DATENSTRUKTUREN UND ZAHLENSYSTEME
|
|
|
- Hertha Koenig
- vor 10 Jahren
- Abrufe
Transkript
1 DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Homepage: March, 2001 (Die Folien finden Sie unter.../~ralf/talks.html#t21.)
2 Eine Analogie: natürliche Zahlen und Listen data Nat = Zero Succ Nat plus :: Nat Nat Nat plus Zero n 2 = n 2 plus (Succ n 1 ) n 2 = Succ (plus n 1 n 2 ) data List a = Nil Cons a (List a) append :: a. List a List a List a append Nil l 2 = l 2 append (Cons a l 1 ) l 2 = Cons a (append l 1 l 2 ) 1
3 Numerische Darstellungen Datenstrukturen, die in Analogie zu Zahlensystemen entworfen werden, heißen numerische Darstellungen (engl. numerical representations). Inkrement Dekrement Addition Division durch 2 Einfügen eines Elements in einen Behälter Löschen eines Elements in einen Behälter Verschmelzen zweier Behälter Halbieren eines Behälters Diese Designtechnik eignet sich für beliebige Behältertypen: Sequenzen, Prioritätswarteschlangen etc. Literatur: (Clancy & Knuth, A programming and problem-solving seminar, 1977), (Okasaki, Purely Functional Data Structures, 1998). 2
4 Überblick Design von Datenstrukturen (persistente Sequenzen): binäre Listen (engl. random-access lists), schräge binäre Listen (engl. skew-binay random-access lists). Analyse von Datenstrukturen (Suchbäume): Rot-schwarz Bäume. 3
5 Stellenwertsysteme Die gebräuchlichsten Zahlensysteme sind Stellenwertsysteme: (b 0... b n 1 ) = n 1 i=0 b i w i mit b i B i. Unäres Zahlensystem: w i = 1 und B i = {1} für alle i. Binäres Zahlensystem: w i = 2 i und B i = {0, 1} für alle i. 4
6 Beliebte Bausteine vollständiger Blattbaum vollständiger Baum Wimpel Binomialbaum 5
7 Binäre Listen Listen sind nach dem unären Zahlensystem modelliert, binäre Listen (engl. random-access lists) nach dem binären Zahlensystem. data Digit = Zero One type Nat = [Digit ] data Digit a = Zero One (Tree a) data Tree a = Leaf a Node (Tree a) (Tree a) type List a = [Digit a ] Eine Ziffer mit dem Gewicht 2 i Blattbaum der Höhe i. entspricht einem vollständigen 6
8 incr :: Nat Nat incr [ ] = [One ] incr (Zero : ds) = One : ds incr (One : ds) = Zero : incr ds incr :: a. Tree a List a List a incr t [ ] = [One t ] incr t (Zero : ds) = One t : ds incr t (One t : ds) = Zero : incr (Node t t ) ds cons :: a. a List a List a cons a l = incr (Leaf a) l 7
9 Binäre Listen eine alternative Darstellung Die folgende Definition erfaßt die strukturellen Invarianten von binären Listen. NB. List is ein nicht-uniformer Datentyp (engl. nested datatype). data List a = Nil Zero (List (a, a)) One a (List (a, a)) lookup :: a. Int List a a lookup 0 (One a l) = a lookup (n + 1) (One a l) = lookup n (Zero l) lookup (2 n + 0) (Zero l) = fst (lookup n l) lookup (2 n + 1) (Zero l) = snd (lookup n l) NB. lookup verwendet polymorphe Rekursion. 8
10 Schräge Binärzahlen Schräge Binärzahlen: w i = 2 i+1 1 und B i = {0, 1, 2} für alle i. Zusätzliche Einschränkung: nur die kleinste Ziffer ( 0) darf eine 2 sein. Jede natürliche Zahl hat eine eindeutige Darstellung in diesem Zahlensystem. (0), (1), (2), (01), (11), (21), (02), (001), (101), (201), (011), (111), (211), (021), (002), (0001)... Vorteil: Inkrement in konstanter Zeit. 9
11 Schräge binäre Listen Schräge binäre Listen (engl. skew-binary random-access lists) basieren auf den schrägen Binärzahlen. Wir verwenden eine dünne Darstellung (Nullen werden nicht aufgeführt). type Weight = Int type Nat = [Weight ] data Tree a = Leaf a Node a (Tree a) (Tree a) type List a = [(Weight, Tree a)] Eine Ziffer mit dem Gewicht 2 i+1 1 entspricht einem vollständigen (Such-) Baum der Höhe i. 10
12 incr :: Nat Nat incr (w 1 : w 2 : ws) w 1 w 2 = (1 + w 1 + w 2 ) : ws incr ws = 1 : ws cons :: a. a List a List a cons a ((w 1, t 1 ) : (w 2, t 2 ) : ws) w 1 w 2 = (1 + w 1 + w 2, Node a t 1 t 2 ) : ws cons a ws = (1, Leaf a) : ws 11
13 Analye von Rot-schwarz-Bäumen Problem: Wir fügen eine absteigend geordnete Folge von Schlüsseln in einen anfangs leeren Rot-schwarz-Baum ein. Welche Form hat der so konstruierte Baum? 12
14 Rot-schwarz-Bäume Rot-schwarz-Bäume wurden von Bayer (1972) unter dem Namen symmetric binary B-trees als binäre Darstellung von Bäumen entwickelt. In einem Rot-schwarz-Baum werden die 3- und die 4-Knoten durch kleine Binärbäume repräsentiert, die aus einer schwarzen Wurzel und ein oder zwei roten Hilfsknoten bestehen. a 2 a 1 a 2 a 1 a 1 t 3 t 1 a 2 a 1 a 3 t 1 t 2 t 1 t 2 t 2 t 3 t 1 t 2 t 3 t 4 Rot-Bedingung: Jeder rote Knoten hat einen schwarzen Vorgänger. Schwarz-Bedingung: Jeder Pfad von der Wurzel zu einem Blatt enthält die gleiche Anzahl schwarzer Knoten (Schwarzhöhe). 13
15 a 3 a 1 a 2 t 4 t 1 a 3 a 1 t 3 a 2 t 4 t 1 t 2 t 2 t 3 a 2 a 1 a 3 t 1 t 2 t 3 t 4 a 3 a 1 a 1 t 4 t 1 a 2 t 1 a 2 t 2 a 3 t 2 t 3 t 3 t 4 14
16 Analyse des wiederholten Einfügens Die folgenden Bäume entstehen, wenn i absteigend geordnete Schlüssel in einen anfangs leeren Baum eingefügt werden (1 i 8). Beim Einfügen wird immer das linke Rückgrat des Baumes bis zum linkesten Blatt durchlaufen. 15
17 Beobachtungen Alle Knoten unterhalb des Rückgrats sind schwarz. Betrachten wir noch einmal die Balancierungsoperation zur Verdeutlichung zeichnen wir das linke Rückgrat waagerecht. t 1 a 1 a 2 t 1 a 1 t 2 a 2 t 3 a 3 t 4 t 2 a 3 t 3 t 4 Aufgrund der Schwarz-Bedingung müssen die Bäume unterhalb des Rückgrats vollständig ausgeglichen sein. Damit entsprechen die generierten Rot-schwarz-Bäume Listen von Wimpeln. 16
18 Beobachtungen Zeichnen wir die obigen Beispiele noch einmal neu. Sei r die Höhe des rechtesten Wimpels. Aufgrund der Schwarz- Bedingung müssen Wimpel der Höhe i entweder ein- oder zweimal auftreten für alle i mit 0 i r. Da ein Wimpel der Höhe r genau 2 r Schlüssel enthält, korrespondieren die generierten Rot-schwarz-Bäume zu Binärzahlen mit den Ziffern 1 und 2. 17
19 Das 1-2-Binärsystem 1-2-Binärsystem: w i = 2 i und B i = {1, 2} für alle i. Jede natürliche Zahl hat eine eindeutige Darstellung in diesem Zahlensystem. (), (1), (2), (11), (21), (12), (22), (111), (211), (121), (221), (112), (212), (122), (222), (1111)... 18
20 Konstruktion von Rot-schwarz-Bäumen Die Analogie zum 1-2-Zahlensystem kann ausgenutzt werden, um einen Rot-schwarz-Baum aus einer geordneten Folge von Elementen in linearer Zeit zu konstruieren. data Digit = One Two type Nat = [Digit ] data Digit a = One a (Tree a) Two a (Tree a) a (Tree a) data Tree a = Empty Node (Tree a) a (Tree a) type Set a = [Digit a ] 19
21 Konstruktion von Rot-schwarz-Bäumen incr :: Nat Nat incr [ ] = [One ] incr (One : ds) = Two : ds incr (Two : ds) = One : incr ds incr :: a. a Tree a Set a Set a incr a t [ ] = [One a t ] incr a 1 t 1 (One a 2 t 2 : ps) = Two a 1 t 1 a 2 t 2 : ps incr a 1 t 1 (Two a 2 t 2 a 3 t 3 : ps) = One a 1 t 1 : incr a 2 (Node t 2 a 3 t 3 ) ps insert :: a. a Set a Set a insert a ps = incr a Empty ps 20
22 Zusammenfassung Zahlensysteme sind ein ideales Hilfsmittel, um systematisch Datenstrukturen zu konstruieren und zu analysieren. Weitere Beispiele: Binomialwarteschlangen (Vuillemin, 1978; Hinze, 1999): Binärsystem, Optimale Prioritätswarteschlangen (Okasaki, 1996): schräges Binärsystem, Katenierbare Sequenzen (Okasaki, 1997): redundantes Binärsystem, Linksvollständige Bäume (Sack & Strothotte 1990, Hinze 1999): 1-2 Binärsystem, Zufallspermutationen (Knuth, 1997): factorial number system, w i = i! und B i = {0,..., i} für alle i. 21
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: [email protected] Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume
Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10
Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien
4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.
Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
Kapiteltests zum Leitprogramm Binäre Suchbäume
Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder
Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1
3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)
AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:
AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls
Algorithmen und Datenstrukturen Balancierte Suchbäume
Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen
Tutorium Algorithmen & Datenstrukturen
June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
15 Optimales Kodieren
15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen
Binärdarstellung von Fliesskommazahlen
Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M
t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )
Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 Bäume [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden
Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative
Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.
Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen
Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12
Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:
6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)
Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen
Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
Datenstruktur, die viele Operationen dynamischer Mengen unterstützt
Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)
2 Darstellung von Zahlen und Zeichen
2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f
Binäre Bäume Darstellung und Traversierung
Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail [email protected] Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.
Vorkurs Informatik WiSe 15/16
Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner
Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.
Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?
BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert
4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum
4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.
Nachtrag zu binären Suchbäumen
Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement
Einführung in die Informatik I
Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen
Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter
Suchen und Sortieren Sortieren. Heaps
Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die
15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit
5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord
Whitebox-Tests: Allgemeines
-Tests: Allgemeines Andere Bezeichnungen Logic driven, Strukturelles Der Tester entwickelt Testfälle aus einer Betrachtung der Ablauflogik des Programms unter Berücksichtigung der Spezifikation Intuitiv
Theoretische Informatik SS 04 Übung 1
Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die
Informatikgrundlagen (WS 2015/2016)
Informatikgrundlagen (WS 2015/2016) Klaus Berberich ([email protected]) Wolfgang Braun ([email protected]) 0. Organisatorisches Dozenten Klaus Berberich ([email protected]) Sprechstunde
Teil 1: IT- und Medientechnik
Matrikelnummer Punkte Note Verwenden Sie nur dieses Klausurformular für Ihre Lösungen. Die Blätter müssen zusammengeheftet bleiben. Es dürfen keine Hilfsmittel oder Notizen in der Klausur verwendet werden
Alignment-Verfahren zum Vergleich biologischer Sequenzen
zum Vergleich biologischer Sequenzen Hans-Joachim Böckenhauer Dennis Komm Volkshochschule Zürich. April Ein biologisches Problem Fragestellung Finde eine Methode zum Vergleich von DNA-Molekülen oder Proteinen
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Suchen und Sortieren
(Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten
Daten, Informationen, Kodierung. Binärkodierung
Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN
ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden
1. Stellenwerte im Dualsystem
1. a) Definitionen Stellenwertsystem Ein Zahlensystem bei dem der Wert einer Ziffer innerhalb einer Ziffernfolge von ihrer Stelle abhängt, wird Stellenwertsystem genannt. Die Stellenwerte sind also ganzzahlige
Im Original veränderbare Word-Dateien
Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl
Mikro-Controller-Pass 1
Seite: 1 Zahlensysteme im Selbststudium Inhaltsverzeichnis Vorwort Seite 3 Aufbau des dezimalen Zahlensystems Seite 4 Aufbau des dualen Zahlensystems Seite 4 Aufbau des oktalen Zahlensystems Seite 5 Aufbau
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Zahlensysteme Das 10er-System
Zahlensysteme Übungsblatt für die entfallende Stunde am 22.10.2010. Das 10er-System... 1 Umrechnung in das 10er-System... 2 2er-System... 2 8er-System... 2 16er-System... 3 Umrechnung in andere Zahlensysteme...
Kapitel 5: Dynamisches Programmieren Gliederung
Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen
17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici. 12.Übung 13.1. bis 17.1.2014
17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici 12.Übung 13.1. bis 17.1.2014 1 BEFRAGUNG http://1.bp.blogspot.com/- waaowrew9gc/tuhgqro4u_i/aaaaaaaaaey/3xhl 4Va2SOQ/s1600/crying%2Bmeme.png
Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06
Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter
1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:
Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert
Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume
Zahlensysteme Seite -1- Zahlensysteme
Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4
Algorithmen & Datenstrukturen 1. Klausur
Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse
Einführung in die Programmierung
Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de
tentoinfinity Apps 1.0 EINFÜHRUNG
tentoinfinity Apps Una Hilfe Inhalt Copyright 2013-2015 von tentoinfinity Apps. Alle Rechte vorbehalten. Inhalt der online-hilfe wurde zuletzt aktualisiert am August 6, 2015. Zusätzlicher Support Ressourcen
Persönliches Adressbuch
Persönliches Adressbuch Persönliches Adressbuch Seite 1 Persönliches Adressbuch Seite 2 Inhaltsverzeichnis 1. WICHTIGE INFORMATIONEN ZUR BEDIENUNG VON CUMULUS 4 2. ALLGEMEINE INFORMATIONEN ZUM PERSÖNLICHEN
Java Einführung Operatoren Kapitel 2 und 3
Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
Kurs 1613 Einführung in die imperative Programmierung
Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i
Grundlagen der Informatik
Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
368 4 Algorithmen und Datenstrukturen
Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist
B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP
B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte
36. SonntagsBlick Langlaufplausch 2015 Anleitung für eine Gruppenanmeldung
