1 Folgen und Stetigkeit

Größe: px
Ab Seite anzeigen:

Download "1 Folgen und Stetigkeit"

Transkript

1 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt an, an welcher Stelle in der Folge die Zahl a n steht. Beispiel Mit a n = n 2 ist (a n ) n N = (1, 4, 9, 16,...) die Folge der Quadratzahlen in N. 1

2 2. Mit b n = 1 n ist (b n ) n N = (1, 1 2, 1 3, 1 4,...) die Folge der sogenannten Hauptbrüche in Q. 3. Mit c n = ( 1) n ist 4. Mit d n = 2 n ist (c n ) n N = ( 1, 1, 1, 1, 1,...). (d n ) n N = (2, 4, 8, 16, 32, 64, 128,...) die Folge der Zweierpotenzen. 5. Mit y n = ( 1 3) n ist (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1 243,... ). 2

3 6. Ist x n = (1 + 1 n )n, dann ist (x n ) n N = ( 2, 9 4, 64 27, ,... ) Einige weitere Folgenglieder sind in der folgenden Tabelle angegeben: n x n n x n

4 7. Die sogenannte Fibonacci-Folge ist die Folge (a n ) n N mit a 1 = a 2 = 1 und a n = a n 1 + a n 2 für n 3. Die ersten Folgenglieder sind (a) n N = (1, 1, 2, 3, 5, 8, 13, 21, 34,...). Die Zahl a n heißt die n-te Fibonaccizahl. Die Fibonacci-Folge heißt rekursiv definiert, da man zur Berechnung eines Folgenglieds a n die vorherigen Folgenglieder benötigt (und Anfangswerte). Die anderen Folgen hingegen sind explizit definiert, da sich jedes a n direkt aus dem Index n berechnen lässt. Man kann auch für die Fibonacci-Folge eine explizite Formel angeben. Man kann zeigen, dass die n-te Fibonacci-Zahl ( ) n ( a n = ) n

5 Folgen lassen sich auch als Abbildungen auffassen: Eine Folge ist eine Abbildung a : N R mit Definitionsbereich N. Für den Wert a(n) an der Stelle n schreibt man üblicherweise a n. Der Wert a n heißt n-tes Folgenglied von a. Wir können eine Folge a = (a n ) n N graphisch veranschaulichen, indem wir die Punkte mit den Koordinaten (n, a n ) für einige Werte von n in ein Koordinatensystem zeichnen. Wir tun dies hier für die ersten sechs Beispiele. 400 Beispiel Beispiel x x 5

6 Beispiel Beispiel x x 2.7 Beispiel fuer n<100 Beispiel fuer n< x x 6

7 Für uns in dieser Vorlesung sind die geometrischen Folgen sehr wichtig: Eine Folge (a n ) n N mit a n 0 für alle n N heißt geometrisch, wenn der Quotient aufeinanderfolgender Glieder konstant ist, wenn es also eine Zahl q R gibt, so dass gilt a n+1 a n = q für alle n N. Beispiel 1.2 denn Die Folge aus Beispiel ist geometrisch, d n+1 = 2n+1 = 2 für alle n N. d n 2n Ebenso ist jede Folge mit der Vorschrift d n = q n für ein festes q R geometrisch. 7

8 Die anderen Folgen in Beispiel 1.1 sind nicht geometrisch. So ist etwa für die Folge mit b n = 1 n b 3 b 2 = 2 3, aber b 4 b 3 = 3 4. Beispiel 1.3 Ein Anfangskapital K 0 wird zum Zinssatz von p = 0.05 (also 5%) jährlich verzinst. Dann ist nach n Jahren das Kapital angewachsen auf den Wert K n, der sich wie folgt berechnet (Zinseszins!); und allgemein K 1 = K 0 + pk 0 = (1 + p)k 0, K 2 = K 1 + pk 1 = (1 + p)k 1 = (1 + p) 2 K 0, K 3 = K 2 + pk 2 = (1 + p)k 2 = (1 + p) 3 K 0, K n = (1 + p) n K 0. Die Folge der jährlichen Kapitalmenge (K n ) n N ist also geometrisch, da K n+1 K n = 1 + p für alle n N. 8

9 Für eine geometrische Folge mit dem konstanten Quotienten a n+1 a n = q gilt a n+1 = qa n und daher a 2 = qa 1, a 3 = qa 2 = q 2 a 1, a 4 = qa 3 = q 3 a 1 und allgemein a n = a 1 q n 1 oder a n = a 0 q n wobei a 0 := a 1 q. Wir können a 0 als das nullte Folgenglied auffassen. Eine geometrische Folge ist also vollständig durch den Quotienten q und einen Anfangswert a 0 (oder a 1 ) bestimmt. 9

10 Arithmetische Folgen: Eine Folge (a n ) n N heißt arithmetisch, wenn die Differenz aufeinanderfolgender Glieder konstant ist, wenn es also eine Zahl d R gibt, so dass gilt a n+1 a n = d für alle n N. Beispiel 1.4 Die Folge (a n ) n N mit a n = 3n 7 ist arithmetisch, denn a n+1 a n = 3(n + 1) 7 ( 3n 7 ) = 3 für alle n N. Die ersten Folgenglieder sind 4, 1, 2, 5, 8,

11 Ist eine Folge (a n ) n N arithmetisch mit der konstanten Differenz a n+1 a n = d für alle n N, dann gilt a n+1 = d + a n und die einzelnen Folgenglieder ergeben sich durch a 2 = d + a 1, a 3 = d + a 2 = d + d + a 1 = 2d + a 1, a 4 = d + a 3 = 3d + a 1 und allgemein a n = (n 1)d + a 1 oder a n = nd + a 0 wobei a 0 = a 1 d wie bei der geometrischen Folge als nulltes Folgenglied interpretiert werden kann. Eine arithmetische Folge ist also vollständig durch die Differenz d und einen Anfangswert a 0 (oder a 1 ) bestimmt. 11

12 Ähnlich wie für Abbildungen wollen wir nun die Begriffe Monotonie und Beschränktheit für Folgen erklären. Zusätzlich gibt es noch den Begriff der alternierenden Folge (machen Sie sich klar, dass die Begriffe Monotonie und Beschränktheit sowohl für Folgen als auch reelle Funktionen sinnvoll sind, alternierend aber für Abbildungen auf R nicht sinnvoll definiert werden kann). Eine Folge (a n ) n N heißt konstant, falls a n+1 = a n für alle n N gilt. Eine Folge (a n ) n N heißt monoton wachsend bzw. streng monoton wachsend, falls a n+1 a n bzw. a n+1 > a n für alle n N. Eine Folge (a n ) n N heißt monoton fallend bzw. streng monoton fallend, falls a n+1 a n bzw. a n+1 < a n für alle n N. 12

13 Eine Folge heißt alternierend, falls a n+1 > 0 ist wenn a n < 0 ist und a n+1 < 0 wenn a n > 0 ist. Anders gesagt: a n+1 a n < 0 für alle n N (die Folgenglieder wechseln also in jedem Schritt das Vorzeichen). Beispiel 1.5 Betrachte die Folgen aus Beispiel 1.1. Die Folgen (a n ) n N und (d n ) n N mit a n = n 2 und d n = 2 n sowie die Fibonacci-Folge sind streng monoton wachsend. Die Folge (b n ) n N mit b n = 1 n ist streng monoton fallend. Die Folge (c n ) N mit c n = ( 1) n ist weder monoton wachsend noch monoton fallend. Sie ist alternierend. 13

14 Die Folge (x n ) n N mit x n = (1+ 1 n )n ist streng monoton wachsend. Das wird zumindest durch den Graphen angedeutet und es lässt sich auch nachrechnen. Außerdem ist auch die Folge der Kapitalmengen in Beispiel 1.3 bei konstanter jährlicher Verzinsung streng monoton wachsend. (Das sollte natürlich auch so sein!) 14

15 Für die geometrischen Folgen ist das Monotonieverhalten wie folgt: Sei a 0 > 0. Die geometrische Folge mit a n = a 0 q n ist streng monoton wachsend, wenn q > 1 ist, streng monoton fallend, wenn 0 < q < 1 ist, konstant, wenn q = 0 oder q = 1, alternierend, wenn q < 0. Sei a 0 < 0. Die geometrische Folge a mit a n = a 0 q n ist streng monoton fallend, wenn q > 1 ist, streng monoton wachsend, wenn 0 < q < 1 ist, konstant, wenn q = 0 oder q = 1, alternierend, wenn q < 0. 15

