Kapitel 6: Graphalgorithmen Gliederung
|
|
|
- Evagret Sommer
- vor 10 Jahren
- Abrufe
Transkript
1 Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen 9. Lineare Programmierung 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
2 Einordnung u Graphen werden verwendet, um eine Relation R zwischen den Objekten einer Objektmenge O zu repräsentieren, d.h. R O O = { (x,y) x,y O } bestehen aus einer Mengen V von Knoten (/* je Objekt in O gibt es einen Knoten in der Menge V */) einer Menge E von Kanten (/* wenn (x,y) R gilt, so gibt es eine Kante von x nach y */)... ein Graph G ist ein Paar (V,E), wobei V die Knotenmenge und E V V die Kantenmenge von G bezeichnet man unterscheidet gerichtete Graphen ungerichtete Graphen (/* sinnvoll, wenn R symmetrisch ist */) 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
3 Einordnung u Beispiel 1 O sei die Menge der herzustellenden Produkte es gilt (x,y) R gdw. das Produkt x muß fertig gestellt sein, bevor das Produkt y fertig gestellt werden kann... das ist garantiert keine symmetrische Relation V = { A,B,..., } E = { (A,B),(A,D),...,(,) } A B E D 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
4 Einordnung u Beispiel 2 O sei die Menge aller Städte es gilt (x,y) R gdw. es gibt eine Autobahnverbindung zwischen der Stadt x und der Stadt y... das ist offenbar eine symmetrische Relation SB V = { KL,SB,...,K } E = { {KL,SB},{KL,DA},...,{K,} } KL TR K DA 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
5 Repräsentation von Graphen u... prinzipielle Möglichkeiten Adjazenzmatrix zweidimensionale Tabelle t (/* als Indizes werden die Knoten verwendet */) in einer Zelle t[x][y] steht eine 1, falls es eine Kante von x nach y gibt; andernfalls eine 0 Adjazenzliste ein Array a (/* als Indizes werden die Knoten verwendet */) jede Zelle a[x] enthält einen Verweis auf eine einfach verkettete Liste, in welcher alle Knoten y vorkommen, für die gilt, daß es eine Kante von x nach y gibt... schauen uns die Möglichkeiten für ungerichtete Graphen an 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
6 Repräsentation von Graphen u Beispiel (/* Adjazenzmatrix */) A B E D A B D E A B D E /1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
7 Repräsentation von Graphen u Beispiel (/* Adjazenzliste */) A B E D A B D B D E E 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
8 ahrplan u... diskutieren graphentheoretische Probleme, um das Zusammenspiel zwischen algorithmischen Ideen und den verwendeten Datenstrukturen zu diskutieren lernen weitere Anwendungen der Idee der dynamischen Programmierung kennen sehen wie Ideen, die auf den ersten Blick nicht sehr nahe liegend sind, trotzdem hilfreich sein können behandelte Problemstellungen topologisches Sortieren Bestimmung kürzester Wege lüsse in Netzwerken 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
9 Topologisches Sortieren u Grundbegriff es sei G = (V,E) ein gerichteter zyklenfreier Graph es sei V = n (/* d.h. G hat n Knoten */) es sei f(.) eine eineindeutige unktion von der Menge V in die Menge { 1,...,n }, so daß für alle x,y E gilt: wenn es in G eine Kante von x nach y gibt, so gilt f(x) < f(y) Eine unktion f(.) mit der obigen Eigenschaft nennt man topologische Sortierung der Knoten von G.... in der durch f(.) definierten Aufzählung der Knoten von G, (/* d.h. in der Aufzählung f -1 (1), f -1 (2),... */) kommen vor jedem Knoten y alle Knoten x vor, von denen es eine Kante zu y gibt 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
10 Toplogisches Sortieren u Beispiel 1 es sei V = { A,B,,D,E,,G } die Menge der herzustellenden Produkte es gelte (x,y) E gdw. das Produkt x muß fertig gestellt sein, bevor das Produkt y fertig gestellt werden kann B die unktionen f 1 (.) und f 2 (.) sind topologische Sortierungen der Knoten von G A D E f 1 (A) = 1, f 1 (B) = 2, f 1 (D) = 3, f 1 (E) = 4, f 1 () = 5, f 1 () = 6 f 2 (A) = 1, f 2 (D) = 2, f 2 (E) = 3, f 2 () = 4, f 2 (B) = 5, f 2 () = 6 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
11 Toplogisches Sortieren u Aufgabenstellung Eingabe: Ausgabe: ein gerichteter zyklenfreier Graph G = (V,E) eine topologische Sortierung f(.) der Knoten in G u zentraler Begriff: Ingrad eines Knoten es sei G = (V,E) ein gerichteter Graph Zu jedem Knoten x V bezeichne Ingrad(x) die Anzahl der Knoten y V, von denen es eine Kante zum Knoten x gibt (/* Ingrad(x) = { y (y,x) E } */). 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
12 Toplogisches Sortieren u prinzipielle algorithmische Idee (1) bestimme für jedes x V den Ingrad von x (2) füge alle x mit Ingrad(x) = 0 ans Ende einer anfangs leeren Warteschlange Q an (3) setze i = 1 (4) solange die Warteschlange Q nicht leer ist a) entferne das erste Element x aus der Warteschlange Q b) setze f(x) = i und i = i + 1 c) für alle y mit (x,y) E setze Ingrad(y) = Ingrad(y) - 1, wobei y ans Ende der Warteschlange Q angefügt wird, falls Ingrad(y) = 0 gilt... die Ingrade der Knoten werden in einem Array gespeichert (/* als Indizes werden die Knoten verwendet *)... die benötigte Zeit hängt von der verwendeten Repräsentation des gegebenen Graphen G = (V,E) ab (/* Schritt (1) und (4) */) 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
13 Toplogisches Sortieren u Illustration A B D E A B Q = [ A ] i = 1 D E A B D E A B D E f(a) = 1 Q = [ B,D ] i = 2 f(b) = 2 Q = [ D ] i = 3 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
14 Toplogisches Sortieren u Realisierung 1 (/* mit Hilfe einer Adjazenzmatrix */) A B D E A B D E ein Array b wird benutzt (/* als Indizes werden die Knoten verwendet */), um die aktuell zu berücksichtigenden Ingrade zu speichern A B D E /1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
15 Toplogisches Sortieren u Algorithmische Idee (/* mit Hilfe einer Adjazenzmatrix */) (1) initialisiere das Array b (/* durch Aufsummieren aller Spalten */) (2) füge alle x mit b[x] = 0 ans Ende einer anfangs leeren Warteschlange Q an (/* durch Durchlaufen des Arrays b */) (3) setze i = 1 (4) solange die Warteschlange Q nicht leer ist a) entferne das erste Element x aus der Warteschlange Q b) setze f(x) = i und i = i + 1 c) für alle y mit (x,y) E setze b[y] = b[y] - 1 (/* y wird durch Analyse der Zeile für x bestimmt */), wobei y ans Ende der Warteschlange Q angefügt wird, falls b[y] = 0 gilt... geht offenbar in Zeit O(n 2 ) + O(n) + n*o(1) + n*o(n), wobei n die Anzahl der Knoten von G ist 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
16 Toplogisches Sortieren u Realisierung 2 (/* mit Hilfe einer Adjazenzliste */) A B D E B E D ein Array b wird benutzt (/* als Indizes werden die Knoten verwendet */), um die aktuell zu berücksichtigenden Ingrade zu speichern A B D E /1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
17 Toplogisches Sortieren u Algorithmische Idee (/* mit Hilfe einer Adjazenzliste */) (1) initialisiere das Array b (/* durch Durchlaufen aller Listen */) (2) füge alle x mit b[x] = 0 ans Ende einer anfangs leeren Warteschlange Q ein (/* durch Durchlaufen des Arrays b */) (3) setze i = 1 (4) solange die Warteschlange Q nicht leer ist a) entferne das erste Element x aus der Warteschlange Q b) setze f(x) = i und i = i + 1 c) für alle y mit (x,y) E setze b[y] = b[y] - 1 (/* y wird durch Durchlaufen der Liste für x bestimmt */), wobei y an das Ende der Warteschlange Q angefügt wird, falls b[y] = 0 gilt... geht offenbar in Zeit O(m) + O(n) + n*o(1) + O(m), wobei n die Anzahl der Knoten von G und m die Anzahl der Kanten von G ist 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
18 Toplogisches Sortieren u Zusammenfassung wenn der gerichtete zyklenfreie Graph G mit Hilfe einer Adjazenzmatrix repräsentiert wird, so wird die Zeit O(n 2 ) benötigt, wobei n die Anzahl der Knoten von G bezeichnet wenn der gerichtete zyklenfreie Graph G mit Hilfe einer Adjazenzliste repräsentiert wird, so wird die Zeit O(n) + O(m) benötigt, wobei n die Anzahl der Knoten von G und m die Anzahl der Kanten von G bezeichnet... da ein gerichteter zyklenfreier Graph G mit n Knoten weniger als n 2 viele Kanten hat, ist es sinnvoller, G mit Hilfe einer Adjazenzliste zu repräsentieren 6/1, olie Prof. Steffen Lange - HDa/bI - Effiziente Algorithmen
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI
Kapitel 5: Dynamisches Programmieren Gliederung
Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Algorithmen für Graphen Fragestellungen: Suche
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
Algorithmische Mathematik
Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Breiten- und Tiefensuche in Graphen
Breiten- und Tiefensuche in Graphen Inhalt Theorie. Graphen. Die Breitensuche in der Theorie am Beispiel eines ungerichteten Graphen. Die Tiefensuche in der Theorie am Beispiel eines gerichteten Graphen
Algorithmentheorie. 13 - Maximale Flüsse
Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?
In diesem Thema lernen wir die Grundlagen der Datenbanken kennen und werden diese lernen einzusetzen. Access. Die Grundlagen der Datenbanken.
In diesem Thema lernen wir die Grundlagen der Datenbanken kennen und werden diese lernen einzusetzen. Access Die Grundlagen der Datenbanken kurspc15 Inhaltsverzeichnis Access... Fehler! Textmarke nicht
Übungen zu Einführung in die Informatik: Programmierung und Software-Entwicklung: Lösungsvorschlag
Ludwig-Maximilians-Universität München WS 2015/16 Institut für Informatik Übungsblatt 13 Prof. Dr. R. Hennicker, A. Klarl Übungen zu Einführung in die Informatik: Programmierung und Software-Entwicklung:
Erstellen von x-y-diagrammen in OpenOffice.calc
Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei
Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer
Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V
Bedingungen. Bedingungen. Bedingungen
Oftmals ist das Arbeiten mit notwendig. Dabei können sich die auf Formatierungen beziehen, aber auch auf Transformationen. Bedingte Formatierung Datentransformation 24.04.2006 Einführung in Excel 91 24.04.2006
Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung
Variante 1 Swisscom-Router direkt ans Netzwerk angeschlossen fixe IP-Adressen (kein DHCP) 1. Aufrufen des «Netz- und Freigabecenters». 2. Doppelklick auf «LAN-Verbindung» 3. Klick auf «Eigenschaften» 4.
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
Beispiele für Relationen
Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person
Datenbanken Microsoft Access 2010
Datenbanken Microsoft Access 2010 Abfragen Mithilfe von Abfragen kann ich bestimmte Informationen aus einer/mehrerer Tabellen auswählen und nur diese anzeigen lassen die Daten einer/mehrerer Tabellen sortieren
Handbuch Fischertechnik-Einzelteiltabelle V3.7.3
Handbuch Fischertechnik-Einzelteiltabelle V3.7.3 von Markus Mack Stand: Samstag, 17. April 2004 Inhaltsverzeichnis 1. Systemvorraussetzungen...3 2. Installation und Start...3 3. Anpassen der Tabelle...3
WS 2008/09. Diskrete Strukturen
WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809
Wie findet das Navi den Weg?
0.05.0 Verwandte Fragestellungen Problemstellungen aus der Praxis Prof. Dr. Paul Rawiel Gliederung des Vortrags Speicherung von Kartendaten zur Navigation Kriterien für die Navigation Finden des kürzesten
Korrelation (II) Korrelation und Kausalität
Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen
Process4.biz Release 5.2.2 Features Übersicht. Repository. Das Schützen von Diagrammen wurde optimiert (check-in, check-out)
Process4.biz Release 5.2.2 Features Übersicht Repository Das Schützen von Diagrammen wurde optimiert (check-in, check-out) Diagramme können gegen die Bearbeitung von anderen p4b-benutzern und gegen die
Über Arrays und verkettete Listen Listen in Delphi
Über Arrays und verkettete Listen Listen in Delphi Michael Puff [email protected] 2010-03-26 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 2 Arrays 4 3 Einfach verkettete Listen 7 4 Doppelt verkettete
Informatik 11 Kapitel 2 - Rekursive Datenstrukturen
Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.
