13. Binäre Suchbäume
|
|
|
- Frieda Gitta Sachs
- vor 10 Jahren
- Abrufe
Transkript
1 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor), Nachfolger (Successor) Laufzeit für alle Operationen proportional zur Höhe des Baums. Später spezielle Suchbäume bei denen Höhe logarithmisch in Anzahl der Knoten ist. 1
2 Suchbaum-Eigenschaft (1) Binäre Suchbäume sind binäre Bäume. Bestehen aus Objekten mit Feldern für Verweis 1. p auf Eltern 2. right auf rechtes Kind. left auf linkes Kind Zusätzlich Feld key für Schlüssel, dabei sind Schlüssel natürliche Zahlen. 2
3 Suchbaum-Eigenschaft (2) Es gilt Suchbaum-Eigenschaft: Für jedes Objekt x und jedes Objekt y im linken Teilbaum von x gilt key[y] key[x]. Für jedes Objekt x und jedes Objekt y im rechten Teilbaum von x gilt key[y] key[x].
4 Binäre Bäume - Illustration root[t] / / / / / / / / / / / / / 4
5 Illustration von Suchbäumen
6 Durchlaufen von Suchbäumen (1) Suchbaum-Eigenschaft erlaubt es, Schlüssel im Baum in sortierter Reihenfolge auszugeben. Dazu wird der Baum in Inorder durchlaufen. D.h. die Wurzel eines Teilbaums wird zwischen den Knoten des linken und des rechten Teilbaums ausgegeben. Alternativen Methoden, die Knoten eines Suchbaums zu durchlaufen, sind: 1. Postorder 2. Preorder 6
7 Durchlaufen von Suchbäumen (2) ( x) Inorder - Tree - Walk 1 if x NIL 2 then Inorder - Tree - print( x) 4 Inorder - Tree - Walk Walk ( left[ x] ) ( right[ x] ) Satz 1.1: Ist x Wurzel eines Baums mit n Knoten, so benötigt Algorithmus Inorder-Tree-Walk bei Aufruf mit Knoten x Zeit Θ(n). 7
8 Suchen in Suchbäumen Ziel: Finde in einem Suchbaum Knoten x mit Schlüssel k. Falls kein Knoten mit Schlüssel im Suchbaum enthalten, Ausgabe NIL. ( x,k ) Tree - Search 1 if x = NIL k = key[ x] 2 return x if k < key[ x] 4 then Tree - Search 5 else Tree - Search( ) ( left[ x],k ) right[ x],k Aufruf bei Suche in Baum T mit Tree-Search(root[T],k). Lemma 1.2: Tree-Search hat Laufzeit Θ(h), wobei h die Höhe des Baums T ist. 8
9 Suchen in Suchbäumen (2) Suche nach Schlüssel 9: 9
10 Iteratives Suchen in Suchbäumen Iterative - Tree - 1 while x NIL k 2 do if k < key then x 4 else x 5 return x Search ( x,k ) key[ x] [ x] left[ x] right[ x] 10
11 Finden von Minimum/Maximum Ziel: Finde in einem Suchbaum Knoten x mit minimalem bzw. maximalem Schlüssel. ( x) Tree - Minimum 1 while left[ x] NIL 2 do x left return x [ x] ( x) [ x] Tree - Maximum 1 while right 2 do x return x NIL right [ x] Aufruf bei Baum T mit Tree-Minimum(root[T]) bzw. Tree-Maximum(root[T]). Lemma 1.: Tree-Minimum und Tree-Maximum haben Laufzeit Θ(h), wobei h die Höhe des Baums T ist. 11
12 Finden des direkten Nachfolgers(1) Ziel: Gegeben Suchbaum T und Knoten x mit Schlüssel k, finde Objekt mit nächst größerem Schlüssel (unter Annahme, dass alle Schlüssel unterschiedlich). Lemma 1.4: Besitzt x ein rechtes Kind, so ist der direkte Nachfolger von x der Knoten mit minimalem Schlüssel im rechtem Teilbaum von x. Besitzt x kein rechtes Kind, so ist der direkte Nachfolger von x der niedrigste Vorfahr von x, dessen linkes Kind ebenfalls ein Vorfahr von x ist (dabei ist ein Knoten Vorfahr von sich selbst). 12
13 Finden des direkten Nachfolgers (2) Nachfolger von Schlüssel 1: 1
14 Finden des direkten Nachfolgers() Tree - 1 if 2 y ( x) Successor right[ x] NIL then return Tree - Minimum p[ x] while y NIL x = right[ y] do x y y p[ y] return y ( right[ x] ) Lemma 1.5: Tree-Search hat Laufzeit Θ(h), wobei h die Höhe des Baums T ist. 14
15 Einfügen eines Elements (1) Idee: Finde Knoten mit höchstens einem Kind, für den einzufügender Knoten Wurzel des fehlenden Teilbaums werden kann Einfügen von Schlüssel 8 : 15
16 Einfügen eines Elements (2) ( T,z) Tree - Insert 1 y NIL 2 x root[ T ] while x NIL 4 do y x 5 if key 6 then 7 else 8 p[ z] y 9 if y = NIL 10 then root 11 else if key 12 then 1 else [ z] < key[ x] x left[ x] x right[ x] [ T ] z [ z ] < key [ y ] left[ y] z right [ y ] z > Baum T war leer 16
17 Einfügen eines Elements () Lemma 1.6: Tree-Insert hat Laufzeit Θ(h), wobei h die Höhe des Baums T ist. 17
18 Entfernen von Elementen (1) Betrachten beim Entfernen von Knoten drei Fälle: 1. Zu entfernender Knoten ist Blatt. 2. Zu entfernender Knoten besitzt nur ein Kind.. Zu entfernender Knoten besitzt zwei Kinder. Behandlung der drei Fälle: 1. Blatt kann einfach entfernt werden. 2. Knoten wird durch sein einziges Kind ersetzt.. Nutzen aus, dass direkter Nachfolger kein linkes Kind besitzt. Ersetzen Knoten durch direkten Nachfolger und entfernen Nachfolger wie in 2. aus seiner ursprünglichen Position. 18
19 Entfernen eines Blattes z 19
20 Entfernen eines Elements mit 1 Kind 6 6 z
21 Entfernen eines Elements mit 2 Kindern z 6 z 6 y y
22 Entfernen von Elementen (2) ( T,z) [ z] = NIL right[ z] Tree - Delete 1 if left = NIL 2 then y z else y Tree - Successor( z) 4 if left[ y] NIL 5 then x left[ y] 6 else x right[ y] 7 if x NIL 8 then p[ x] p[ y] 9 if p[ y] = NIL 10 then root[ T ] x 11 else if y = left[ p[ y ] 12 then y ] x 1 else right[ p[ y ] x 14 if y z 15 then key[ z] key[ y] 16 Satellitendaten von y werden nach z kopiert 22
23 Laufzeit von Einfügen und Entfernen Lemma 1.7: Tree-Delete hat Laufzeit Θ(h), wobei h die Höhe des Baums T ist. 2
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
Datenstruktur, die viele Operationen dynamischer Mengen unterstützt
Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Tutorium Algorithmen & Datenstrukturen
June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 Bäume [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden
14. Rot-Schwarz-Bäume
Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2016/17 13. Vorlesung Binäre Suchbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Dynamische Menge verwaltet Elemente einer sich ändernden Menge
Kap. 4.2: Binäre Suchbäume
Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:
Kapiteltests zum Leitprogramm Binäre Suchbäume
Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm
Algorithmen und Datenstrukturen Balancierte Suchbäume
Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen
1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert
Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume
Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.
Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen
Binäre Bäume Darstellung und Traversierung
Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail [email protected] Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)
Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der
Informatik II, SS 2014
Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:
Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10
Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien
3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1
3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)
Doppelt verkettete Listen (1)
Doppelt verkettete Listen (1) Verkettete Listen bestehen aus einer Menge linear angeordneter Objekte. Anordnung realisiert durch Verweise. Unterstützen Operationen Insert, Delete, Search, usw. (nicht unbedingt
4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.
Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel
Grundlagen der Programmierung 2. Bäume
Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)
Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem &
Grundlagen Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem & Frank Heitmann [email protected] 25. November 2015 Frank Heitmann [email protected]
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
Sortierte Folgen 250
Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:
Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen
Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders
Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.
Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens
Suchen und Sortieren
(Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten
9. Natürliche Suchbäume
Bäume Bäume sind. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Verallgemeinerte Listen: Knoten können mehrere Nachfolger haben Spezielle Graphen: Graphen bestehen aus Knoten
Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen
Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter
368 4 Algorithmen und Datenstrukturen
Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: [email protected] Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume
Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder
Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element
Nachtrag zu binären Suchbäumen
Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement
Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12
Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:
AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls
11. Elementare Datenstrukturen
11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische
Kapitel 5: Dynamisches Programmieren Gliederung
Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative
Suchen und Sortieren Sortieren. Heaps
Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die
Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16
Natürliche Bäume (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun Letzte Änderung: 18.03.2018 18:16 Natürliche Bäume 1/16 Bäume Begriffe (1/2) Bäume sind verallgemeinerte Listenstrukturen ein
- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:
6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)
Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany [email protected]. Stammbaum. Stammbaum. Stammbaum
lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany [email protected]. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum
Motivation Binäre Suchbäume
Kap..: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Zusätzliche Lernraumbetreuung Morteza Monemizadeh: Jeden Montag von :00 Uhr-:00 Uhr in
Kurs 1613 Einführung in die imperative Programmierung
Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i
t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )
Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1
Teil : Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume (Wiederholung aus Prog 2) Bäume: Begriffe, Eigenschaften und Traversierung Binäre Suchbäume Gefädelte Suchbäume Ausgeglichene
Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem &
Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem & Frank Heitmann [email protected] 25. November 2015 Frank Heitmann [email protected] 1/122
11.1 Grundlagen - Denitionen
11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 216 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda Vorstellung des 6. Übungsblatts. Hashing Binäre Suchbäume AVL-Bäume 2 Aufgabe: Hashing mit
Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen
Algorithmen und Datenstrukturen 2 Dynamische Datenstrukturen Algorithmen für dynamische Datenstrukturen Zugriff auf Variable und Felder durch einen Ausdruck: Namen durch feste Adressen referenziert Anzahl
Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Suchen. Lineare Suche. Such-Algorithmen. Sommersemester Dr.
Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 0 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Fortgeschrittene Datenstrukturen Such-Algorithmen
Programmierkurs Java
Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen
Vorkurs Informatik WiSe 15/16
Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner
2.11 Kontextfreie Grammatiken und Parsebäume
2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle
Beispiel zu Datenstrukturen
zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
Kapitel 8: Physischer Datenbankentwurf
8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen
Überblick. Lineares Suchen
Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität
3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr
3. Binäre Suchbäume 3.1 Natürliche binäre Suchbäume Definition 18 Ein natürlicher binärer Suchbaum über einem durch total geordneten Universum U ist ein als interner Suchbaum organisierter Binärbaum (also:
ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK
ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler,
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.
8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.
Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen
Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet
Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen
Binäre Suchbäume Ein Leitprogramm von Timur Erdag und Björn Steffen Inhalt: Bäume gehören zu den bedeutendsten Datenstrukturen in der Informatik. Dieses Leitprogramm gibt eine Einführung in dieses Thema
Sortierverfahren für Felder (Listen)
Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es
Algorithmen und Datenstrukturen. Bäume. M. Herpers, Y. Jung, P. Klingebiel
Algorithmen und Datenstrukturen Bäume M. Herpers, Y. Jung, P. Klingebiel 1 Lernziele Baumstrukturen und Ihre Verwendung kennen Grundbegriffe zu Bäumen anwenden können Baumstruktur in C anlegen können Suchbäume
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
Programmiertechnik II
Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen
Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO
Wiederholung Datenstrukturen und Algorithmen VO 708.031 Suchen in linearen Feldern Ohne Vorsortierung: Sequentielle Suche Speicherung nach Zugriffswahrscheinlichkeit Selbstanordnende Felder Mit Vorsortierung:
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen
9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel
Mergeable Heaps. C. Komusiewicz 7.1 Fibonacci-Heaps: Überblick 117
C. Komusiewicz 7.1 Fibonacci-Heaps: Überblick 117 Mergeable Heaps Erweiterung von Standardheaps, die die folgenden fünf Operationen unterstützen. Make-Heappq liefert neuen, leeren Heap. InsertpH, xq fügt
Anwendungsbeispiel MinHeap
Anwendungsbeispiel MinHeap Uns seien n ganze Zahlen gegeben und wir möchten darin die k größten Zahlen bestimmen; zudem gelten, dass n deutlich größer als k ist Wir können das Problem mit Laufzeit in O(n
Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20
Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:
Algorithmentheorie. 13 - Maximale Flüsse
Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk
Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps
Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer
1. Allgemeines. Mit der Vertragsverwaltung können u.a.
1. Allgemeines Die ist ein zusätzliches NeDocS-Modul, das gesondert lizenziert und freigeschaltet wird. Hierzu ist es notwendig, eine neue Konfigurationsdatei nedocs.cfg auf die betroffenen Clients zu
Zeichnen von Graphen. graph drawing
Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)
Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1
Sortieren durch Einfügen Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Schon wieder aufräumen Schon wieder Aufräumen, dabei habe ich doch erst neulich man findet alles schneller wieder Bücher auf Regal
Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume
Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen
15 Optimales Kodieren
15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen
