Kapitel 5: Dynamisches Programmieren Gliederung
|
|
|
- Renate Thomas
- vor 10 Jahren
- Abrufe
Transkript
1 Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen 9. Lineare Programmierung 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
2 Problemstellung feste Menge S von Schlüsseln s 1,...,s n eine Wahrscheinlichkeitsverteilung über der Menge S (/* jedem Schlüssel s i wird seine Zugriffswahrscheinlichkeit p i zugeordnet, d.h. die Wahrscheinlichkeit, mit der s i nachgefragt wird */)... Beispiel: Online-Wörterbuch für Englisch/Deutsch Schlüssel (/* englische Wörter */) zugehörige Satellitendaten (/* deutsche Übersetzung(en) */) Annahme: die Wörter, zu denen es keine deutsche Übersetzung gibt, sind alle gleichwahrscheinlich (/* das kann man auch anders modellieren... */)... Ziel: Schlüsselmenge so organisieren, daß die (einzige) zeitkritische Operation Suchen effizient realisiert werden kann 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
3 mögliche Ansätze höhenbalancierte binäre Suchbäume (/* die bekannten Zugriffswahrscheinlichkeiten werden ignoriert */) optimale binäre Suchbäume (/* bei der Anordnung der Schlüssel in einem binären Suchbaum werden die Zugriffswahrscheinlichkeiten benutzt */)... Anmerkung die Idee der direkten Adressierung kann nicht unmittelbar angewendet werden (/* Hashing wäre eine sinnvolle Option */) 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
4 Beispiel s 2 s 2 s 1 s 4 s 1 s 3 s 3 s 5 s 4 Erwartete Zugriffskosten: s *0.4+2*0.05+3*0.2+3*0.05 = *0.4+2*0.2+3*0.05+4*0.05 = /2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
5 Erwartete Zugriffskosten eines binären Suchbaums es seien s 1,...,s n die gespeicherten Schlüssel eines binären Suchbaums und p 1,...,p n die zugehörigen Zugriffswahrscheinlichkeiten die erwarteten Zugriffskosten ek(s i ) für einen Schlüssel s i mit der Tiefe t(s i ) ergeben sich als ek(s i )= (t(s i )+1)*p i die erwarteten Zugriffskosten ek(b) des Suchbaums B ergeben sich als Summe der erwarteten Zugriffskosten ek(s i ) für alle Schlüssel s i Hinweis: die Wurzel hat hier die Tiefe /2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
6 Aufgabenstellung es seien s 1,...,s n die in einem binären Suchbaum B zu speichernden Schlüssel und p 1,...,p n die zugehörigen Zugriffswahrscheinlichkeiten... bestimme einen binären Suchbaum, der die Schlüssel s 1,...,s n speichert und minimale erwartete Zugriffskosten hat (/* d.h. es ist ein in diesem Sinn optimaler binärer Suchbaum zu bestimmen */) Beobachtungen (/* Schwierigkeiten */) binäre Suchbäume mit kleinere Tiefe sind nicht immer besser (/* siehe Beispiel... */) binäre Suchbäume, die in der Wurzel den Schlüssel mit der maximaler Zugriffswahrscheinlichkeit speichern, sind nicht immer besser (/* siehe Beispiel... */) 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
7 Lösungsmöglichkeit (/* Variante 1 */) es seien s 1,...,s n die in einem binären Suchbaum B zu speichernden Schlüssel und p 1,...,p n die zugehörigen Zugriffswahrscheinlichkeiten bestimme alle binären Suchbäume B 1,...,B z, die genau die Schlüssel s 1,...,s n speichern bestimme die erwartete Zugriffskosten von B 1,...,B z wähle einen binären Suchbaum B i mit minimalen Zugriffskosten aus... ineffizient, da es exponentiell viele binäre Suchbäume gibt, welche genau die Schlüssel s 1,...,s n speichern 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
8 Lösungsmöglichkeit (/* Variante 2 */) es seien s 1,...,s n die zu speichernden Schlüssel und p 1,...,p n die zugehörigen Zugriffswahrscheinlichkeiten... wir verwenden den Ansatz der dynamischen Programmierung... damit das geht, muß das Bellmannsche Optimalitätskriterium erfüllt sein (/* hier bedeutet das: jeder Teilbaum eines optimalen Suchbaums ist eine optimaler Suchbaum für die in diesem Teilbaum gespeicherten Schlüssel */) 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
9 zugrunde liegende Beobachtung es seien s 1,...,s n die zu speichernden Schlüssel und p 1,...,p n die zugehörigen Zugriffswahrscheinlichkeiten es sei B <1..n> ein binärer Suchbaum für s 1,...,s n s k Dann gilt: ek(b <1..n> ) = (p p n ) + ek(b <1..k-1> ) + ek(b <k+1..n> ) B <1..k-1> B <k+1..n> 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
10 zugrunde liegende rekursive Berechnungsvorschrift es seien s 1,...,s n die zu speichernden Schlüssel und p 1,...,p n die zugehörigen Zugriffswahrscheinlichkeiten es sei B <i..j> bezeichne einen binären Suchbaum, welcher die Schlüssel s i,...,s j speichert Dann gilt: ek(b <i..j> ) = 0, falls i > j ek(b <i..j> ) = p i, falls i = j ek(b <i..j> ) = (p i p j ) + min { ek(b <1..k-1> ) + ek(b <k+1..j> ) i k j } 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
11 Verwendung zur Bestimmung eines optimalen binären Suchbaums es seien s 1,...,s 5 die zu speichernden Schlüssel und p 1,...,p 5 die zugehörigen Zugriffswahrscheinlichkeiten in der Tabellenzelle T[i][j] werden sich die erwarteten Zugriffskosten für den optimalen Suchbaum B <i..j> sowie dessen Wurzel gemerkt 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
12 Beispiel zur Bestimmung eines optimalen binären Suchbaums 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
13 Beispiel zur Bestimmung eines optimalen binären Suchbaums (cont.) 1.0 / 1 ( ) + min { ( ), ( ) } 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
14 Beispiel zur Bestimmung eines optimalen binären Suchbaums (cont.) 1.0 / / / / 4 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
15 Beispiel zur Bestimmung eines optimalen binären Suchbaums (cont.) 1.0 / / / / / 4 ( ) + min { ( ), ( ), ( ) } 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
16 Beispiel zur Bestimmung eines optimalen binären Suchbaums (cont.) 1.0 / / / / / / / 4 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
17 Beispiel zur Bestimmung eines optimalen binären Suchbaums (cont.) 1.0 / / / / / / / / 4 ( ) + min { ( ), ( ), ( ), ( ) } 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
18 Beispiel zur Bestimmung eines optimalen binären Suchbaums (cont.) 1.0 / / / / / / / / / 4 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
19 Beispiel zur Bestimmung eines optimalen binären Suchbaums (cont.) 1.0 / / / / / / / / / / 4 ( ) + min { ( ), ( ), ( ), ( ), ( ) } 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
20 Abschluß (/* Auslesen des optimalen binären Suchbaums */) 1.0 / / / / / / / / / / 4 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
21 Abschluß (/* Auslesen des optimalen binären Suchbaums */) 1.0 / / / / / / / / / / 4 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
22 Abschluß (/* Auslesen des optimalen binären Suchbaums */) 1.0 / / / / / / / / / / 4 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
23 Abschluß (/* Auslesen des optimalen binären Suchbaums */) 1.0 / / / / / / / / / / 4 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
24 Abschluß (/* Auslesen des optimalen binären Suchbaums */) 1.0 / / / / / / / 3 s / / / 4 s 1 s 3 s 4 s 5 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
25 Zusammenfassung offenbar benötigt der beschriebene Algorithmus zusätzlich O(n 2 ) viel Speicherplatz (/* Speicherung der Zwischenergebnisse */) das Ausfüllen einer Zelle der Tabelle benötigt der beschriebene Algorithmus im worst case die Zeit O(n)... da das Bellmannsche Optimalitätsprinzip erfüllt ist, kann man unter Anwendung des Paradigmas der dynamischen Programmierung optimale Suchbäume in der Zeit O(n 3 ) bestimmen 5/2, Folie Prof. Steffen Lange - HDa/FbI - Effiziente Algorithmen
Kapitel 6: Graphalgorithmen Gliederung
Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI
Kapiteltests zum Leitprogramm Binäre Suchbäume
Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.
Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel
Nachtrag zu binären Suchbäumen
Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )
Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik
Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte
Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen
reguläre Grammatiken/prachen Beschreibung für Bezeichner in Programmiersprachen Beschreibung für wild cards in kriptsprachen (/* reguläre Ausdrücke */)?; [a-z]; * kontextfreie Grammatiken/prachen Beschreibung
Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.
Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren
3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1
3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)
Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher
Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: [email protected] Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume
S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J
Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II
1. Motivation 2. Lernmodelle Teil I 2.1. Lernen im Limes 2.2. Fallstudie: Lernen von Patternsprachen 3. Lernverfahren in anderen Domänen 3.1. Automatensynthese 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume
Kap. 4.2: Binäre Suchbäume
Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht.
2 Ein wenig projektive Geometrie 2.1 Fernpunkte 2.1.1 Projektive Einführung von Fernpunkten Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden
How to do? Projekte - Zeiterfassung
How to do? Projekte - Zeiterfassung Stand: Version 4.0.1, 18.03.2009 1. EINLEITUNG...3 2. PROJEKTE UND STAMMDATEN...4 2.1 Projekte... 4 2.2 Projektmitarbeiter... 5 2.3 Tätigkeiten... 6 2.4 Unterprojekte...
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
15 Optimales Kodieren
15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen
Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10
Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678
Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015
Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet
In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.
Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht
17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici. 12.Übung 13.1. bis 17.1.2014
17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici 12.Übung 13.1. bis 17.1.2014 1 BEFRAGUNG http://1.bp.blogspot.com/- waaowrew9gc/tuhgqro4u_i/aaaaaaaaaey/3xhl 4Va2SOQ/s1600/crying%2Bmeme.png
Also kann nur A ist roter Südler und B ist grüner Nordler gelten.
Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf
Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster
Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.
Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen
Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 Bäume [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden
15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit
5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord
3. Ziel der Vorlesung
3. Ziel der Vorlesung Der Zweck der Vorlesung ist das Studium fundamentaler Konzepte in der Algorithmentheorie. Es werden relevante Maschinenmodelle, grundlegende und höhere Datenstrukturen sowie der Entwurf
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik
Fit in Mathe. Juni 2014 Klassenstufe 9. Lineare Funktionen
Thema Musterlösungen Juni 0 Klassenstufe 9 Lineare Funktionen a) Vervollständige die Tabelle mit den Funktionswerten: x 6 8 0 6 0 x 5 6 7 8 9 0 b) Gib die Funktionsgleichung an x 6 8 0 6 0 8 x,5,75,5 0,5-0,5
Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.
Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)
5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)
Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung
1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert
Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume
Algorithmen und Datenstrukturen Balancierte Suchbäume
Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen
Wie Sie mit Mastern arbeiten
Wie Sie mit Mastern arbeiten Was ist ein Master? Einer der großen Vorteile von EDV besteht darin, dass Ihnen der Rechner Arbeit abnimmt. Diesen Vorteil sollten sie nutzen, wo immer es geht. In PowerPoint
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?
Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht
Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt
Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung
Leichte-Sprache-Bilder
Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen
Binäre Bäume Darstellung und Traversierung
Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail [email protected] Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.
a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:
Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)
Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung
- 1 - Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung 1. Die Tabelle mit den Werten und Gewichten der Gegenstände, sowie die Spalte mit der Anzahl ist vorgegeben und braucht nur eingegeben zu werden
Benutzerkonto unter Windows 2000
Jeder Benutzer, der an einem Windows 2000 PC arbeiten möchte, braucht dazu ein Benutzerkonto. Je nach Organisation des Netzwerkes, existiert dieses Benutzerkonto auf der lokalen Workstation oder im Active
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
Schranken für zulässige Lösungen
Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12
Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Spezifikation für Coaching Funktion in OpenOLAT
Funktion Coaching Spezifikation für Coaching Funktion in OpenOLAT Autor Christian Franck frentix GmbH Hardturmstrasse 76 8005 Zurich Switzerland T +41 43 544 90 00 F +41 43 544 90 09 [email protected]
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
Die Beschreibung bezieht sich auf die Version Dreamweaver 4.0. In der Version MX ist die Sitedefinition leicht geändert worden.
