8 Diskrete Optimierung
|
|
|
- Catharina Böhme
- vor 10 Jahren
- Abrufe
Transkript
1 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von G ist V (G) und die Größe m(g) von G ist E(G). Gilt {u, v} E(G) für u, v V (G), so nennt man u und v adjazent/benachbart. Gilt u e für u V (G) und e E(G), so nennt man u und e inzident. Für u V (G) ist N G (u) = {v V (G) {u, v} E(G)} die Nachbarschaft von u in G und d G (u) = N G (u) der Grad von u in G. Der Minimalgrad von G ist δ(g) = min{d G (u) u V (G)} und der Maximalgrad von G ist (G) = max{d G (u) u V (G)}. Sind G und H Graphen mit V (H) V (G) und E(H) E(G), so ist H Teilgraph von G. Gilt weiter E(H) = {e E(G) e V (H)}, so ist H ein induzierter Teilgraph von G, genauer nennt man H den von V (H) in G induzierten Teilgraphen G[V (H)]. Zwei Graphen G und H sind isomorph, falls eine Bijektion f : V (G) V (H) existiert, die die Adjazenz respektiert, d.h. u V (G) : v V (G) \ {u} : {u, v} E(G) {f(u), f(v)} E(H). Bemerkung 8.2. Die hier definierten Graphen sind lich, schlicht und ungerichtet. Für {u, v} E(G) schreiben wir kurz uv. Lemma 8.3 (Handschlaglemma). Für jeden Graphen G gilt d G (u) = 2 E(G), u V (G) d.h. insb. die Anzahl der Ecken ungeraden Grades ist gerade. Lemma 8.4. Ist G ein Graph mit m(g) > 0, so existiert ein Teilgraph H von G mit δ(h) > m(g) n(g). Beweis: Wir betrachten folgen Algorithmus. Input: Ein Graph G mit m(g) > 0. Output: Ein Teilgraph H von G. begin H G; while δ(h) m(g) do n(g) Sei u V (H) mit d H (u) m(g) ; n(g) H H u; return H; Algorithm 1: Finde H in G.
2 Definition 8.5. Sei G ein Graph. (i) Ein Weg in G zwischen u 0 und u l der Länge l N 0 ist ein Teilgraph P von G mit Schreibweise: P : u 0 u 1... u l. V (P ) = {u 0,..., u l } und E(P ) = {u i 1 u i 1 i l}. (ii) G ist zusammenhäng, falls zwischen je zwei Knoten von G ein Weg in G existiert. Eine Komponente von G ist ein maximaler zusammenhänger Teilgraph von G. (iii) Für u, v V (G) ist der Abstand dist G (u, v) in G zwischen u und v gleich der minimalen Länge eines Weges in G zwischen u und v. Der maximale Abstand zweier Knoten in G ist der Durchmesser diam(g) von G. (iv) Ein Kreis in G der Länge l N mit l 3 ist ein Teilgraph C von G mit V (C) = {u 1,..., u l } und E(C) = {u i 1 u i 2 i l} {u 1 u l }. Schreibweise: C : u 1 u 2... u l u 1. (v) Die minimale/maximale Länge eines Kreises in G ist die Taillenweite/der Umfang g(g)/c(g) von G. Lemma 8.6. Sei G ein Graph. (i) Besitzt G einen Weg P zwischen u und v sowie einen Weg Q zwischen v und w, so besitzt G einen Weg R zwischen u und v der Länge höchstens m(p ) + m(q), d.h. d G (u, w) d G (u, v) + d G (v, w). (ii) G besitzt genau dann einen Kreis der Länge höchstens l + k, wenn zwei Knoten u und v existieren, für die G zwei verschiedene Wege P und Q der Längen höchstens l und k zwischen u und v besitzt. (iii) Enthält G einen Kreis, so gilt g(g) 2diam(G) + 1. Bemerkung 8.7. Die Komponenten von G sind die Äquivalenzklassen der Relation V (G) 2 mit u v Weg in G zwischen u und v. Lemma 8.8. Jeder Graph G mit δ(g) 2 enthält einen Kreis der Länge δ(g) + 1. Definition 8.9. Ein Graph ohne Kreise ist ein Wald. Ein Baum ist ein zusammenhänger Wald. Ein Knoten vom Grad höchstens 1 nennt man Endknoten/Blatt. Eine Kante e eines Graphen G ist eine Brücke von G, falls G e = (V (G), E(G) \ {e}) mehr Komponenten besitzt als G.