36. SonntagsBlick Langlaufplausch 2015 Anleitung für eine Gruppenanmeldung Am Dienstag, 1. September 2015 um 08.00 Uhr wird die Anmeldung unter www.davos.ch/langlaufplausch und www.blick.ch/sporterlebnis
Information Systems Engineering Seminar
Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, 22.10.2012 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1 Planarität - Definition Ein Graph heißt
Binär Codierte Dezimalzahlen (BCD-Code)
http://www.reiner-tolksdorf.de/tab/bcd_code.html Hier geht es zur Startseite der Homepage Binär Codierte Dezimalzahlen (BCD-) zum 8-4-2-1- zum Aiken- zum Exeß-3- zum Gray- zum 2-4-2-1- 57 zum 2-4-2-1-
Einführung in. Logische Schaltungen
Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von
Zahlensysteme: Oktal- und Hexadezimalsystem
20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen
Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen
Was bisher geschah Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Syntax: Signatur Semantik: Axiome (FOL-Formeln, meist
Excel 2010 Kommentare einfügen
EX.015, Version 1.0 25.02.2014 Kurzanleitung Excel 2010 Kommentare einfügen Beim Arbeiten mit Tabellen sind Kommentare ein nützliches Hilfsmittel, sei es, um anderen Personen Hinweise zu Zellinhalten zu
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
2.11 Kontextfreie Grammatiken und Parsebäume
2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle
Der Empfänger, der das Verschlüsselungsverfahren noch nicht nutzen kann, erhält folgende E-Mail:
Empfang verschlüsselter E-Mails: Aus datenschutzrechtlichen Erfordernissen sind wir verpflichtet, bestimmte personenbezogene Daten bei der Übermittlung per E-Mail zu verschlüsseln. Wir nutzen dazu ein
Anlegen eines SendAs/RecieveAs Benutzer unter Exchange 2003, 2007 und 2010
1 von 6 Anlegen eines SendAs/RecieveAs Benutzer unter Exchange 2003, 2007 und 2010 ci solution GmbH 2010 Whitepaper Draft Anleitung Deutsch Verfasser: ci solution GmbH 2010 Manfred Büttner 16. September
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben. Präsenzaufgaben
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand, Marcel Preuß, Iman Kamehkhosh, Marc Bury, Diana Howey Übungsblatt
Newsletter. 1 Erzbistum Köln Newsletter
Newsletter 1 Erzbistum Köln Newsletter Inhalt 1. Newsletter verwalten... 3 Schritt 1: Administration... 3 Schritt 2: Newsletter Verwaltung... 3 Schritt 3: Schaltflächen... 3 Schritt 3.1: Abonnenten Verwaltung...
Anwendungsbeispiele. Neuerungen in den E-Mails. Webling ist ein Produkt der Firma:
Anwendungsbeispiele Neuerungen in den E-Mails Webling ist ein Produkt der Firma: Inhaltsverzeichnis 1 Neuerungen in den E- Mails 2 Was gibt es neues? 3 E- Mail Designs 4 Bilder in E- Mails einfügen 1 Neuerungen
Virtueller Seminarordner Anleitung für die Dozentinnen und Dozenten
Virtueller Seminarordner Anleitung für die Dozentinnen und Dozenten In dem Virtuellen Seminarordner werden für die Teilnehmerinnen und Teilnehmer des Seminars alle für das Seminar wichtigen Informationen,
Definition und Begriffe
Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist
http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen
4. Mathematik Olympiade Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany [email protected]. Stammbaum. Stammbaum. Stammbaum
lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany [email protected]. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum
Fallbeispiel: Eintragen einer Behandlung
Fallbeispiel: Eintragen einer Behandlung Im ersten Beispiel gelernt, wie man einen Patienten aus der Datenbank aussucht oder falls er noch nicht in der Datenbank ist neu anlegt. Im dritten Beispiel haben
Leichte-Sprache-Bilder
Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
Hilfe zur Urlaubsplanung und Zeiterfassung
Hilfe zur Urlaubsplanung und Zeiterfassung Urlaubs- und Arbeitsplanung: Mit der Urlaubs- und Arbeitsplanung kann jeder Mitarbeiter in Coffee seine Zeiten eintragen. Die Eintragung kann mit dem Status anfragen,
Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK
Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association
Softwaretechnologie -Wintersemester 2013/2014 - Dr. Günter Kniesel
Übungen zur Vorlesung Softwaretechnologie -Wintersemester 2013/2014 - Dr. Günter Kniesel Übungsblatt 3 - Lösungshilfe Aufgabe 1. Klassendiagramme (9 Punkte) Sie haben den Auftrag, eine Online-Videothek
Kap. 4.2: Binäre Suchbäume
Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:
Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.
Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.