16 Beispiel 1.6 Die Folge mit a n = 5 ( 1 2) n ist streng monoton fallend. Die ersten Folgenglieder sind a 0 = 5 und a 1 = 5 2, a 2 = 5 4, a 3 = 5 8, a 4 = 5 16,..., a 10 = Für a n = 5 ( 1 2) n erhalten wir a0 = 5 und a 1 = 5 2, a 2 = 5 4, a 3 = 5 8, a 4 = 5 16, a 5 = Die Folge ist alternierend. Wir halten fest, dass die Folge ( a n ) der Beträge von a n monoton fallend ist. 16

17 Eine Folge (a n ) n N heißt beschränkt, falls es eine Konstante M R gibt, so dass a n M für alle n N, d. h. alle Folgenglieder liegen im Intervall [ M, M]. Beispiel 1.7 Betrachte die Folgen aus Beispiel 1.1. Die Folgen (a n ) und (d n ) mit a n = n 2 und d n = 2 n sowie die Fibonacci-Folge sind nicht beschränkt. Die Folge (b n ) mit b n = 1 n ist beschränkt, denn 1 n < 1 für alle n N. Die Folge (c n ) mit c n = ( 1) n ist beschränkt: ( 1) n = 1 für alle n N. Die Kapitalzuwachsfolge aus Beispiel 1.3 ist unbeschränkt. (Wenn man nur lange genug wartet, wird das Kapital beliebig groß.) 17

18 Eine geometrische Folge mit a n = a 0 q n ist unbeschränkt, wenn q > 1 ist und beschränkt, wenn q [ 1, 1] ist. Zur Beschreibung des Verhaltens einer Folge bei wachsendem Index wird der Begriff Konvergenz eingeführt. Zunächst einige anschauliche Beispiele von Konvergenz. Beispiel 1.8 Die Folgenglieder aus Beispiel 1.1.1, werden für wachsende n immer größer. Anders gesagt: sie gehen nach Beispiel x 18

19 Die Folgenglieder aus Beispiel kommen für wachsende n immer näher an die x-achse, anders: die Werte kommen der Null immer näher. 1 Beispiel x 19

20 In der Folge aus Beispiel wechseln sich die Werte 1 und 1 ab. Die Folge kommt weder dem Wert 1 noch dem Wert 1 beliebig nahe, weil immer wieder der jeweils andere Wert angenommen wird. 1 Beispiel x Die Folgenglieder aus Beispiel wechseln sich mit dem Vorzeichen ab, aber wie in Beispiel 2 kommen die Werte der Null, also der x-achse, immer näher. 20

21 Der Graph der Folge aus Beispiel deutet an, dass die Folgenglieder zwar stets anwachsen, aber nicht beliebig groß werden, sondern sich einem Wert nähern. Was ist der genaue Wert? Diesen Wert nennen wir den Grenzwert der Folge. 2.7 Beispiel fuer n<100 Beispiel fuer n< x x 21

22 Grenzwert (Limes) von Folgen Eine reelle Zahl a heißt Grenzwert oder Limes einer Folge (a n ) n N, wenn es zu jedem vorgegebenen ɛ > 0 einen von ɛ abhängigen Index n(ɛ) N gibt, so dass a n a ɛ für alle n n(ɛ). Eine Folge (a n ) n N heißt konvergent wenn sie einen Grenzwert a R besitzt. In diesem Fall schreiben wir: lim a n = a oder a n a für n. n Sprechweise: Limes n gegen unendlich von a n ist gleich a, oder: a n konvergiert gegen a für n gegen unendlich. Ist der Grenzwert a = 0, so heißt die Folge eine Nullfolge. 22

23 Man kann sich die Konvergenz gegen a auch folgendermaßen klar machen: Eine Folge (a n ) n N konvergiert gegen ein a R genau dann, wenn für alle ɛ > 0 nur endlich viele Folgenglieder nicht im Intervall [a ɛ, a+ɛ] liegen; ein solches Intervall heißt auch eine ɛ-umgebung von a. Alternative Sprechweise: fast alle Folgenglieder (d.h. mit Ausnahme von höchstens endlich vielen) liegen im Intervall [a ɛ, a + ɛ]. 23

24 Ist eine Folge nicht konvergent, so heißt sie divergent. Man sagt auch die Folge divergiert. Wir können auch noch verschiedene Arten der Divergenz unterscheiden. Die Folge a n = n verhält sich sicherlich anders als die Folge ( 1) n n oder ( 1) n. Eine Folge (a n ) n N heißt bestimmt divergent nach, falls es zu jedem M ein n 0 so gibt, dass a n M für alle n n 0, gilt, d.h. die Folgenglieder werden beliebig groß. Entsprechend wird bestimmte Divergenz nach erklärt. Schreibweise: lim n a n =, bzw. lim n a n =. 24

