Freie Bäume und Wälder
|
|
|
- Heike Schneider
- vor 8 Jahren
- Abrufe
Transkript
1 (Martin Dietzfelbinger, Stand ) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese Graphen auch freie Bäume. Die folgenden grundlegenden Tatsachen zu Bäumen sind allgemein wichtig; wir benutzen sie in der Vorlesung ohne weitere Begründung. Für Interessierte sind auch die Beweise angegeben. Alle Graphen in dieser Notiz sind ungerichtet. Definition 1 Ein Graph G = (V,E) heißt (freier) Baum, wenn er zusammenhängend und kreisfrei ist. Er heißt Wald, wenn er kreisfrei ist. Ein Wald besteht aus Zusammenhangskomponenten, die Bäume sind. Ein Beispiel für einen Wald mit acht (!) Zusammenhangskomponenten: Im folgenden bedeutet Kreis (in einem Graphen G = (V,E)) stets dasselbe wie einfacher Kreis, also eine Knotenfolge (v 0,...,v k ) mit k 3 verschiedenen Knoten v 0,...,v k 1 und v k = v 0, so dass (v i 1,v i ) E für 0 < i k. Kreise mit derselben Kantenmenge werden wie üblich als identisch betrachtet. Für den Beweis von Satz 7 benötigen wir eine Reihe von Hilfsaussagen. Lemma 2 Ist G = (V,E) ein kreisfreier Graph mit mindestens einer Kante, dann gibt es in G mindestens zwei Knoten mit Grad 1 ( Blätter ). 1
2 Beweis:WirbetrachteneineneinfachenWeg(v 0,v 1,...,v t )ingvon maximaler Länge. Weil es mindestens eine Kante gibt, ist t 1. Dann kann v 0 außer v 1 keinen weiteren Nachbarn haben. (Wäre (v 0,v i ) E für ein i {2,...,t}, dann hätte man einen Kreis. Wäre (v 0,v) E mit v / {v 1,...,v t }, dann könnte man den Weg verlängern.) Das heißt: v 0 hat nur v 1 als Nachbarn, ist also Blatt. Genauso sieht man, dass v t ein Blatt ist. Lemma 3 Ist G = (V,E) ein kreisfreier Graph, so gilt E V 1. Beweis: Durch Induktion über n = V. I.A. n = 1: Wenn V = 1 ist, kann es keine Kante geben, also ist E = 0 = V 1. I.V.: Die Aussage ist richtig für Graphen mit n 1 Knoten. I.S.: Sei V = n > 1. Wenn E =, ist die Behauptung offensichtlich wahr. Sonst gibt es nach Lemma 2 ein Blatt w V. Wir bilden den Graphen G = (V,E ) durch Entfernen von w und der einen Kante, die zu w inzident ist. Das heißt: V := V {w} und E := {(u,v) E u,v V }. Offensichtlich ist G auch kreisfrei. Es gilt V = V 1 und E = E 1. Mit der Induktionsvoraussetzung folgt E V 1 = n 2, also E n 1. Lemma 4 Ist G = (V, E) ein zusammenhängender Graph, so gilt E V 1. Beweis: Schreibe E = {e 1,...,e m }. Dann definiere E i := {e 1,...,e i } für 0 i m, G i := (V,E i ). Offensichtlich besteht G 0 aus n isolierten Knoten, hat also n Zusammenhangskomponenten. Dagegen hat G m = G nur eine Zusammenhangskomponente. Für 1 i m gilt: die beiden Endpunkte von e i liegen entweder in einer Zusammenhangskomponente von G i 1 oder in zwei verschiedenen; also hat G i höchstens eine Zusammenhangskomponente weniger als G i 1. Daraus folgt m n 1. Lemma 5 Ein Graph G = (V,E) ist zusammenhängend genau dann wenn es für jedes Paar v,w V mindestens einen einfachen Weg von v nach w gibt. 2