3 Lemma Ein Graph G ist genau dann ein Wald, wenn alle Kanten von G Brücken sind. Lemma Jeder Wald G hat genau n(g) m(g) Komponenten und mindestens (G) Endknoten. Beweis: Induktion über die Kantenzahl. Satz Ist G ein Graph, so sind folge Aussagen äquivalent. (a) G ist ein Baum. (b) Zwischen je zwei Knoten von G existiert genau ein Weg. (c) G ist ein minimal zusammenhänger Graph. (d) G hat n(g) 1 Kanten und keine Kreise. Definition Ein Digraph D ist ein Paar (V (D), A(D)) besteh aus einer lichen Menge V (D) von Knoten und einer Menge von gerichteten Kanten (oder Bögen). A(G) V D V D \ {(u, u) u V D } n(d) = V (D) (Ordnung von D) m(d) = A(D) (Größe von D) N + D (u) = {v V (D) (u, v) A(D)} (Außennachbarschaft von u in D) d + D (u) = N + D (u) (Außengrad von u in D) N D (u) = {v V (D) (v, u) A(D)} (Innennachbarschaft von u in D) d D (u) = N D (u) (Innengrad von u in D) + (D) = max{d + D (u) u V (D)} (maximaler Außengrad von D) (D) (analog) δ + (D) (analog) δ (D) (analog) Ein Digraph D ist ein Teildigraph des Digraphen D, falls V (D ) V (D) und A(D ) A(D). Für U V (D) ist D[U] mit V (D[U]) = U und der in D von U induzierte Teildigraph. A(D[U]) = {(u, v) A(D) u, v U} Definition (i) Ein gerichteter Weg in D von u 0 nach u l der Länge l N 0 ist ein Teildigraph P von D mit V (P ) = {u 0,..., u l } und A(P ) = {(u i 1, u i ) 1 i l}. Schreibweise: P : u 0 u 1... u l. Ein ungerichteter Weg in D von u 0 nach u l der Länge l N 0 ist ein Teildigraph P von D mit l + 1 verschiedenen Knoten u 0,..., u l und l verschiedenen gerichtete Kanten e 0,..., e l 1 mit e i {(v i, v i+1 ), (v i+1, v i )} für 0 i l 1.
4 (ii) D ist stark zusammenhäng, falls für alle (u, v) V (D) 2 ein gerichteter Weg in D von u nach v existiert. Die maximalen stark zusammenhängen Teildigraphen von D sind die starken Zusammenhangskomponenten von D. (iii) Ist D ein Digraph, so ist der D unterliege (ungerichtete) Graph der Graph G mit V (G) = V (D) und { ( ) } V (G) E(G) = uv (u, v) A(D) oder (v, u) A(D). 2 D ist schwach zusammenhäng, falls G zusammenhäng ist. Die maximalen schwach zusammenhängen Teildigraphen von D sind die schwachen Zusammenhangskomponenten von D. (iv) Ein gerichteter Kreis in D der Länge l N mit l 2 ist ein Teildigraph C von D mit V (C) = {u 1,..., u l } und E(C) = {(u i 1, u i ) 2 i l} {(u l, u 1 )}. Schreibweise: C : u 1 u 2... u l u 1. Ein ungerichteter Kreis in D der Länge l N mit l 2 ist ein Teildigraph C von D mit l verschiedenen Knoten u 1,..., u l und l verschiedenen gerichtete Kanten e 1,..., e l mit e i {(v i, v i+1 ), (v i+1, v i )} für 1 i l 1 und e l {(v l, v 1 ), (v 1, v l )}. Satz (Minty 1960) Sei D ein Digraph und sei e A(D). Ist e schwarz gefärbt und sind alle anderen gerichteten Kanten von D rot, schwarz oder grün gefärbt, so gilt genau eine der folgen zwei Aussagen: (i) Es existiert ein ungerichteter Kreis in D, der e enthält, in dem alle gerichteten Kanten rot oder schwarz sind und in dem alle schwarzen gerichteten Kanten die gleiche Orientierung haben. (ii) Es existiert ein ungerichteter Schnitt {(u, v) A(D) {u, v} U = 1} mit U V (D), der e enthält, in dem alle gerichtete Kanten grün oder schwarz sind und in dem alle schwarzen gerichteten Kanten die gleiche Orientierung haben. Beweis: Der folge Algorithmus sucht zunächst nach einem Kreis wie in (i). Wird dieser nicht gefunden, so ergibt sich ein Schnitt wie in (ii).