25 Achtung: Wir sagen nicht, dass die Folge gegen konvergiert. Wenn wir von Konvergenz sprechen, meinen wir stets Konvergenz gegen eine reelle Zahl, nie gegen ±! Beispiel 1.9 Die Folge a mit a n = n 2 aus Beispiel ist divergent (bestimmte Divergenz nach ). Die Folge b mit b n = 1 n ist eine Nullfolge. Die Folge c mit c n = ( 1) n ist divergent. Die Folge d mit d n = 2 n ist bestimmt divergent nach. Die Folge y mit y n = ( 1 3) n ist eine Nullfolge. 25

26

27 Die Folge x mit x n = (1 + 1 n )n ist konvergent, ihr Grenzwert ist die Eulersche Zahl e, also ( 1) n e := lim n n Wir gehen darauf später noch genauer ein. Die Fibonacci-Folge ist bestimmt divergent gegen. Aus der Definition der Konvergenz folgt sofort Jede konvergente Folge ist beschränkt. 26

28 Wir wollen im nächsten Beispiel das Konvergenzverhalten der arithmetischen und geometrischen Folgen sowie der Folgen 1 ( 1)n n und n zusammenfassen. Beispiel 1.10 ( 1) n n a n a + nd aq n 1 (a > 0) n monoton steigend d 0 q 1 nein nein streng monoton steigend d > 0 q > 1 nein nein monoton fallend d 0 0 q 1 ja nein streng monoton fallend d < 0 0 < q < 1 ja nein beschränkt d = 0 1 q 1 ja ja konvergent d = 0 1 < q < 1 q = 1 ja ja Limes a 0 a 0 0 Wir geben jeweils an, für welche Werte von a, d, q die Folgen die entsprechende Eigenschaft haben. 27

29 Ein sehr wichtiges Konvergenzkriterium ist das folgende: Jede beschränkte und monotone Folge (a n ) n N konvergiert, d.h. es gibt ein a R, so dass lim n a n = a. 3 Beispiel 1.11 Die Folge (n+1) ist monoton (fallend) und beschränkt, also konvergent, und der Grenzwert ist 0. Die Folge ( 1)n2 7n ist nicht monoton (aber beschränkt). Diese Folge ist auch konvergent (ihr Grenzwert ist ebenfalls 0). Es kann also durchaus nicht monotone Folgen geben, die konvergieren. Unbeschränkt kann eine konvergente Folge aber nicht sein! 28

30 Rechenregeln für Grenzwerte Seien (a n ) n N, (b n ) n N konvergente Folgen mit Dann gilt: lim a n = a und lim b n = b. n n 1. (a n ± b n ) n N ist konvergent mit lim (a n ± b n ) = a ± b. n 2. (a n b n ) n N ist konvergent mit lim (a n b n ) = a b. n 29

31 3. Sei b 0. Dann gibt ( es ein ) n 0 N mit b n 0 für alle an n n 0, und die Folge ist konvergent mit b n n n 0 lim n a n b n = a b. 4. Sei λ R. Dann ist auch die Folge (λa n ) n N konvergent mit lim (λa n) = λa. n Wir geben gleich eine Menge an Beispielen an, wie wir die oben angegebenen Sachverhalte ausnutzen können. Wir müssen, grob gesagt, den algebraischen Ausdruck, der die Folgenglieder a n definiert, in Teilausdrücke zerlegen, von denen wir dann jeweils die Grenzwerte kennen. 30

32 Bevor wir zu den Beispielen kommen, hier ein weiteres wichtiges Konvergenzkriterium: Ausquetschen Seien (a n), (a n) konvergente Folgen mit Ist (a n ) eine Folge mit lim n a n = a = lim a n. n a n a n a n für alle n, dann gilt auch lim a n = a. n Als Spezialfall erhalten wir für Nullfolgen: Sei (a n) eine Nullfolge. Ist (a n ) eine Folge mit a n a n für alle n dann ist auch (a n ) eine Nullfolge. 31

