe der Analysis wie Folgen und Reihen, Konvergenz und Vollständigkeit am Beispiel

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

Proseminar Analysis Vollständigkeit der reellen Zahlen

Proseminar Analysis Vollständigkeit der reellen Zahlen Proseminar Analysis Vollständigkeit der reellen Zahlen Axel Wagner 18. Juli 2009 1 Voraussetzungen Zunächst wollen wir festhalten, was wir als bekannt voraussetzen: Es sei (Q, +, ) der Körper der rationalen

Mehr

Folgen und Reihen. 1.1 Zahlenfolgen. Kapitel 1 Folgen und Reihen 1 a 1

Folgen und Reihen. 1.1 Zahlenfolgen. Kapitel 1 Folgen und Reihen 1 a 1 Kapitel 1 Folgen und Reihen 1 a 1 Folgen und Reihen Folgen sind sehr grundlegend für die Mathematik an sich, aber auch für das persönliche Bild eines Menschen zur Mathematik. Wenn ein kleines Kind der

Mehr

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)! WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1

Mehr

Kapitel 3. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

Kapitel 3. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b Kapitel 3. Folgen 3.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes

Mehr

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b Kapitel 4. Folgen 4.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

Tutorium: Analysis und lineare Algebra. Vorbereitung der zweiten Bonusklausur (Teil 1)

Tutorium: Analysis und lineare Algebra. Vorbereitung der zweiten Bonusklausur (Teil 1) Tutorium: Analysis und lineare Algebra Vorbereitung der zweiten Bonusklausur (Teil 1) Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Ungleichungen 3 Ungleichungen Aufgabe 1a a) Bestimme

Mehr

ist streng monoton fallend.

ist streng monoton fallend. Beispiel 3.5 Betrachte die Folgen aus Beispiel 3.1 Die Folgen a und d mit a n = n 2 und d n = 2 n sowie die Fibonacci-Folge sind streng monoton wachsend. Die Folge b mit b n = 1 n ist streng monoton fallend.

Mehr

Kapitel 3. Folgen und Reihen. 3.1 Folgen

Kapitel 3. Folgen und Reihen. 3.1 Folgen Kapitel 3 Folgen und Reihen 3. Folgen 3.2 Cauchy Folgen 3.3 Unendliche Reihen 3.4 Absolut konvergente Reihen 3.5 Multiplikation von Reihen 3.6 Potenzreihen 3. Folgen In diesem gesamten Abschnitt bezeichnen

Mehr

Folgen und Reihen. Katharina Brazda 9. März 2007

Folgen und Reihen. Katharina Brazda 9. März 2007 Katharina Brazda 9. März 2007 Inhaltsverzeichnis 1 Folgen 2 1.1 Definition von Folgen - explizite und rekursive Darstellung.............. 2 1.2 Wachstumsverhalten von Folgen - Monotonie und Beschränktheit..........

Mehr

Analysis 1 - Beweise, vollständige Induktion und Folgen

Analysis 1 - Beweise, vollständige Induktion und Folgen Analysis 1 - Beweise, vollständige Induktion und Folgen 14. März 011 1 Beweise und Nation in der Mathematik - Grundlagen Wenn man das erste mal mit Mathematik in Berührung kommt, ist das größte Hindernis

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Prüfung 2 semesterbegleitende Zwischenprüfungen: Termine: am 12.11.2013 und 10.12.2013, Beginn jeweils 8.00 Uhr (!) im

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

4 Reelle und komplexe Zahlenfolgen

4 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v 1.23 2013/12/02 12:07:25 hk Exp hk $ 4 Reelle und komplexe Zahlenfolgen 4.1 Folgenkonvergenz In der letzten Sitzung haben wir die Rechenregeln für Folgengrenzwerte hergeleitet. Dies sind

Mehr

Folgen und Reihen. Mathematik I für Chemiker. Daniel Gerth

Folgen und Reihen. Mathematik I für Chemiker. Daniel Gerth Folgen und Reihen Mathematik I für Chemiker Daniel Gerth Überblick Folgen und Reihen Dieses Kapitel erklärt: Was man unter Folgen und Reihen versteht; Was man unter Grenzwert von Folgen und Reihen versteht;

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die 3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind ( n N, auch

Mehr