In einer Website haben Seiten oft das gleiche Layout. Speziell beim Einsatz von Tabellen, in denen die Navigation auf der linken oder rechten Seite, oben oder unten eingesetzt wird. Diese Anteile der Website
Voll homomorpe Verschlüsselung
Voll homomorpe Verschlüsselung Definition Voll homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : R R für Ringe R, R. Π heißt voll homomorph, falls 1 Enc(m 1 ) + Enc(m 2 ) eine gültige
WS 2008/09. Diskrete Strukturen
WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809
Datenstruktur, die viele Operationen dynamischer Mengen unterstützt
Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)
Trackaufzeichnungen können als Active-Logs oder mit eigenen Namen versehene und auf max. 500 Punkte begrenzte Saved-Tracks gespeichert werden.
60CSx USB Massenspeicher_V1.2.doc Seite 1 von 5 Garmin 60CSx MicroSD-Card als Trackspeicher nutzen. Trackaufzeichnungen können als Active-Logs oder mit eigenen Namen versehene und auf max. 500 Punkte begrenzte
Nutzung von GiS BasePac 8 im Netzwerk
Allgemeines Grundsätzlich kann das GiS BasePac Programm in allen Netzwerken eingesetzt werden, die Verbindungen als Laufwerk zu lassen (alle WINDOWS Versionen). Die GiS Software unterstützt nur den Zugriff
2.11 Kontextfreie Grammatiken und Parsebäume
2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle
Seite 1 von 14. Cookie-Einstellungen verschiedener Browser
Seite 1 von 14 Cookie-Einstellungen verschiedener Browser Cookie-Einstellungen verschiedener Browser, 7. Dezember 2015 Inhaltsverzeichnis 1.Aktivierung von Cookies... 3 2.Cookies... 3 2.1.Wofu r braucht
Programmiersprachen und Übersetzer
Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch
Die Bundes-Zentrale für politische Bildung stellt sich vor
Die Bundes-Zentrale für politische Bildung stellt sich vor Die Bundes-Zentrale für politische Bildung stellt sich vor Deutschland ist ein demokratisches Land. Das heißt: Die Menschen in Deutschland können
Mediumwechsel - VR-NetWorld Software
Mediumwechsel - VR-NetWorld Software Die personalisierte VR-NetWorld-Card wird mit einem festen Laufzeitende ausgeliefert. Am Ende der Laufzeit müssen Sie die bestehende VR-NetWorld-Card gegen eine neue
AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b
AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität
MATHEMATISCHE ANALYSE VON ALGORITHMEN
MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien [email protected] www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus
Über das Hüten von Geheimnissen
Über das Hüten von Geheimnissen Gabor Wiese Tag der Mathematik, 14. Juni 2008 Institut für Experimentelle Mathematik Universität Duisburg-Essen Über das Hüten von Geheimnissen p.1/14 Rechnen mit Rest Seien
11. Das RSA Verfahren und andere Verfahren
Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern
Programmieren I. Kapitel 7. Sortieren und Suchen
Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren
Informatik-Sommercamp 2012. Mastermind mit dem Android SDK
Mastermind mit dem Android SDK Übersicht Einführungen Mastermind und Strategien (Stefan) Eclipse und das ADT Plugin (Jan) GUI-Programmierung (Dominik) Mastermind und Strategien - Übersicht Mastermind Spielregeln
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
Übungsaufgaben Tilgungsrechnung
1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf
Beispiel zu Datenstrukturen
zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Anforderungsanalyse: Tutor
Anforderungsanalyse: Tutor cho,nma,jhed,amk,mmu 28. April 2008 Inhaltsverzeichnis 1 Use-Cases 2 1.1 Use-Case: Korrektur.............................. 3 1.1.1 Interaktionsfolge............................
Algorithmik - Kompaktkurs
Algorithmik - Kompaktkurs Sommersemester 2012 Steffen Lange 0/1, Folie 1 2012 Prof. Steffen Lange - HDa/FbI - Algorithmik Organisatorisches Vorlesung Folien im Netz (/* bitte zur Vorlesung mitbringen */)
Lizenzierung von System Center 2012
Lizenzierung von System Center 2012 Mit den Microsoft System Center-Produkten lassen sich Endgeräte wie Server, Clients und mobile Geräte mit unterschiedlichen Betriebssystemen verwalten. Verwalten im
Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B
Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen
Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:
Whitepaper. Produkt: address manager 2003. Outlook AddIn für den address manager email Zuordnung. combit GmbH Untere Laube 30 78462 Konstanz
combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: address manager 2003 Outlook AddIn für den address manager email Zuordnung Outlook AddIn für den address manager email Zuordnung - 2 - Inhalt