R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
Dokumentation. estat Version 2.0
Dokumentation estat Version 2.0 Installation Die Datei estat.xla in beliebiges Verzeichnis speichern. Im Menü Extras AddIns... Durchsuchen die Datei estat.xla auswählen. Danach das Auswahlhäkchen beim
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Statistische Untersuchungen zu endlichen Funktionsgraphen
C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion
Datenexport aus JS - Software
Datenexport aus JS - Software Diese Programm-Option benötigen Sie um Kundendaten aus der JS-Software in andere Programme wie Word, Works oder Excel zu exportieren. Wählen Sie aus dem Programm-Menu unter
Software-Engineering SS03. Zustandsautomat
Zustandsautomat Definition: Ein endlicher Automat oder Zustandsautomat besteht aus einer endlichen Zahl von internen Konfigurationen - Zustände genannt. Der Zustand eines Systems beinhaltet implizit die
Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse
Sortierverfahren für Felder (Listen)
Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es
AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b
AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität
Wasserfall-Ansätze zur Bildsegmentierung
Wasserfall-Ansätze zur Bildsegmentierung von Philipp Jester Seminar: Bildsegmentierung und Computer Vision 16.01.2006 Überblick 1. Problemstellung 2. Wiederholung: Wasserscheiden-Ansätze 3. Der Wasserfall-Ansatz
Felder, Rückblick Mehrdimensionale Felder. Programmieren in C
Übersicht Felder, Rückblick Mehrdimensionale Felder Rückblick Vereinbarung von Feldern: typ name [anzahl]; typ name = {e1, e2, e3,..., en} Die Adressierung von Feldelementen beginnt bei 0 Die korrekte
Leere Zeilen aus Excel-Dateien entfernen
Wissenselement Leere Zeilen aus Excel-Dateien entfernen Betrifft: CODE.3, Report/LX (Explorer/LX) Stand: 2012-09-12 1. Hintergrund ibeq Für den Excel-Export setzen wir fertige Libraries des Herstellers
Alles zu seiner Zeit Projektplanung heute
Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
( ) als den Punkt mit der gleichen x-koordinate wie A und der
ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der
Programmieren I. Kapitel 7. Sortieren und Suchen
Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren
Fallbeispiel: Eintragen einer Behandlung
Fallbeispiel: Eintragen einer Behandlung Im ersten Beispiel gelernt, wie man einen Patienten aus der Datenbank aussucht oder falls er noch nicht in der Datenbank ist neu anlegt. Im dritten Beispiel haben
Die Verbindung von Linearer Programmierung und Graphentheorie
Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)
Expander Graphen und Ihre Anwendungen
Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
Arbeiten mit UMLed und Delphi
Arbeiten mit UMLed und Delphi Diese Anleitung soll zeigen, wie man Klassen mit dem UML ( Unified Modeling Language ) Editor UMLed erstellt, in Delphi exportiert und dort so einbindet, dass diese (bis auf
Grundlagen der Programmierung Prof. H. Mössenböck. 14. Schrittweise Verfeinerung
Grundlagen der Programmierung Prof. H. Mössenböck 14. Schrittweise Verfeinerung Entwurfsmethode für Algorithmen Wie kommt man von der Aufgabenstellung zum Programm? Beispiel geg.: Text aus Wörtern ges.:
In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut.
Binäre Suchbäume Tries (Folie 182, Seite 58 im Skript) In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut. In Tries entspricht die ite Verzweigung dem iten Zeichen des Schlüssels.
Algorithmen & Datenstrukturen 1. Klausur
Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse
SCHRITT 1: Öffnen des Bildes und Auswahl der Option»Drucken«im Menü»Datei«...2. SCHRITT 2: Angeben des Papierformat im Dialog»Drucklayout«...
Drucken - Druckformat Frage Wie passt man Bilder beim Drucken an bestimmte Papierformate an? Antwort Das Drucken von Bildern ist mit der Druckfunktion von Capture NX sehr einfach. Hier erklären wir, wie
Informatik I WS 07/08 Tutorium 24
Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: [email protected] Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Traversierung Durchlaufen eines Graphen, bei
ALP I. Funktionale Programmierung
ALP I Funktionale Programmierung Sortieren und Suchen (Teil 1) WS 2012/2013 Suchen 8 False unsortiert 21 4 16 7 19 11 12 7 1 5 27 3 8 False sortiert 2 4 6 7 9 11 12 18 21 24 27 36 Suchen in unsortierten
Im Original veränderbare Word-Dateien
Objekte einer Datenbank Microsoft Access Begriffe Wegen seines Bekanntheitsgrades und der großen Verbreitung auch in Schulen wird im Folgenden eingehend auf das Programm Access von Microsoft Bezug genommen.
Programmieren für Ingenieure Sommer 2015. Ein Rechner. Rechner sind überall. Gerät, das mittels programmierbarer Rechenvorschriften Daten verarbeitet.
Programmieren für Ingenieure Sommer 2015 Andreas Zeller, Universität des Saarlandes Ein Rechner Gerät, das mittels programmierbarer Rechenvorschriften Daten verarbeitet. Rechner sind überall Ihr Rechner
Gleichungen und Ungleichungen
Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls
Gleichungen Lösen. Ein graphischer Blick auf Gleichungen
Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term
Bedienung des Web-Portales der Sportbergbetriebe
Bedienung des Web-Portales der Sportbergbetriebe Allgemein Über dieses Web-Portal, können sich Tourismusbetriebe via Internet präsentieren, wobei jeder Betrieb seine Daten zu 100% selbst warten kann. Anfragen
Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke
Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,
4. Relationen. Beschreibung einer binären Relation
4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B
Binäre Bäume Darstellung und Traversierung
Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail [email protected] Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.
Kapiteltests zum Leitprogramm Binäre Suchbäume
Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm
Info-Veranstaltung zur Erstellung von Zertifikaten
Info-Veranstaltung zur Erstellung von Zertifikaten Prof. Dr. Till Tantau Studiengangsleiter MINT Universität zu Lübeck 29. Juni 2011 Gliederung Zertifikate Wer, Wann, Was Ablauf der Zertifikaterstellung
Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])
3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere
Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten
Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und
Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg
Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analysis Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 205 Aufgabe A
Aufgaben zur Flächenberechnung mit der Integralrechung
ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph
Beispiel des Zusammenführens der APV- Tabellen Stammdaten und Verlaufsdaten mithilfe von Access
Beispiel des Zusammenführens der APV- Tabellen Stammdaten und Verlaufsdaten mithilfe von Access Diese Übersicht stellt die Zusammenführung der APV Tabellen Stammdaten und Verlaufdaten mithilfe der Datenbank
WinWerk. Prozess 6a Rabatt gemäss Vorjahresverbrauch. KMU Ratgeber AG. Inhaltsverzeichnis. Im Ifang 16 8307 Effretikon
WinWerk Prozess 6a Rabatt gemäss Vorjahresverbrauch 8307 Effretikon Telefon: 052-740 11 11 Telefax: 052-740 11 71 E-Mail [email protected] Internet: www.winwerk.ch Inhaltsverzeichnis 1 Ablauf der Rabattverarbeitung...
6.2 Scan-Konvertierung (Scan Conversion)
6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster
2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit:
Vorlesung 5.5. VERBINDUNGSNETZWERKE Kommunikation zwischen den einzelnen Komponenten eines arallelrechners wird i.d.r. über ein Netzwerk organisiert. Dabei unterscheidet man zwei Klassen der Rechner: TOOLOGIE:
Softwareentwicklungspraktikum Sommersemester 2007. Grobentwurf
Softwareentwicklungspraktikum Sommersemester 2007 Grobentwurf Auftraggeber Technische Universität Braunschweig
Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang
sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des
Ausgangslage, Rolle und Auftrag
Ausgangslage, Rolle und Auftrag zum Modul 118 - Analysieren und strukturiert implementieren. Technische Berufsschule Zürich Seite 1 von 9 Frey A. /Sägesser A. Auftragsbeschreibung im Detail Sie haben sich
Ich möchte meine Beitragsnachweise nach dem vereinfachten Schätzverfahren erstellen.
Das vereinfachte Schätzverfahren Ich möchte meine Beitragsnachweise nach dem vereinfachten Schätzverfahren erstellen. Wie muss ich vorgehen? 1 Einstieg Wenn Sie in den Firmenstammdaten auf der Seite Sozialversicherung
Kurzanleitung fu r Clubbeauftragte zur Pflege der Mitgliederdaten im Mitgliederbereich
Kurzanleitung fu r Clubbeauftragte zur Pflege der Mitgliederdaten im Mitgliederbereich Mitgliederbereich (Version 1.0) Bitte loggen Sie sich in den Mitgliederbereich mit den Ihnen bekannten Zugangsdaten
SUDOKU - Strategien zur Lösung
SUDOKU Strategien v. /00 SUDOKU - Strategien zur Lösung. Naked Single (Eindeutiger Wert)? "Es gibt nur einen einzigen Wert, der hier stehen kann". Sind alle anderen Werte bis auf einen für eine Zelle unmöglich,
Die reellen Lösungen der kubischen Gleichung
Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................
Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29
1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian
Studie Autorisierungsverfahren Online-Banking 2014. n = 433, Befragungszeitraum: Februar bis März 2014
Studie Autorisierungsverfahren Online-Banking 2014 n = 433, Befragungszeitraum: Februar bis März 2014 1 Hintergrund Kontext der Studie Autorisierungsverfahren für Online-Banking stehen aktuell im Fokus
Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011
Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.
Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster
Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.