33 Beispiel 1.12 (1) Für k N ist (2) lim n 3n n 2 lim n 1 n k = 0. = lim (3 + 1 n n2) = lim 3 + lim n n 1 n 2 = 3. (3) Für a R mit a < 1 ist lim n an = 0. 32

34 (4) Sei a n = n + 1 n, n N. Bei dieser Folge hilft ein Umformungstrick weiter: und daher ist n + 1 n = ( n+1 n)( n+1+ n) n+1+ n = n+1 n n+1+ n = 1 n+1+ n lim ( n + 1 n) = 0. n Warnung: Bei einem Grenzwert lim n n + 1 n versuchen viele Anfänger etwa wie folgt zu argumentieren: lim ( n + 1 n) = lim n + 1 lim n = = 0. n n n Das geht aber so nicht, weil der Grenzwert der Summe zweier Folgen nur dann die Summe der Grenzwerte dieser beiden Folgen ist, wenn 33

35 die beiden Grenzwerte existieren. Das ist aber in unserem Beispiel nicht der Fall.Außerdem macht ein Ausdruck der Form keinen Sinn! Die oben angegebene Umformung ist somit falsch!!! Überlegen Sie sich bitte, dass man mit so einem Argument zeigen könnte lim n ((n + 1) n) = lim n (n + 1) lim n (n) = 0, obwohl natürlich lim (n + 1 n) = lim (1) = 1 n n gilt. 34

36 Beispiel 1.13 Als einen etwas komplizierteren Grenzwert wollen wir hier zeigen n n = 1 lim n Dazu benötigen wir den binomischen Lehrsatz (a + b) n = n i=0 ( ) n a i b n i i Hier ist (gelesen: n über i), wobei ( ) n i = n! i!(n i)! m! = m (m 1) (m 2) die Fakultät von m ist (das ist das Produkt aller natürlichen Zahlen 35

37 m). Machen wir uns dies an einem Beispiel klar: (a + b) 3 = (a + b) 2 (a + b) = (a 2 + 2ab + b 2 )(a + b) = = a 3 + 3a 2 b + 3ab 2 + b 3 Der binomische Lehrsatz verallgemeinert also die binomischen Formeln (Spezialfall n = 2). Wir wollen etwas über die Konvergenz von a n = n n aussagen. Dazu definieren wir b n = a n 1 und berechnen (b n + 1) n mit Hilfe des binomischen Lehrsatzes: n n = (b n + 1) n = n i=0 ( ) n b i i n1 n i = weil ja b n + 1 = n n. Die Gleichung (1.1) zeigt ( ) n bn 2 n, 2 36 i=0 ( ) n b i i n, (1.1)

38 weil b n 0 (beachte: a n 1), also n(n 1) b 2 n n, also b n 2 Wegen b n 0 erhalten wir somit 2 n 1. 0 b n und deshalb ( Ausquetschen ) 2 n 1 lim b n = 0, also lim (b n + 1) = lim n n = 1. n n n 37

3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1

3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1 Kapitel 3. Folgen und Reihen 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als a = (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index

Mehr

ist streng monoton fallend.

ist streng monoton fallend. Beispiel 3.5 Betrachte die Folgen aus Beispiel 3.1 Die Folgen a und d mit a n = n 2 und d n = 2 n sowie die Fibonacci-Folge sind streng monoton wachsend. Die Folge b mit b n = 1 n ist streng monoton fallend.

Mehr

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Folgen und Reihen Bernhard Ganter Institut für Algebra TU Dresden D-0062 Dresden bernhard.ganter@tu-dresden.de Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung f : N R. Statt f (n) schreibt man

Mehr

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen Dr. Thomas Zehrt Folgen und Reihen Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band, 7. Auflage,

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die 3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind ( n N, auch

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Folgen und Reihen. Zahlenfolgen , ,

Folgen und Reihen. Zahlenfolgen , , 97 Wegener Math/5_Reihen Mittwoch 04.04.2007 8:38:52 Folgen und Reihen Zahlenfolgen Eine Zahlenfolge a besteht aus Zahlen a,a 2,a 3,a 4,a 5,... Die einzelnen Zahlen einer Folge heißen Glieder oder Terme.

Mehr

Folgen und Reihen. Katharina Brazda 9. März 2007

Folgen und Reihen. Katharina Brazda 9. März 2007 Katharina Brazda 9. März 2007 Inhaltsverzeichnis 1 Folgen 2 1.1 Definition von Folgen - explizite und rekursive Darstellung.............. 2 1.2 Wachstumsverhalten von Folgen - Monotonie und Beschränktheit..........

