ist streng monoton fallend.
|
|
|
- Matthias Schmidt
- vor 9 Jahren
- Abrufe
Transkript
1 Beispiel 3.5 Betrachte die Folgen aus Beispiel 3.1 Die Folgen a und d mit a n = n 2 und d n = 2 n sowie die Fibonacci-Folge sind streng monoton wachsend. Die Folge b mit b n = 1 n ist streng monoton fallend. Die Folge c mit c n = ( 1) n ist weder monoton wachsend noch monoton fallend. Sie ist alternierend. Die Folge x mit x n = (1+ 1 n )n ist streng monoton wachsend. Das wird zumindest durch den Graphen angedeutet und es lässt sich auch nachrechnen. Außerdem ist auch die Folge der Kapitalmengen in Beispiel 3.3 bei konstanter jährlicher Verzinsung streng monoton wachsend. Das sollte natürlich auch so sein! Für die besonders wichtigen geometrischen Folgen ist das Monotonieverhalten wie folgt: 143
2 Sei a 0 > 0. Die geometrische Folge a mit a n = a 0 q n iststrengmonotonwachsend,wennq > 1ist, streng monoton fallend, wenn q (0,1) ist, und konstant, wenn q = 0 oder q = 1 ist. Für q < 0 ist die geometrische Folge a n = a 0 q n alternierend. Sei a 0 < 0. Die geometrische Folge a mit a n = a 0 q n ist streng monoton fallend, wenn q > 1 ist, strengmonotonwachsend,wennq (0,1)ist,und konstant, wenn q = 0 oder q = 1 ist. Für q < 0 ist die geometrische Folge a n = a 0 q n alternierend. Beispiel 3.6 Die Folge a n = 5 ( 1 2) n ist streng monoton fallend. Die ersten Folgenglieder sind a 1 = 5 2, a 2 = 5 4, a 3 = 5 8, a 4 = 5 16,..., a 10 = Für a n = 5 ( 1 2) n erhalten wir a 1 = 5 2, a 2 = 5 4, a 3 = 5 8, a 4 = 5 16, a 5 =
3 Die Folge ist alternierend. Wir halten fest, dass die Folge ( a n ) der Beträge von a n monoton fallend ist. Eine Folge (a n ) n N heißt beschränkt, falls es eine Konstante M R gibt, so dass a n M für alle n N, d. h. alle Folgenglieder liegen im Intervall [ M,M]. Beispiel 3.7 Die Folgen a und d mit a n = n 2 und d n = 2 n sowie die Fibonacci-Folge aus Beispiel 3.1 sind nicht beschränkt. Die Folge b mit b n = 1 n ist beschränkt, denn 1 < 1 für alle n N. Die Folge c mit c n = ( 1) n ist beschränkt: ( 1) n = 1 für alle n N. Die Kapitalzuwachsfolge aus Beispiel 3.3 ist unbeschränkt. Wenn man nur lange genug wartet, wird das Kapital beliebig groß. Eine geometrische Folge a mit a n = a 0 q n ist unbeschränkt, wenn q > 1 ist und beschränkt, wenn q [ 1,1] ist. 145 n
4 Zur Beschreibung des Verhaltens einer Folge bei wachsendem Index wird der Begriff Konvergenz eingeführt. Zunächst einige anschauliche Beispiele von Konvergenz. Beispiel 3.8 Die Folgenglieder aus Beispiel 3.1.1, und werden für wachsende n immer größer. Anders gesagt: sie gehen nach +. Die Folgenglieder aus Beispiel kommen für wachsende n immer näher an die x-achse, anders: die Werte kommen der Null immer näher. In der Folge aus Beispiel wechseln sich die Werte 1 und 1 ab. Die Folge kommt weder dem Wert 1 noch dem Wert 1 beliebig nahe, weil immer wieder der jeweils andere Wert angenommen wird. Die Folgenglieder aus Beispiel wechseln sich mit dem Vorzeichen ab, aber wie in Beispiel 2 kommen die Werte der Null, also der x-achse, immer näher. Der Graph der Folge aus Beispiel deutet an, dass die Folgenglieder zwar stets anwachsen, aber nicht beliebig groß werden, sondern sich einem Wert nähern. Was ist der genaue Wert? Diesen Wert nennen wir den Grenzwert der Folge: 146
5 Grenzwert (Limes) von Folgen Eine reelle Zahl a heißt Grenzwert oder Limes einer Folge (a n ) n N, wenn es zu jedem vorgegebenen ǫ > 0 einen von ǫ abhängigen Index n(ǫ) N gibt, so dass a n a ǫ für alle n n(ǫ). Eine Folge (a n ) n N heißt konvergent wenn sie einen Grenzwert a R besitzt. In diesem Fall schreiben wir: lim a n = a oder a n a für n. n Sprechweise:Limes n gegen unendlich von a n ist gleich a,oder:a n konvergiert gegen a für n gegen unendlich. Ist der Grenzwert a = 0, so heißt die Folge eine Nullfolge. Ist eine Folge nicht konvergent, so heißt sie divergent. Man sagt auch die Folge divergiert. Wir können auch noch verschiedene Arten der Divergenz unterscheiden. Die Folge a n = n verhält sich sicherlich anders als die Folge ( 1) n n oder ( 1) n. 147
6 Eine Folge (a n ) n N heißt bestimmt divergent nach, falls es zu jedem M ein n 0 so gibt, dass a n M für alle n n 0, gilt, d.h. die Folgenglieder werden beliebig groß. Entsprechend wird bestimmte Divergenz nach erklärt. Schreibweise: lim a n =, bzw. lim a n = n n. Achtung: Wir sagen nicht, dass die Folge gegen konvergiert. Wenn wir von Konvergenz sprechen, meinen wir stets Konvergenz gegen eine reelle Zahl, nie gegen ±! Man kann sich die Konvergenz gegen a auch folgendermaßen klar machen: 148
7
8
9 Eine Folge (a n ) n N konvergiert gegen ein a R genau dann, wenn für alle ǫ > 0 nur endlich viele Folgenglieder nicht im Intervall[a ǫ, a+ǫ] liegen; ein solches Intervall heißt auch eine ǫ-umgebung von a. Alternative Sprechweise: fast alle Folgenglieder (d.h. mit Ausnahme von höchstens endlich vielen) liegen im Intervall [a ǫ,a+ǫ]. Insbesondere gibt es also nur einen Grenzwert für eine konvergierende Folge. Beispiel 3.9 Die Folge a mit a n = n 2 aus Beispiel ist divergent (bestimmte Divergenz nach ). Die Folge b mit b n = 1 n ist eine Nullfolge. Die Folge c mit c n = ( 1) n ist divergent. Die Folge d mit d n = 2 n ist bestimmt divergent nach. Die Folge y mit y n = ( 3) 1 n ist eine Nullfolge. 149
10 Die Folge x mit x n = (1+ 1 n )n ist konvergent, ihr Grenzwert ist die Eulersche Zahl e, also ( 1) n e := lim n n Wir gehen darauf später noch genauer ein. Die Fibonacci-Folge ist bestimmt divergent gegen. Aus der Definition der Konvergenz folgt sofort Jede konvergente Folge ist beschränkt. Wir wollen im nächsten Beispiel das Konvergenzverhalten der arithmetischen und geometrischen Folgen sowie der Folgen 1 ( 1)n n und n zusammenfassen. 150
11 Beispiel 3.10 ( 1) n n a n a+nd aq n 1 (a > 0) n monoton steigend d 0 q 1 nein nein streng monoton steigend d > 0 q > 1 nein nein monoton fallend d 0 0 q 1 streng monoton fallend d < 0 0 < q < 1 ja nein ja nein beschränkt d = 0 1 q 1 ja ja konvergent d = 0 1 < q < 1 q = 1 ja Limes a 0 a 0 0 Wir geben jeweils an, für welche Werte von a,d,q die Folgen die entsprechende Eigenschaft haben. Ein sehr wichtiges Konvergenzkriterium ist das folgende: ja Jede beschränkte und monotone Folge (a n ) n N konvergiert, d.h. es gibt ein a R, so dass lim n a n = a. 151
12 Beispiel 3.11 Die Folge 3 (n+1) ist monoton (fallend) und beschränkt, also konvergent, und der Grenzwert ist 0. Die Folge ( 1)n2 7n ist nicht monoton (aber beschränkt). Diese Folge ist auch konvergent(ihr Grenzwert ist ebenfalls 0). Es kann also durchaus nicht monotone Folgen geben, die konvergieren. Unbeschränkt kann eine konvergente Folge aber nicht sein! Rechenregeln für Grenzwerte Seien (a n ) n N, (b n ) n N konvergente Folgen mit lim a n = a und lim b n = b. Dann gilt: n n 1. (a n ±b n ) n N ist konvergent mit lim (a n ±b n ) = a±b. n 2. (a n b n ) n N ist konvergent mit lim (a n b n ) = a b. n 152
13 3. Sei b 0. Dann gibt es ein n 0 N( mit) b n an 0 für alle n n 0, und die Folge ist konvergent mit a n lim = a n b n b. b n n n 0 4. Seiλ R.DannistauchdieFolge(λa n ) n N konvergent mit lim (λa n) = λa. n Wir geben gleich eine Menge an Beispielen an, wie wir die oben angegebenen Sachverhalte ausnutzen können. Wir müssen, grob gesagt, den algebraischen Ausdruck, der die Folgenglieder a n definiert, in Teilausdrücke zerlegen, von denen wir dann jeweils die Grenzwerte kennen. Bevor wir zu den Beispielen kommen, hier ein weiteres wichtiges Konvergenzkriterium: 153
14 AusquetschenSeien(a n),(a n)konvergentefolgen mit lim n a n = a = lim a n. n Ist (a n ) eine Folge mit dann gilt auch a n a n a n für alle n, lim a n = a. n Als Spezialfall erhalten wir für Nullfolgen: Sei (a n) eine Nullfolge. Ist (a n ) eine Folge mit a n a n für alle n, dann ist auch (a n ) eine Nullfolge. 154
15 Beispiel 3.12 (1) Für k N ist (2) 3n 2 +1 lim n n 2 (3) Für a R mit a < 1 ist lim n 1 n k = 0. = lim (3+ 1 n n2) = lim 3+ lim n n lim n an = 0. (4) Sei a n = n+1 n, n N. Bei dieser Folge hilft ein Umformungstrick weiter: n+1 n = ( n+1 n)( n+1+ n) n+1+ n = n+1 n n+1+ n = 1 n+1+ n 1 n 2 = 3. und daher ist lim n ( n+1 n) =
1 Folgen und Stetigkeit
1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt
3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1
Kapitel 3. Folgen und Reihen 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als a = (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index
Jede beschränkte und monotone Folge (a n ) n N konvergiert, d.h. es gibt ein a R, so dass lim
Beispiel 3.10 ( 1) n n a n a+nd aq n 1 (a > 0) n monoton steigend d 0 q 1 nein nein streng monoton steigend d > 0 q > 1 nein nein monoton fallend d 0 0 q 1 streng monoton fallend d < 0 0 < q < 1 ja nein
3 Folgen und Stetigkeit
3 Folgen und Stetigkeit 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt
Folgen und Reihen. Kapitel Zahlenfolgen
Kapitel 2 Folgen und Reihen 2. Zahlenfolgen Definition. Eine Folge reeller Zahlen a 0,a,a 2,..., die gewonnen wird durch eine Vorschrift, die jeder natürlichen Zahl n N genau eine reelle Zahl a n zuordnet,
GRUNDLAGEN MATHEMATIK
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik
Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya
Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,
(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3
ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,
= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.
2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch
2. Eigenschaften von Zahlenfolgen
. Eigenschaften von Zahlenfolgen.. Monotone Folgen ) Definition Eine Folge heisst streng monoton wachsend, wenn für alle n gilt: an+ > an. (D.h. jedes Folgenglied ist grösser als sein Vorgänger. Man sagt
Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen Dr. Thomas Zehrt Folgen und Reihen Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band, 7. Auflage,
Wirtschaftsmathematik
Hochschule Darmstadt FB Mathematik und Naturwissenschaften Wirtschaftsmathematik für die Betriebswirtschaftslehre (B.Sc.) Sommersemester 207 Adam Georg Balogh Dr. rer. nat. habil. Adam Georg Balogh E-mail:
Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden
Folgen und Reihen Bernhard Ganter Institut für Algebra TU Dresden D-0062 Dresden [email protected] Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung f : N R. Statt f (n) schreibt man
4. Folgen und Grenzwerte 4.2 Grenzwertsätze für Folgen
4. Folgen und Grenzwerte 4.2 Grenzwertsätze für Folgen Rechenregeln für konvergente Folgen Satz 4.11 Die Folgen (a n ) und (b n ) seien konvergent mit dem Grenzwert a bzw. b. Dann gilt: 1 lim (a n + b
Vorlesung: Analysis I für Ingenieure
Vorlesung: Analysis I für Ingenieure Dozent: Dr. Michael Karow Thema: unendliche Reihen Definition. Eine unendliche Reihe ist der Grenzwert einer Folge von Summen: a k = lim k a k, wobei a k C. Falls der
3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die
3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind ( n N, auch
3 Folgen, Reihen und stetige Funktionen
Höhere Mathematik 101 3 Folgen, Reihen und stetige Funktionen 3.1 Folgen und Reihen: Definitionen und Beispiele Eine reelle oder komplexe Zahlenfolge ist eine Abbildung, die jeder natürlichen Zahl n eine
Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt
Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2
,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5
3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber
Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)
Fragen und Antworten Folgen und Reihen (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Folgen und Reihen 2 1.1 Fragen............................................... 2 1.1.1 Folgen...........................................
4 Reihen und Finanzmathematik
4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei
Häufungspunkte und Satz von Bolzano und Weierstraß.
Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge
Kapitel IV. Folgen und Konvergenz
Kapitel IV Folgen und Konvergenz Inhalt IV.1 Zahlenfolgen Motivation und Begriffsbestimmungen IV.2 Konvergente Folgen Konvergenz und Grenzwert einer Folge Rechenregeln konvergenter Folgen IV.3 Einige nützliche
a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.
7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der
KAPITEL 2. Folgen und Reihen
KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).
( Mathematik verstehen 6, Kapitel 7,S.116 ff) Eine Folge ( ) kann man auch als eine f: auffassen, die jeder von 0
Factsheet 1 Folgen und Reihen Folgen ( Mathematik verstehen 6, Kapitel 7,S.116 ff) Wichtige Begriffe und Defintionen: (Zahlen)Folge.. (a n *) mit (a 1, a 2,.), oder ( a o, a 1, a 2, ), a n n-tes Folgenglied
D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1
D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie. Frage Welche der Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt. Falsch. Z.B. ist {( ) n } n N beschränkt und divergent.
10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit
10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2
Folgen und Reihen. Katharina Brazda 9. März 2007
Katharina Brazda 9. März 2007 Inhaltsverzeichnis 1 Folgen 2 1.1 Definition von Folgen - explizite und rekursive Darstellung.............. 2 1.2 Wachstumsverhalten von Folgen - Monotonie und Beschränktheit..........
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)
3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung
Kapitelgliederung 3. Folgen und Reihen 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung 3.5 Reihen 3.6 Absolut
Das Newton Verfahren.
Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren
Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38
Kapitel 4 Folgen und Reihen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38 Folgen Eine Folge ist eine Anordnung von reellen Zahlen. Die einzelnen Zahlen heißen Glieder
LS Informatik 4 & Folgen und Reihen. Buchholz / Rudolph: MafI 2 38
3. Folgen und Reihen Buchholz / Rudolph: MafI 2 38 Kapitelgliederung 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung
4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben.
4 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei (a k ) k N eine Folge. Wir definieren
Zusammenfassung zur Konvergenz von Folgen
Zusammenfassung zur Konvergenz von Folgen. Definition des Konvergenzbegriffs Eine Folge reeller Zahlen a n n heißt konvergent gegen a in Zeichen a n = a, falls gilt > 0 n 0 n n 0 : an a < Hinweise: Bei
Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe.
Folgen und Reihen Christoph Laabs, [email protected] Grundlagen Eine Reihe ist darstellbar durch z. B. = a 0 + a + a 2 + a + a 4 +... Ausgesprochen wird das als Summe von von k bis Unendlich.
2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)
2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt
11. Folgen und Reihen.
- Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a
1 k = = Sie ist also gerade der Grenzwert der zur Folge (r k 10 k ) k N0 gehörenden Reihe( n
Die zur Folge ( k ) k N gehörende Reihe ( n k ) n N ist divergent, genauer k =. 2. Dezimalzahlen: Eine Zahl r = r 0,r r 2 r 3 mit r 0 N 0 und r n {0,...,9} für n hat den Wert r = r 0 +r 0 +r 2 00 +...
Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008
Ferienkurs Analysis 1, SoSe 2008 Unendliche Reihen Florian Beye August 15, 2008 1 Reihen und deren Konvergenz Definition 1.1. Eine reelle bzw. komplexe Reihe ist eine unendliche Summe über die Glieder
Folgen und Reihen. Mathematik-Repetitorium
Folgen und Reihen 1.1 Vollständige Induktion 1.2 Zahlenfolgen 1.3 Eigenschaften konvergenter Zahlenfolgen 1.4 Konvergenzkriterien 1.5 Unendliche Reihen 1.6 Eigenschaften unendlicher Reihen 1.7 Rechnen
n=1 a n mit reellen Zahlen a n einen
4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die
INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik
Folgen und Reihen. Thomas Blasi
Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................
Rechenoperationen mit Folgen. Rekursion und Iteration.
Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )
Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R
Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt
Mathematik für Naturwissenschaftler I WS 2009/2010
Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige
D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr
D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? (a) Eine divergente Folge ist nicht
Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +
8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die
Kapitel 5 Reihen 196
Kapitel 5 Reihen 96 Kapitel 5. Definition und Beispiele 97 Das Material dieses Kapitels können Sie nachlesen in: MICHAEL SPIVAK, Calculus, Kapitel 22 DIRK HACHENBERGER, Mathematik für Informatiker, Kapitel
Mathematik 1 Folgen, Reihen und Finanzmathematik
Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Folgen, Reihen und Finanzmathematik Inhaltsverzeichnis 1 Zahlenfolgen 2 1.1 Grundlegende
Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014
Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen
Ferienkurs Analysis 1
Skript Ferienkurs Analysis 1 Fabian Hafner und Thomas Baldauf TUM Wintersemester 2016/17 04.04.2017 Das Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfasst von Andreas Wörfel.
Folgen, Reihen, Grenzwerte u. Stetigkeit
Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen
Folgen und Reihen. 1 Konvergenz
Folgen und Reihen Man betrachte viele Zahlen hintereinander geschrieben. Solche Folgen von Zahlen können durch nummeriert werden. Es entsteht eine Zuordnung der natürlichen Zahlen zu den Gliedern der Folge.
Rekursionen (Teschl/Teschl 8.1/8.2)
Rekursionen (Teschl/Teschl 8.1/8.2) treten in vielen Algorithmen auf: Eine Rekursion ist eine Folge von Zahlen a 0, a 1, a 2,.., bei der jedes a n aus seinen Vorgängern berechnet wird: Beispiele a n =
Thema 3 Folgen, Grenzwerte
Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N
9 Konvergenz und absolute Konvergenz von Reihen
9 Konvergenz und absolute Konvergenz von Reihen 9.2 Konvergenz von Reihen 9.5 Monotoniekriterium für Reihen 9.6 Konvergenzkriterium von Cauchy für Reihen 9.9 Rechenregeln für konvergente Reihen 9.10 Absolute
,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5
10 Folgen und Reihen 10.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n)schreibenwirkürzera n undbezeichnendieganzefolgemit(a n ) n Æ odereinfach(a n ),wasaber nicht
REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert
Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen
2 - Konvergenz und Limes
Kapitel 2 - Folgen Reihen Seite 1 2 - Konvergenz Limes Definition 2.1 (Folgenkonvergenz) Eine Folge komplexer Zahlen heißt konvergent gegen, wenn es zu jeder positiven Zahl ein gibt, so dass gilt: Die
Konvergenz und Stetigkeit
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn
Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya
Konvergenz und Divergenz einer unendlichen Reihe 5-E Ma 2 Lubov Vassilevskaya Folgen und Reihen: Beispiele Unter dem Bildungsgesetz einer unendlichen Reihe n i= versteht man einen funktionalen Zusammenhang
Analysis I. Guofang Wang Universität Freiburg
Universität Freiburg 22.11.2016 3. Mächtigkeit und die komplexe Zahlen Komplexe Zahlen Definition Die komplexe Zahlen sind definiert als C = R 2 = R R, mit (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +
Mathematik I. Vorlesung 24. Reihen
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 24 Reihen Wir betrachten Reihen von komplexen Zahlen. Definition 24.1. Sei ( ) k N eine Folge von komplexen Zahlen. Unter der Reihe versteht
Kapitel 3: Folgen und Reihen
Kapitel 3: und Reihen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 3: und Reihen 1 / 29 Gliederung 1 Grundbegriffe 2 Abbildungen und elementare
Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)
1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge
6 - Unendliche Reihen
Kapitel 2 Folgen und Reihen Seite 1 6 Unendliche Reihen Definition 6.1 (Unendliche Reihen) Sei eine Folge aus C. Unter der unendlichen Reihe mit den Gliedern versteht man das Symbol oder Die Zahl heißt
Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)
1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.
Kapitel 3. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b
Kapitel 3. Folgen 3.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes
Kapitel 3. Konvergenz von Folgen und Reihen
Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden
7. Übungsblatt Aufgaben mit Lösungen
7. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung β-version) Aufgabe : Bestimmen Sie alle Häufungspunkte der Folgen mit den Folgengliedern a) a n n n X + cosnπ), b) b n i) i j, und geben Sie
$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.
$Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also
Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper
Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen
Klausur - Analysis I Lösungsskizzen
Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit W und falsche Aussagen mit F. Es sind keine Begründungen
Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok.
Quiz Analysis 1 Mathematisches Institut, WWU Münster Karin Halupczok WiSe 2011/2012 Lösungen zu den Aufgaben M1 bis M7 der Probeklausur 1 Aufgabe M1: Fragen zu Folgen, Reihen und ihre Konvergenz 2 Aufgabe
1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen
1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09