5 Input: Ein Digraph D, eine gerichtete Kante (x, y) von D und eine Färbung f : A(D) {s, r, g} mit f((x, y)) = s. Output: Entweder ein gerichteter Kreis C wie in (i) oder eine Menge U wie in (ii). begin m(y) 1; for u V (D) \ {y} do m(u) 0; p(u) ; while v, w V (D) mit m(v) = 1, m(w) = 0 und entweder (v, w) f 1 (s) f 1 (r) oder (w, v) f 1 (r) do m(w) 1; p(w) v; if m(x) = 1 then Sei l minimal mit p l (x) = y; 1 return C : p l (x)... p 2 (x)p(x)xp l (x); else 2 return U = m 1 (1); Algorithm 2: Algorithmus zu Minty s Satz Definition Sei D ein Digraph. Eine topologische Ordnung von D ist eine Abbildung f : V (D) [n(d)] mit (u, v) A(D) : f(u) < f(v). D heißt azyklisch, falls D keine gerichteten Kreise besitzt. Satz Ein Digraph D hat genau dann eine topologische Ordnung, wenn er azyklisch ist. Bemerkung Datenstrukturen für Graphen G : Adjazenzmatrix (O(n 2 ), dichte/dünne Graphen) Inzidenzmatrix ({0, 1} V (G) E(G) ) Kantenliste (O(m log n)) Adjazenzliste (O(m log n + n log m), Kanten plus Pointer auf die Anfänge der einzelnen Listen) Analog für Digraphen, z.b. Inzidenzmatrix (a u,(u,v) = 1 und a v,(u,v) = 1). Laufzeit Anzahl der elementaren Operationen. Definition Eine Arboreszenz mit Wurzel r ist ein Digraph D mit r V (D), der aus einem (ungerichteten) Baum entsteht, indem man die Kanten so orientiert, dass für jeden Knoten u in D ein gerichteter Weg von r nach u existiert. Ein Branching ist ein Digraph, dessen schwache Zusammenhangskomponenten Arboreszenzen sind.
6 Algorithmus Graph Scanning Algorithmus Input: Ein Graph G/ Digraph D und ein Knoten r von G/D. Output: Die Menge R der Knoten, die in G/D von r aus auf Wegen/gerichteten Wegen erreichbar sind und eine Menge T E(G)/A(D), für die (R, T ) Baum/Arboreszenz mit Wurzel r ist. begin R {r}; Q {r}; T ; l(r) 0; while Q do 1 Wähle v Q; 2 if w V \ R mit e = vw E(G) / e = (v, w) A(D) then Wähle solch ein w; R R {w}; Q Q {w}; T T {e}; l(w) l(v) + 1; else Q Q \ {v}; return (R, T ); Lemma Der Graph Scanning Algorithmus arbeitet korrekt. Lemma Der Graph Scanning Algorithmus kann so implementiert werden, dass er eine Laufzeit von O(n(G) + m(g)) besitzt. Man kann die Komponenten eines Graphen in linearer Zeit bestimmen. Bemerkung Spezialfälle des Graph Scanning Algorithmus. Depth-First-Search (DFS): Wähle in der while-schleife (Zeile 1) als v Q jeweils die Knoten, die als letzte zu Q hinzugefügt wurde. (LIFO, Tremaux Tarry vor 1900, König 1936) Breadth-First-Search (BFS): Wähle in der while-schleife (Zeile 1) als v Q jeweils die Konten, die als erstes zu Q hinzugefügt wurde. (Moore 1959) Die entsprechen Ausgaben des Graph Scanning Algorithmus nennt man DFS- Bäume, DFS-Arboreszenzen, BFS-Bäume, BFS-Arboreszenzen. Lemma BFS-Bäume enthalten kürzeste Wege von r zu allen von r aus erreichbaren Knoten, d.h. man kann die Abstände von einer Ecke r zu allen erreichbaren Knoten in linearer Zeit bestimmen.
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Algorithmen für Graphen Fragestellungen: Suche
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Algorithmentheorie. 13 - Maximale Flüsse
Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk
Algorithmen und Datenstrukturen (WS 2007/08) 63
Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des
Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten
Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und
Kapitel 6: Graphalgorithmen Gliederung
Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Traversierung Durchlaufen eines Graphen, bei
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Algorithmische Mathematik
Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)
Kapitel MK:IV. IV. Modellieren mit Constraints
Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren
Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume
Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen
Lösungen zu Kapitel 7
Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig
Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29
1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian
Frohe Weihnachten und ein gutes neues Jahr!
Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]
Nachbarschaft, Grad, regulär, Inzidenz
Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?
4 Greedy-Algorithmen (gierige Algorithmen)
Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine
Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)
Expander Graphen und Ihre Anwendungen
Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006
Informatik I WS 07/08 Tutorium 24
Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: [email protected] Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Graphen: Datenstrukturen und Algorithmen
Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
Information Systems Engineering Seminar
Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, 22.10.2012 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1 Planarität - Definition Ein Graph heißt
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Grundlagen der Programmierung 2. Bäume
Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Quadratische Gleichungen
Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl
Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung
Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt
Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie
Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern
Suchmaschinen. Universität Augsburg, Institut für Informatik SS 2014 Prof. Dr. W. Kießling 23. Mai 2014 Dr. M. Endres, F. Wenzel Lösungsblatt 6
Universität Augsburg, Institut für Informatik SS 2014 Prof. Dr. W. Kießling 23. Mai 2014 Dr. M. Endres, F. Wenzel Lösungsblatt 6 Aufgabe 1: Pareto mit SV-Semantik Suchmaschinen Pareto Definition: x < P
Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.
Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau
Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? 1 x x = Anteil der Fahrzeuge, die dort entlang fahren Verkehrsstauspiel:
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2
1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)
( ) als den Punkt mit der gleichen x-koordinate wie A und der
ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der
16. All Pairs Shortest Path (ASPS)
. All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege
Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 [email protected] Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick
Guten Morgen und Willkommen zur Saalübung!
Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007
Graphentheorie Rainer Schrader Organisatorisches Zentrum für Angewandte Informatik Köln 23. Oktober 2007 1 / 79 2 / 79 Organisatorisches Organisatorisches Dozent: Prof. Dr. Rainer Schrader Weyertal 80
Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik
Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus
Korrelation (II) Korrelation und Kausalität
Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen
Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra
Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)
3.3 Eigenwerte und Eigenräume, Diagonalisierung
3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J
Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung
Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik
Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte
Bitte wenden. Name: KURSARBEIT NR. 4 (10 DIFF GA) 18.06.2002. Seite 1
Aufgabe 1: Gegeben ist das folgende Programm: PR figur :n :Länge WH 3 [ VW :Länge WENN :n>1 DANN ( RE 90 figur :n-1 :Länge/2 RW :Länge Seite 1 Zeichne das Bild, welches beim Aufruf der Prozedur mit figur
Künstliche Intelligenz Maschinelles Lernen
Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )
Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen
Breiten- und Tiefensuche in Graphen
Breiten- und Tiefensuche in Graphen Inhalt Theorie. Graphen. Die Breitensuche in der Theorie am Beispiel eines ungerichteten Graphen. Die Tiefensuche in der Theorie am Beispiel eines gerichteten Graphen
Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.
Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen
Graphentheorie Mathe-Club Klasse 5/6
Graphentheorie Mathe-Club Klasse 5/6 Thomas Krakow Rostock, den 26. April 2006 Inhaltsverzeichnis 1 Einleitung 3 2 Grundbegriffe und einfache Sätze über Graphen 5 2.1 Der Knotengrad.................................
Was ist Logische Programmierung?
Was ist Logische Programmierung? Die Bedeutung eines Computer-Programms kann durch Logik erklärt werden. Die Idee der logischen Programmierung besteht darin, die Logik eines Programms selber als Programm
15 Optimales Kodieren
15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen
Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK
Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association
!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.
Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")
Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme
Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie
Algorithmische Methoden der Netzwerkanalyse
Algorithmische Methoden der Netzwerkanalyse Marco Gaertler 9. Dezember, 2008 1/ 15 Abstandszentralitäten 2/ 15 Distanzsummen auf Bäumen Lemma Sei T = (V, E) ein ungerichteter Baum und T s = (V S, E s )
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
2.11 Kontextfreie Grammatiken und Parsebäume
2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle
1. Einige Begriffe aus der Graphentheorie
. Einige Begriffe aus der Graphentheorie Notation. Sei M eine Menge, n N 0. Dann bezeichnet P n (M) die Menge aller n- elementigen Teilmengen von M, und P(M) die Menge aller Teilmengen von M, d.h. die
Gleichungen und Ungleichungen
Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls
Statuten in leichter Sprache
Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie
Kap. 8: Speziell gewählte Kurven
Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl
Beispiele für Relationen
Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person
Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.
Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
Melanie Kaspar, Prof. Dr. B. Grabowski 1
7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen
4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum
4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.
Gleichungen Lösen. Ein graphischer Blick auf Gleichungen
Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term
5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen
Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten
Grundlagen der Videotechnik. Redundanz
Grundlagen der Videotechnik Redundanz Redundanz beruht auf: - statistischen Abhängigkeiten im Signal, - Information, die vorher schon gesendet wurde - generell eine Art Gedächtnis im Signal Beispiel: Ein