Mehr

Viele Statistiken werden durch endliche Folgen beschrieben. (z.b. Anzahl der Studierenden an der TU München in den Jahren 1962 bis 1976)

Viele Statistiken werden durch endliche Folgen beschrieben. (z.b. Anzahl der Studierenden an der TU München in den Jahren 1962 bis 1976) Kapitel 9 Folgen und Reihen 9.1 Folgen 9.1.1 Was ist eine Folge? Abbildungen, die auf N definiert sind (mit Werten z.b. in R), heißen (unendliche) Folgen. Abb., die auf einer endlichen Menge aufeinander

Mehr

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben.

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben. 4 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei (a k ) k N eine Folge. Wir definieren

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

Rekursionen (Teschl/Teschl 8.1/8.2)

Rekursionen (Teschl/Teschl 8.1/8.2) Rekursionen (Teschl/Teschl 8.1/8.2) treten in vielen Algorithmen auf: Eine Rekursion ist eine Folge von Zahlen a 0, a 1, a 2,.., bei der jedes a n aus seinen Vorgängern berechnet wird: Beispiele a n =

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38 Kapitel 4 Folgen und Reihen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38 Folgen Eine Folge ist eine Anordnung von reellen Zahlen. Die einzelnen Zahlen heißen Glieder

Mehr

Zusammenfassung zur Konvergenz von Folgen

Zusammenfassung zur Konvergenz von Folgen Zusammenfassung zur Konvergenz von Folgen. Definition des Konvergenzbegriffs Eine Folge reeller Zahlen a n n heißt konvergent gegen a in Zeichen a n = a, falls gilt > 0 n 0 n n 0 : an a < Hinweise: Bei

Mehr

Folgen und Reihen. 1 Konvergenz

Folgen und Reihen. 1 Konvergenz Folgen und Reihen Man betrachte viele Zahlen hintereinander geschrieben. Solche Folgen von Zahlen können durch nummeriert werden. Es entsteht eine Zuordnung der natürlichen Zahlen zu den Gliedern der Folge.

Mehr

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung Kapitelgliederung 3. Folgen und Reihen 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung 3.5 Reihen 3.6 Absolut

Mehr

Vorkurs Mathematik. Übungen Teil IV

Vorkurs Mathematik. Übungen Teil IV Vorkurs Mathematik Herbst 009 M. Carl E. Bönecke Skript und Übungen Teil IV. Folgen und die Konstruktion von R Im vorherigen Kapitel haben wir Z und Q über (formale) Lösungsmengen von Gleichungen der Form

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade. $Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Dozent: Dr. Michael Karow Thema: unendliche Reihen Definition. Eine unendliche Reihe ist der Grenzwert einer Folge von Summen: a k = lim k a k, wobei a k C. Falls der

Mehr

9 Konvergenz und absolute Konvergenz von Reihen

9 Konvergenz und absolute Konvergenz von Reihen 9 Konvergenz und absolute Konvergenz von Reihen 9.2 Konvergenz von Reihen 9.5 Monotoniekriterium für Reihen 9.6 Konvergenzkriterium von Cauchy für Reihen 9.9 Rechenregeln für konvergente Reihen 9.10 Absolute

Mehr

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008 Ferienkurs Analysis 1, SoSe 2008 Unendliche Reihen Florian Beye August 15, 2008 1 Reihen und deren Konvergenz Definition 1.1. Eine reelle bzw. komplexe Reihe ist eine unendliche Summe über die Glieder

Mehr

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren)

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren) Zahlenfolgen Aufgabe (Streichholzfiguren) a) Wie viele Streichhölzer benötigt man für die 0. Figur? b) Gib für die Streichholzfolge eine rekursive und eine explizite Berechnungsvorschrift an. Aufgabe (Quadratzahlen)

Mehr

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) Fragen und Antworten Folgen und Reihen (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Folgen und Reihen 2 1.1 Fragen............................................... 2 1.1.1 Folgen...........................................

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe.

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe. Folgen und Reihen Christoph Laabs, christoph.laabs@tu-dresden.de Grundlagen Eine Reihe ist darstellbar durch z. B. = a 0 + a + a 2 + a + a 4 +... Ausgesprochen wird das als Summe von von k bis Unendlich.