3 Beweis: : Seien v und w Knoten. Es gibt einen Weg von v nach w nach Definition des Zusammenhangs. Weglassen von Kreisen macht den Weg einfach. : Klar nach Definition des Zusammenhangs in Graphen. Lemma 6 Ein Graph G = (V,E) ist kreisfrei genau dann wenn es für jedes Paar v,w V, v w, höchstens einen einfachen Weg von v nach w gibt. Beweis: : Sei G kreisfrei. Annahme: es gibt verschiedene Knoten v,w V, so dass es zwei verschiedene einfache Wege von v nach w gibt. Wir wählen solche Knoten v und w und verschiedene Wege p = (v = v 0,v 1,...,v k = w) und p = (v = v 0,v 1,...,v l = w) so, dass die Summe k + l der Weglängen minimal ist. Wir beobachten: (i) k,l 2. (Wäre z.b. k = 1, also v 1 = w, dann müsste l 2 sein, und wir würden durch Kombination von p mit (v,w) einen Kreis erhalten.) (ii) v 1 v 1. (Wäre v 1 = v 1, dann könnte man durch Weglassen der ersten Kanteauspbzw. p kürzere verschiedene Wegevonv 1 nachwerhalten.) (iii) {v 1,...,v k 1 } {v 1,...,v l 1 } =. (Wäre v i = v j, dann wären die Anfangsstücke von p und p Wege von v nach v i, die wegen (ii) verschieden sind und die kürzer sind als p und p.) Aus (iii) folgt, dass die Vereinigung von p und p ein einfacher Kreis ist, ein Widerspruch. : Wenn es einen einfachen Kreis v 0,v 1,...,v k = v 0 (k 3) gibt, so gibt es (mindestens) zwei verschiedene einfache Wege von v 0 nach v 1, nämlich (v 0,v 1 ) und (v 0,v s 1,...,v 1 ). Satz 7 (Charakterisierung von freien Bäumen) Für einen Graphen G = (V, E) sind folgende Aussagen äquivalent: (a) G ist Baum. (b) G ist kreisfrei und E V 1. 3
4 (c) G ist zusammenhängend und E V 1. (d) Zu jedem Paar v,w V,v w, existiert genau ein einfacher Weg zwischen v und w. (e) G ist kreisfrei, aber Hinzufügen irgendeiner Kante erzeugt einen Kreis (G ist maximal kreisfrei). (f) G ist zusammenhängend, aber Wegnehmen irgendeiner Kante macht G unzusammenhängend (G ist minimal zusammenhängend). Beweis: Der Beweis folgt folgendem Beweisschema: b e a d c f (a) (b): folgt aus Lemma 4. (b) (e): Sei G kreisfrei, E V 1. Nach Lemma 3 folgt: E = V 1, und das Hinzufügen einer Kante zerstört die Kreisfreiheit. (e) (d): Aus der Kreisfreiheit folgt mit Lemma 6, dass es jeweils höchstens einen solchen Weg gibt. Sei nun v,w E. Falls v = w oder (v,w) E, ist nichts zu zeigen. Sonst: Füge (v,w) zu E hinzu. Nach Annahme (e) entsteht ein Kreis, der natürlich (v, w) enthält. Die restlichen Kanten des Kreises (alle ine)bildeneinenwegvonv nachwing,alsogabesingschonvoreinfügen der Kante von v nach w diesen Weg. (a) (c): folgt aus Lemma 3. (c) (f): Sei G zusammenhängend, E V 1. Nach Lemma 4 folgt: E = V 1 und das Entfernen einer Kante zerstört die Zusammenhangseigenschaft. (f) (d): Aus der Zusammenhangseigenschaft folgt, dass es für v,w V einen einfachen Weg von v nach w gibt. Eindeutigkeit: Gibt es mehrere einfache Wege vom v nach w, so folgt mit 4
5 Lemma 6, dass G einen einfachen Kreis hat. Man kann aus diesem Kreis irgendeine Kante entfernen, ohne die Zusammenhangseigenschaft zu zerstören. Das widerspricht (f). (d) (a): Lemma 5 und Lemma 6. Folgerung 8 Wenn G = (V,E) ein Baum ist, dann gilt: (i) E = V 1. (ii) Zu jedem Paar v,w V mit v w existiert genau ein einfacher Weg zwischen v und w. (iii) Hinzufügen irgendeiner Kante zu G erzeugt genau einen Kreis. (iv) Wegnehmen irgendeiner Kante zerlegt G in genau zwei Zusammenhangskomponenten. Beweis: (i) folgt direkt aus der Äquivalenz von (a) (c) in Satz 7, (ii) folgt aus der Äquivalenz von (a) und (d). (iii)nachsatz7(e)erzeugtdashinzufügeneinerkante(v,w)zueinembaum G mindestens einen Kreis. Es können aber dadurch nicht zwei verschiedene Kreise entstehen. Denn diese würden zwei verschiedenen einfachen Wegen von v nach w in G entsprechen, die es aber nach Satz 7(d) in einem Baum nicht gibt. (iv) Nach Nach Satz 7(f) erzeugt das Entfernen irgendeiner Kante(v, w) einen Graphen G mit mehr als einer Zusammenhangskomponente. Die Zahl der Komponenten von G kann aber nicht größer als 2 sein, denn das Hinzufügen von (v,w) zu G stellt G wieder her und kann die Anzahl der Komponenten nur um 1 verringern. Proposition 9 Ist G = (V,E) ein Wald mit r Kanten, so besteht G aus genau V r Zusammenhangskomponenten. 5
6 Beweis: Es seien V 1,...,V s die Zusammenhangskomponenten. Komponente V i ist ein Baum (da zusammenhängend und kreisfrei), hat nach Satz 7 also V i 1 Kanten. Damit gilt r = ( V i 1) = V i s = V s. 1 i s 1 i s 6
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des
w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2
1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba
Algorithmen und Datenstrukturen (WS 2007/08) 63
Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
Algorithmische Methoden der Netzwerkanalyse
Algorithmische Methoden der Netzwerkanalyse Marco Gaertler 9. Dezember, 2008 1/ 15 Abstandszentralitäten 2/ 15 Distanzsummen auf Bäumen Lemma Sei T = (V, E) ein ungerichteter Baum und T s = (V S, E s )
Algorithmentheorie. 13 - Maximale Flüsse
Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Algorithmen für Graphen Fragestellungen: Suche
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Bäume und Wälder. Bäume und Wälder 1 / 37
Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Traversierung Durchlaufen eines Graphen, bei
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
3. Zusammenhang. 22 Andreas Gathmann
22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept
Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten
Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und
Graphen: Datenstrukturen und Algorithmen
Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.
Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011
Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.
Graphentheorie Mathe-Club Klasse 5/6
Graphentheorie Mathe-Club Klasse 5/6 Thomas Krakow Rostock, den 26. April 2006 Inhaltsverzeichnis 1 Einleitung 3 2 Grundbegriffe und einfache Sätze über Graphen 5 2.1 Der Knotengrad.................................
Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.
Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo [email protected] xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung
5. Verschiedene Repräsentanten
5. Verschiedene Repräsentanten 5.1. Die Sätze Hall und König Sei I := {1,...,n}, und sei A(I) = (A 1,...,A n ) eine Familie von Teilmengen einer endlichen Menge E. Zu K I seien A(K) := (A i : i K) und
S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J
Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung
Bäume und Wälder. Bäume und Wälder 1 / 37
Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
4 Greedy-Algorithmen (gierige Algorithmen)
Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Die in den Suchverfahren konstruierten Graphen waren zusammenhängend und enthielten keine Kreise. Also vereinbaren wir:
Kapitel 4 Bäume und Matchings Wir haben im letzten Kapitel Bäume implizit als Ergebnis unserer Suchverfahren kennengelernt. In diesem Kapitel wollen wir diese Graphenklasse ausführlich untersuchen. 4.1
Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn
Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:
Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering
Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas
Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume
Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen
Guten Morgen und Willkommen zur Saalübung!
Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI
Kapitel 6: Graphalgorithmen Gliederung
Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen
Der Zwei-Quadrate-Satz von Fermat
Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat
Seminararbeit für das SE Reine Mathematik- Graphentheorie
Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Also kann nur A ist roter Südler und B ist grüner Nordler gelten.
Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007
Graphentheorie Rainer Schrader Organisatorisches Zentrum für Angewandte Informatik Köln 23. Oktober 2007 1 / 79 2 / 79 Organisatorisches Organisatorisches Dozent: Prof. Dr. Rainer Schrader Weyertal 80
2.11 Kontextfreie Grammatiken und Parsebäume
2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle
Codierungstheorie Rudolf Scharlau, SoSe 2006 9
Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets
Grammatiken. Einführung
Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische
Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik
Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes
Expander Graphen und Ihre Anwendungen
Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006
Grundlagen der Programmierung 2. Bäume
Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
Periodische Fahrpläne und Kreise in Graphen
Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf
Pratts Primzahlzertifikate
Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time
Universität Konstanz Mathematisch-naturwissenschaftliche Sektion Fachbereich Mathematik und Statistik Wintersemester 2001/02 Mikkel Thorup: Undirected Single-Source Shortest Paths with Positive Integer
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
16. All Pairs Shortest Path (ASPS)
. All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e
Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.
Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren
Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik
Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus
Codierung, Codes (variabler Länge)
Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls
Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =
Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.
4. Übungsblatt Matrikelnr.: 6423043
Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613
Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung
Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.
NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)
NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP
15 Optimales Kodieren
15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen
Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt
Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt
Information Systems Engineering Seminar
Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, 22.10.2012 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1 Planarität - Definition Ein Graph heißt
Künstliche Intelligenz Maschinelles Lernen
Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen
Duplikatfilterung und Sampling von Webseiten
Duplikatfilterung und Sampling von Webseiten Seminar Suchmaschinen, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Duplikatfilterung: 1.1 Gleichheitstest mit Fingerabdrücken
Diskrete Mathematik für Informatiker
Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s
Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität
4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.
Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische
Modelle und Statistiken
Kapitel 4 Modelle und Statistiken In letzter Zeit werden vermehrt Parameter (Gradfolgen, Kernzahlfolgen, etc.) empirischer Graphen (Internet, WWW, Proteine, etc.) berechnet und diskutiert. Insbesondere
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
Theoretische Grundlagen des Software Engineering
Theoretische Grundlagen des Software Engineering 11: Abstrakte Reduktionssysteme [email protected] Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A
Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling
Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Kapiteltests zum Leitprogramm Binäre Suchbäume
Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte
Definition 27 Affiner Raum über Vektorraum V
Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,
Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion
Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert
Informatik I WS 07/08 Tutorium 24
Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: [email protected] Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben
TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010. 2. Schriftliche Leistungskontrolle (EK)
TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010 2. Schriftliche Leistungskontrolle (EK) Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
Praktikum Planare Graphen
1 Praktikum Planare Graphen Michael Baur, Martin Holzer, Steffen Mecke 10. November 2006 Einleitung Gliederung 2 Grundlagenwissen zu planaren Graphen Themenvorstellung Gruppeneinteilung Planare Graphen
0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )
Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,
4. Relationen. Beschreibung einer binären Relation
4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B
Absolute Stetigkeit von Maßen
Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches
3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper
32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt
Algorithmen und Datenstrukturen SS09
Foliensatz 8 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 29 TU Ilmenau Seite / 54 Binärbäume TU Ilmenau Seite 2 / 54 Binäre Bäume Bäume und speziell
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder
Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29
1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian
Von optimaler Partnerwahl, minimalen Schnitten und maximalen Flüssen. Schülerwoche der Bonner Mathematik 2013
Von optimaler Partnerwahl, minimalen Schnitten und maximalen Flüssen Schülerwoche der Bonner Mathematik 203 3. September 203 Dr. Lisa Beck Hausdorff Center for Mathematics Universität Bonn Einleitung Ziel
Das Falten-und-Schneiden Problem
Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit
