Algorithmen und Datenstrukturen Suchbaum
|
|
|
- Georg Bader
- vor 10 Jahren
- Abrufe
Transkript
1 Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12
2 Motivation Datenstruktur zur Repräsentation dynamischer Mengen unterstützt insert, search, delete, minimum, maximum, predecessor, successor Grundoperationen im mittleren Fall in O (log n), was der Baumhöhe entspricht. Schlechtester Fall O (n) Wörterbuchoperationen langsamer als bei Hashverfahren, dafür Unterstützung von mehr Operationen, z. B. sortierte Ausgabe
3 Überblick Baum Binärer Suchbaum
4 Baum verallgemeinerte Listen Elemente können mehr als nur einen Nachfolger haben spezieller Graph Graph G besteht aus Knoten V, die durch Kanten E verbunden sind G = (V, E) Kanten sind gerichtet oder ungerichtet Zahl der Knoten: V = n, Zahl der Kanten: E = m G ist ein Baum gdw. zwischen je zwei Knoten genau ein Weg existiert gdw. G zusammenhängend ist und m=n-1 gdw. G keinen Zyklus enthält und m=n-1
5 Beispiele Baum kein Baum kein Baum
6 Baum ungerichteter Baum kein ausgezeichneter Knoten gewurzelter Baum ein Knoten ist als Wurzel ausgezeichnet Vater eines Knotens: sein direkter Vorgänger auf dem Weg zur Wurzel Sohn eines Knotens: sein direkter Nachfolger Rang eines Knotens: die Zahl seiner Kinder Wurzel
7 Gewurzelter Baum im Folgenden nur als "Baum" bezeichnet Wurzel: einziger Knoten ohne Vater Blatt: Knoten ohne Söhne innerer Knoten: Knoten, der kein Blatt ist Ordnung des Baums: maximaler Rang aller Knoten Binärbaum: Baum der Ordnung 2 Söhne werden durch links und rechts bezeichnet Vielwegbaum: Baum höherer Ordnung Wurzel Blatt innerer Knoten Binärbaum
8 Gewurzelter Baum Tiefe eines Knotens: Zahl der Kanten vom Knoten zur Wurzel Höhe eines Baums: Maximale Tiefe eines Blattes des Baums Niveau / Ebene: Alle Knoten einer festen Tiefe Vollständiger Baum: Jedes nichtleere Niveau hat die maximale Knotenzahl. Alle Blätter haben die gleiche Tiefe
9 Überblick Baum Binärer Suchbaum
10 Binärer Suchbaum Binärbaum mit Suchbaum-Eigenschaft: Knoten x mit schlüssel [x] Für alle Knoten y im linken Teilbaum gilt: schlüssel [y] schlüssel [x]. Für alle Knoten y im rechten Teilbaum gilt: schlüssel[x] schlüssel[y]. binärer Suchbaum binärer Suchbaum kein binärer Suchbaum
11 Binärer Suchbaum Suchbaum: (Natürlicher Baum) Schlüssel werden in inneren Knoten gespeichert. Blattsuchbaum: Schlüssel werden in Blättern gespeichert. Innere Knoten enthalten Wegweiser zum Auffinden von Schlüsseln in Blättern.
12 Sortierte Ausgabe sortierte Ausgabe der Elemente eines binären Suchbaums nutze die Suchbaum-Eigenschaft aus traversiere rekursiv: linker Teilbaum, Wurzel, rechter Teilbaum Laufzeit O(n) void inordertreewalk (Node x) { if (x!=null) { inordertreewalk (x.left); print x.key; inordertreewalk (x.right); } } in-order: links, Wurzel, rechts pre-order: Wurzel, links, rechts post-oder: links, rechts, Wurzel x.left x.right x.key x.parent Zeiger auf linken Sohn Zeiger auf rechten Sohn Schlüssel Zeiger auf Vater
13 Sortierte Ausgabe alternative Implementierung void inordertreewalk (Node x) { if (x.left!=null) inordertreewalk(x.left); print x.key; if (x.right!=null) inordertreewalk(x.right); } Ausgabe: 1, 2, 3, 4, 5, 6, 7, 8
14 Laufzeit T (0) = c T (n) = T (k) + T (n-k-1) + d Vermutung: T (n) = (c + d) n + c Beweis durch vollständige Induktion: T (0) = c T (n) = T (k) + T (n-k-1) + d T (n) = (c + d) k + c + (c + d) (n k - 1) + c + d T (n) = (c + d) n + c + (c + d) (-1) + c + d T (n) = (c + d) n + c
15 Suche vergleiche Suchschlüssel mit Schlüssel eines Knotens und entscheide, ob links oder rechts weitergesucht wird rekursiv bis Schlüssel gefunden oder Blatt erreicht Laufzeit O(log n) x sollte die Wurzel des Baums sein. Node search (Node x, int key) { if (x==null key == x.key) return x; if (key < x.key) return search(x.left, key); else return search (x.right, key); }
16 Suche iterative Implementierung Node search (Node x, int key) { while (x!=null && key!= x.key) { if (key < x.key) x = x.left; } return x; } else x = x.right; d b a e c search (a, 6) 6<8 x = x.left = b 6>4 x = x.right = e 6==6 return x=e f g h i
17 Minimum / Maximum traversiere ausgehend vom Knoten den links-zeiger / rechts-zeiger, bis kein linkes / rechtes Kind mehr existiert Laufzeit O (log n) x sollte die Wurzel des Baums sein. Node minimum (Node x) { while (x.left!=null) x = x.left; return x; } Node maximum (Node x) { while (x.right!=null) x = x.right; return x; }
18 Nachfolger / Vorgänger Laufzeit O (log n) Node successor (Node x) { if (x.right!=null) return minimum(x.right); Node y = x.parent; while (y!=null && x==y.rechts) { x=y; y=y.parent; } } return y; beliebiger Knoten x dichtester Vorfahre von x, dessen linker Sohn ebenfalls Vorfahre von x oder x selbst ist. (Für 6 ist das die 8, weil 8 der dichteste Vorfahre von 6 ist, für den der linke Sohn, die 4, ebenfalls Vorfahre von 6 ist.
19 Einfügen Laufzeit in O (log n) Wurzel einzufügender Knoten void insert (Node root, Node ins) { if (root==null) { root = ins; return; } Node parent, x=root; while (x!=null) { parent = x; if (ins.key < x.key) x=x.left; else x=x.right; } if (ins.key < parent.key) parent.left = ins; else parent.right = ins; return; }
20 Löschen Fall 1: zu löschender Knoten hat keine Kinder Lösche 5: ermittle Vater (6) ermittle, ob 5 linker oder rechter Sohn ist setze 6.left = null;
21 Löschen Fall 2: zu löschender Knoten hat ein Kind Lösche 12: ermittle Sohn (14) ermittle Vater (8) ermittle, ob 12 linker oder rechter Sohn ist setze 8.right = 14;
22 Löschen Fall 3: zu löschender Knoten hat zwei Kinder Laufzeit ergibt sich aus Laufzeit für successor, also O (log n) Lösche 4: ermittle successor(4) = 5 ersetze 4 durch 5 lösche 5 (Fall 1 oder Fall 2, da 5 als Nachfolger von 4 keinen linken Sohn haben kann.
23 Zusammenfassung Suchbaum-Eigenschaft Für alle Knoten y im linken Teilbaum von x gilt: schlüssel [y] schlüssel [x]. Für alle Knoten y im rechten Teilbaum von x gilt: schlüssel[x] schlüssel[y]. Dann können insert, search, delete, minimum, maximum, predecessor, successor in O(log n) realisiert werden, sortierte Ausgabe in O(n).
24 Nächstes Thema Algorithmen / Datenstrukturen noch mehr Bäume
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Algorithmen und Datenstrukturen Balancierte Suchbäume
Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen
Kap. 4.2: Binäre Suchbäume
Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 Bäume [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2016/17 13. Vorlesung Binäre Suchbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Dynamische Menge verwaltet Elemente einer sich ändernden Menge
Datenstruktur, die viele Operationen dynamischer Mengen unterstützt
Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Vorlesung Informatik 2 Algorithmen und Datenstrukturen
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr
Tutorium Algorithmen & Datenstrukturen
June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten
4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.
Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel
Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)
Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der
Kapiteltests zum Leitprogramm Binäre Suchbäume
Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Suchen und Sortieren
(Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten
9. Natürliche Suchbäume
Bäume Bäume sind. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Verallgemeinerte Listen: Knoten können mehrere Nachfolger haben Spezielle Graphen: Graphen bestehen aus Knoten
368 4 Algorithmen und Datenstrukturen
Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist
AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:
AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls
Binäre Bäume Darstellung und Traversierung
Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail [email protected] Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
Sortierte Folgen 250
Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:
Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10
Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien
Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative
Nachtrag zu binären Suchbäumen
Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement
Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany [email protected]. Stammbaum. Stammbaum. Stammbaum
lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany [email protected]. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: [email protected] Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume
Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen
Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet
Grundlagen der Programmierung 2. Bäume
Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)
Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.
Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen
Motivation Binäre Suchbäume
Kap..: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Zusätzliche Lernraumbetreuung Morteza Monemizadeh: Jeden Montag von :00 Uhr-:00 Uhr in
Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16
Natürliche Bäume (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun Letzte Änderung: 18.03.2018 18:16 Natürliche Bäume 1/16 Bäume Begriffe (1/2) Bäume sind verallgemeinerte Listenstrukturen ein
Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12
Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben
1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert
Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume
- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:
6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)
15 Optimales Kodieren
15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen
Informatik II, SS 2014
Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:
Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen
Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders
3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1
3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)
Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen
Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest
Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1
Teil : Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume (Wiederholung aus Prog 2) Bäume: Begriffe, Eigenschaften und Traversierung Binäre Suchbäume Gefädelte Suchbäume Ausgeglichene
Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder
Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element
Informatik II Vorlesung am D-BAUG der ETH Zürich
Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:
Algorithmen & Datenstrukturen 1. Klausur
Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.
Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens
Algorithmen und Datenstrukturen Bereichsbäume
Algorithmen und Datenstrukturen Bereichsbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung k-d Baum BSP Baum R Baum Motivation
9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen
9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel
Beispiel zu Datenstrukturen
zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik
Vorkurs Informatik WiSe 15/16
Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Algorithmen für Graphen Fragestellungen: Suche
t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )
Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
Komplexität eines Algorithmus, Grössenordnung, Landau-Symbole, Beispiel einer Komplexitätsberechnung (Mergesort) 7. KOMPLEXITÄT
Komplexität eines Algorithmus, Grössenordnung, Landau-Symbole, Beispiel einer Komplexitätsberechnung (Mergesort) 7. KOMPLEXITÄT Komplexität eines Algorithmus Algorithmen verbrauchen Ressourcen Rechenzeit
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Algorithmen und Datenstrukturen. Bäume. M. Herpers, Y. Jung, P. Klingebiel
Algorithmen und Datenstrukturen Bäume M. Herpers, Y. Jung, P. Klingebiel 1 Lernziele Baumstrukturen und Ihre Verwendung kennen Grundbegriffe zu Bäumen anwenden können Baumstruktur in C anlegen können Suchbäume
Suchen und Sortieren Sortieren. Heaps
Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
Peer-to-Peer- Netzwerke
Peer-to-Peer- Netzwerke Christian Schindelhauer Sommersemester 2006 14. Vorlesung 23.06.2006 [email protected] 1 Evaluation der Lehre im SS2006 Umfrage zur Qualitätssicherung und -verbesserung
Kapitel 5: Dynamisches Programmieren Gliederung
Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen
Programmierkurs Java
Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen
Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen
Algorithmen und Datenstrukturen 2 Dynamische Datenstrukturen Algorithmen für dynamische Datenstrukturen Zugriff auf Variable und Felder durch einen Ausdruck: Namen durch feste Adressen referenziert Anzahl
17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici. 12.Übung 13.1. bis 17.1.2014
17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici 12.Übung 13.1. bis 17.1.2014 1 BEFRAGUNG http://1.bp.blogspot.com/- waaowrew9gc/tuhgqro4u_i/aaaaaaaaaey/3xhl 4Va2SOQ/s1600/crying%2Bmeme.png
Zeichnen von Graphen. graph drawing
Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =
Anwendungsbeispiel MinHeap
Anwendungsbeispiel MinHeap Uns seien n ganze Zahlen gegeben und wir möchten darin die k größten Zahlen bestimmen; zudem gelten, dass n deutlich größer als k ist Wir können das Problem mit Laufzeit in O(n
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda
Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume
Lösungsvorschläge. zu den Aufgaben im Kapitel 4
Lösungsvorschläge zu den Aufgaben im Kapitel 4 Aufgabe 4.1: Der KNP-Algorithmus kann verbessert werden, wenn in der Funktion nexttabelle die Zuweisung next[tabindex] = ruecksprung; auf die etwas differenziertere
Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume
Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen
Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Suchen. Lineare Suche. Such-Algorithmen. Sommersemester Dr.
Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 0 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Fortgeschrittene Datenstrukturen Such-Algorithmen
EndTermTest PROGALGO WS1516 A
EndTermTest PROGALGO WS1516 A 14.1.2016 Name:................. UID:.................. PC-Nr:................ Beachten Sie: Lesen Sie erst die Angaben aufmerksam, genau und vollständig. Die Verwendung von
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem &
Grundlagen Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem & Frank Heitmann [email protected] 25. November 2015 Frank Heitmann [email protected]
DATENSTRUKTUREN UND ZAHLENSYSTEME
DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: [email protected] Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden
Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer)
Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Suchbäume Autor: Stefan Edelkam Institut für Informatik Georges-Köhler-Allee Albert-Ludwigs-Universität Freiburg 1 Bäume Idee: Bäume
Überblick. Lineares Suchen
Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität
Suchmaschinen. Universität Augsburg, Institut für Informatik SS 2014 Prof. Dr. W. Kießling 23. Mai 2014 Dr. M. Endres, F. Wenzel Lösungsblatt 6
Universität Augsburg, Institut für Informatik SS 2014 Prof. Dr. W. Kießling 23. Mai 2014 Dr. M. Endres, F. Wenzel Lösungsblatt 6 Aufgabe 1: Pareto mit SV-Semantik Suchmaschinen Pareto Definition: x < P
Informatik 11 Kapitel 2 - Rekursive Datenstrukturen
Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange
Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen
reguläre Grammatiken/prachen Beschreibung für Bezeichner in Programmiersprachen Beschreibung für wild cards in kriptsprachen (/* reguläre Ausdrücke */)?; [a-z]; * kontextfreie Grammatiken/prachen Beschreibung
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
Theoretische Informatik SS 04 Übung 1
Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die
Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06
Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter