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Folgen und Reihen. Mathematik I für Chemiker. Daniel Gerth

Folgen und Reihen. Mathematik I für Chemiker. Daniel Gerth Folgen und Reihen Mathematik I für Chemiker Daniel Gerth Überblick Folgen und Reihen Dieses Kapitel erklärt: Was man unter Folgen und Reihen versteht; Was man unter Grenzwert von Folgen und Reihen versteht;

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Stefan Etschberger Hochschule Augsburg Grundlagentest Polynome! Testfrage: Polynome 1 Die Summe

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

2 - Konvergenz und Limes

2 - Konvergenz und Limes Kapitel 2 - Folgen Reihen Seite 1 2 - Konvergenz Limes Definition 2.1 (Folgenkonvergenz) Eine Folge komplexer Zahlen heißt konvergent gegen, wenn es zu jeder positiven Zahl ein gibt, so dass gilt: Die

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen 7. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung β-version) Aufgabe : Bestimmen Sie alle Häufungspunkte der Folgen mit den Folgengliedern a) a n n n X + cosnπ), b) b n i) i j, und geben Sie

Mehr

Kapitel 5 Reihen 196

Kapitel 5 Reihen 196 Kapitel 5 Reihen 96 Kapitel 5. Definition und Beispiele 97 Das Material dieses Kapitels können Sie nachlesen in: MICHAEL SPIVAK, Calculus, Kapitel 22 DIRK HACHENBERGER, Mathematik für Informatiker, Kapitel

Mehr

Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya

Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya Konvergenz und Divergenz einer unendlichen Reihe 5-E Ma 2 Lubov Vassilevskaya Folgen und Reihen: Beispiele Unter dem Bildungsgesetz einer unendlichen Reihe n i= versteht man einen funktionalen Zusammenhang

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

Folgen und Reihen. Mathematik-Repetitorium

Folgen und Reihen. Mathematik-Repetitorium Folgen und Reihen 1.1 Vollständige Induktion 1.2 Zahlenfolgen 1.3 Eigenschaften konvergenter Zahlenfolgen 1.4 Konvergenzkriterien 1.5 Unendliche Reihen 1.6 Eigenschaften unendlicher Reihen 1.7 Rechnen

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

3.3 Konvergenzkriterien für reelle Folgen

3.3 Konvergenzkriterien für reelle Folgen 3.3 Konvergenzkriterien für reelle Folgen Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge a n ) n N ist konvergent mit Grenzwert lim a n = sup{a n n N} Beweis: Sei a n ) n N nach oben

Mehr

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen 7. Vorlesung im Brückenkurs Mathematik 2017 Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen Dr. Markus Herrich Markus Herrich Kombinatorik, Vollständige Induktion, Zahlenfolgen

Mehr

Folgen und Reihen. Kapitel Folgen und Grenzwerte

Folgen und Reihen. Kapitel Folgen und Grenzwerte Kapitel 3 Folgen und Reihen Wie bereits in der Einleitung angedeutet, beschäftigt sich die Analysis sehr stark mit Grenzprozessen. Wir werden in diesem Kapitel die wichtigsten Grenzprozesse, nämlich die

Mehr

Alternativ kann man auch die Differenz a n+1 a n betrachten:

Alternativ kann man auch die Differenz a n+1 a n betrachten: Aufgabe 1 Folgen auf Monotonie und Beschränktheit prüfen. a) Beschränktheit? Die Folge ( ) n N mit = n + ( 1) n ist nach unten beschränkt, denn es gilt n + ( 1) n n 1 1 für alle n N. Allerdings ist die

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 3 Folie 1 /16 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 3. Zahlenfolgen und Grenzwerte

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

Kapitel 4 Folgen und Reihen

Kapitel 4 Folgen und Reihen Kapitel 4 Folgen und Reihen Inhalt 4.1 4.1 Konvergenzkriterien für für Folgen 4.2 4.2 Reihen 4.3 4.3 Achilles und und die die Schildkröte Seite 2 4.1 Konvergenzkriterien für Folgen Wiederholung (vgl. (vgl.

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Oliver Matte Max Lein Zentralübung Mathematik für Physiker 2 Analysis ) Wintersemester 200/20 Lösungsblatt 5 2..200) 32. Häufungspunkte Sei a

Mehr

6 - Unendliche Reihen

6 - Unendliche Reihen Kapitel 2 Folgen und Reihen Seite 1 6 Unendliche Reihen Definition 6.1 (Unendliche Reihen) Sei eine Folge aus C. Unter der unendlichen Reihe mit den Gliedern versteht man das Symbol oder Die Zahl heißt

Mehr

Spickzettel Mathe C1

Spickzettel Mathe C1 Spickzettel Mathe C1 1 Mengenlehre 1.1 Potenzmenge Die Potenzmenge P (Ω) einer Menge Ω ist die Menge aller Teilmengen von Ω. Dabei gilt: P (Ω) := {A A Ω} card P (Ω) = 2 card Ω P (Ω) 1.2 Mengenalgebra Eine

Mehr

19 Folgen. Grenzwerte. Stetigkeit

19 Folgen. Grenzwerte. Stetigkeit 19 Folgen. Grenzwerte. Stetigkeit Jörn Loviscach Versionsstand: 27. Dezember 2014, 16:35 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Folgen, Reihen, Potenzreihen, Exponentialfunktion Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2

Mehr

Folgen und Reihen. Petra Grell, WS 2004/05

Folgen und Reihen. Petra Grell, WS 2004/05 Folgen und Reihen Petra Grell, WS 2004/05 Folgen 1 Einführung Beispiel 1.1. Setze fort: 1, 2, 3,... 4, 5, 6,... natürliche Zahlen 5, 8, 13,... Fibonacci-Zahlen Wir können nicht eindeutig sagen, wie es

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Prüfung 2 semesterbegleitende Zwischenprüfungen: Termine: am 12.11.2013 und 10.12.2013, Beginn jeweils 8.00 Uhr (!) im

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Mathematik I - Woche 10

Mathematik I - Woche 10 Mathematik I - Woche 0 Philip Müller Reihen. Was ist eine Reihe Wir hatten bis jetzt Folgen. Eine Folge (a n ) n N ist eine Vorschrift, die von den natürlichen Zahlen, in die reellen Zahlen abbildet. Ein

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Folgen & Reihen. ANALYSIS Kapitel 5 WRProfil - Mittelstufe KZN. Ronald Balestra CH Zürich

Folgen & Reihen. ANALYSIS Kapitel 5 WRProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Folgen & Reihen ANALYSIS Kapitel 5 WRProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 17. Mai 2016 Überblick über die bisherigen ANALYSIS - Themen: 1 Funktionen

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Folgen und Reihen. Beni Keller. 8. Mai 2017

Folgen und Reihen. Beni Keller. 8. Mai 2017 Folgen und Reihen Beni Keller 8. Mai 2017 In der Algebra und der Arithmetik wurden die Grundstrukturen und Rechenregeln für das Rechnen mit Zahlen in den ganzen, rationalen und reellen Zahlen festgelegt.

Mehr

Grundlagen der Analysis (Rückblick auf die Schule)

Grundlagen der Analysis (Rückblick auf die Schule) Kapitel Grundlagen der Analysis Rückblick auf die Schule). Bezeichnungen, Notation, Rechenregeln Notation.: Folgende Standardbezeichnungen und Symbole sollten aus der Schule bekannt sein und werden auch

Mehr

Folgen. Kapitel 2. Folgen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Folgen. Kapitel 2. Folgen. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 2 Folgen Peter Becker (H-BRS) Analysis Sommersemester 2016 89 / 543 Inhalt Inhalt 1 Folgen Definition kriterien in C, R d und C d Peter Becker (H-BRS) Analysis Sommersemester 2016 90 / 543 Definition

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Kapitel 4 Folgen, Reihen & Funktionen

Kapitel 4 Folgen, Reihen & Funktionen Kapitel 4 Folgen, Reihen & Funktionen Inhaltsverzeichnis FOLGEN REELLER ZAHLEN... 3 DEFINITION... 3 GRENZWERT... 3 HÄUFUNGSPUNKT... 4 MONOTONIE... 4 BESCHRÄNKTHEIT... 4 SÄTZE... 4 RECHNEN MIT GRENZWERTEN...

Mehr

Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok.

Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok. Quiz Analysis 1 Mathematisches Institut, WWU Münster Karin Halupczok WiSe 2011/2012 Lösungen zu den Aufgaben M1 bis M7 der Probeklausur 1 Aufgabe M1: Fragen zu Folgen, Reihen und ihre Konvergenz 2 Aufgabe

Mehr

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b Kapitel 4. Folgen 4.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr