Algorithmen und Datenstrukturen Bereichsbäume
|
|
|
- Richard Diefenbach
- vor 10 Jahren
- Abrufe
Transkript
1 Algorithmen und Datenstrukturen Bereichsbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12
2 Überblick Einführung k-d Baum BSP Baum R Baum
3 Motivation Blattsuchbäume Knoten enthalten Hinweise zu Schlüsseln Schlüssel sind in Blättern gespeichert Innere Knoten enthalten keine Schlüssel. Wert eines Knotens beschreibt ein Kriterium für die Schlüssel in den Blättern. Bsp: Alle Blätter im linken Teilbaum enthalten Schlüssel, die kleiner als 8 sind. Schlüssel im rechten Teilbaum sind größer gleich 8. Schlüssel sind in Blättern gespeichert. 1D-Beispiel
4 Motivation verwalten mehrdimensionale Schlüssel in Datenbanken oder für geometrische Anwendungen R1-R19 beschreiben 2D-Bereiche, welche die Suche von 2D-Schlüsseln beschleunigen. R3-55 sind Teilbereiche von R1. R6-R7 sind Teilbereiche von R2. R8-R10 sind Teilbereiche von R D-Schlüssel sind in Blättern beispielsweise unter R8-R19 gespeichert. 2D-Beispiel R1-R19 sind als (minx,miny,maxx,maxy) repräsentiert. R-Baum
5 Überblick Einführung k-d Baum BSP Baum R Baum
6 Einführung Blattsuchbaum Knoten beschreiben Eigenschaften von Schlüsseln, die in Blättern gespeichert sind Knoten enthalten keine Schlüssel. Alle Schlüssel sind in Blättern gespeichert. Schlüssel von beliebiger Dimensionalität s.key[0], s.key[1],., s.key[k-1] effiziente Bereichsanfrage suche alle Schlüssel s mit min 0 s.key [0] max 0 min 1 s.key [1] max 1... min k-1 s.key [k-1] max k-1
7 k-d Baum (2D) y x 2 x 3 x 1 > y 1 x 4 x 5 x 1 x y 1 y 2 y 2 > > x 4 x 2 x 5 x 3 > > > >
8 Bereichsabfrage Bereichsintervalle bestimmen zu traversierende Knoten Elemente in Blättern ( ) werden gegen Bereich getestet x 2 x 3 y x 1 > y 1 x 4 x 1 x 5 x y 1 y 2 y 2 > > x 4 x 2 x 5 x 3 > > > >
9 k Dimensionen Schlüssel mit k Elementen s.key[0], s.key[1],., s.key[k-1] Menge M Aufbau des Baums Wahl eines Wertes d 0, sodass M in zwei ungefähr gleich große Teilmengen M 00, M 01 geteilt wird mit M 00 = { s M : s.key[0] d 0 } und M 01 = { s M : s.key[0] > d 0 } Wahl eines Wertes d 10, sodass M 00 unterteilt wird: M 10 = { s M 00 : s.key[1] d 10 } und M 11 = { s M 00 : s.key[1] > d 10 } Wahl eines Wertes d 11, sodass M 01 unterteilt wird: M 12 = { s M 01 : s.key[1] d 11 } und M 13 = { s M 01 : s.key[1] > d 11 } Wahl weiterer Werte d, sodass die resultierenden Teilmengen weiter unterteilt werden bezüglich key[2],..., key[k-1], key[0],... bis jede resultierende Teilmenge nur wenige Elemente enthält
10 k Dimensionen Jeder Knoten unterteilt eine Teilmenge der ursprünglichen Menge in zwei ungefähr gleichgroße Teilmengen bezüglich eines Schlüssels key [ i ] d20 unterteilt M10 in M20 und M21 mit M20 = {s M10: s.key[2] d20} und M21 = {s M10: s.key[2] > d20} und Blätter enthalten wenige Elemente, z. B. { s : s.key[0] d0 s.key[1] d10 s.key[2] > d20 s.key[3] > d31 }
11 Anwendung Suche von k-dimensionalen Punkten in einem vorgegebenen, durch k Intervalle beschriebenen Bereich Bereichsanfragen in Datenbanken Datensatz { Name, Postleitzahl, Alter, Einkommen } Suche alle Datensätze, die einem vorgegebenen Postleitzahl-, Alters- und Einkommensbereich entsprechen
12 Quadtrees (2D) / Octrees (3D) Blattsuchbaum Knoten beschreiben Bereiche. Blätter enthalten Schlüssel. Wurzelknoten beschreibt Bereich aller Schlüssel. Jeder weitere Knoten beschreibt einen Teilbereich. Alle Schlüssel unter diesem Knoten liegen in dem Teilbereich.
13 k-d Baum / Quadtree / Octree adaptiv in Bezug auf die Verteilung der Schlüssel große Zellen in Bereichen mit wenig Schlüsseln kleine Zellen in Bereichen mit vielen Schlüsseln Einfüge-Operation Zellen mit vielen Schlüsseln können weiter unterteilt werden.
14 Überblick Einführung k-d Baum BSP Baum R Baum
15 Binary Space Partitioning Tree BSP Blattsuchbaum Raum wird durch beliebig orientierte Hyperebenen unterteilt (Generalisierung eines k-d Baums) Ebenen werden in Knoten gespeichert Blätter enthalten Schlüssel Knoten unterteilen Raum in konvexe Zellen, in welchen die in den Blättern gespeicherten Schlüssel liegen D-Beispiel: Gerade 1 unterteilt die Ebene in zwei Teile. Gerade 2 unterteilt den Bereich 1- weiter in 2+ und unterteilt 2- weiter usw.
16 Anwendung Test, ob ein Punkt innerhalb oder außerhalb eines geschlossenen Polygons liegt b 3a b 4 3a + out 4 out out in out in Szene Raumunterteilung BSP Baum
17 Anwendung Anfragepunkt liegt im Polygon 4 3b 1 3a 2 + 3b 1 3a out 4 out out in out in - Anfragepunkt liegt außerhalb des Polygons 4 3b 1 3a 2 + 3b 1 3a out 4 out out in out in -
18 Aufbau des BSP Baums möglichst geringe Zahl von Knoten möglichst geringe Baumhöhe schlechtester Fall konvexe Polygone (bezüglich einer Kante liegen alle anderen Kanten immer in der gleichen Halbebene) Generierung von Hilfskanten zur Balancierung des Baums möglich
19 Anwendung Lösen des Verdeckungsproblems in 2D b 2a b 2a Szene Raumunterteilung BSP Baum
20 Anwendung Betrachterposition ist gegeben zeichne entfernten Teilbaum zeichen Wurzel zeichne Teilbaum des Betrachters Regel wird rekursiv angewendet ermöglicht back-to-front rendering Beispiel: Betrachter ist in 1- zeichne 1+, 1, 1- rekursive Anwendung auf 1+ and 1- Betrachter ist in 3+ zeichne 3, 2b Betrachter ist in 4- zeichne 2a, Betrachter 2b 2b 4 + 2a a + BSP Baum
21 Zusammenhang k-d Baum, Quadtree, BSP Baum uniformes Gitter Quadtree/Octree k-d Baum BSP Baum mehrdimensionaler Raum wird in Bereiche unterteilt Knoten beschreiben Bereiche, Blätter enthalten Schlüssel unterschiedliche Zahl von Freiheitsgraden Bereichsunterteilung ist der Schlüsselverteilung angepasst
22 Überblick Einführung k-d Baum BSP Baum R Baum
23 Anwendung Simulationsumgebungen, z. B. Robotik Objektoberflächen werden durch Polygone (Dreiecke) repräsentiert Verfahren zur Kollisionsdetektion stellen fest, ob Objekte sich durchdringen (kollidieren) Latombe, Stanford
24 Motivation Kollisionsdetektionsaufwand für n Polygone ist in Bereichsbäume können den Test beschleunigen O(n 2 ) wenn zwei Bereiche nicht überlappen, können die darin enthaltenen Objekte nicht kollidieren Bereiche überlappen nicht keine Kollision Bereiche überlappen Kollision möglich
25 Bereichsbeschreibung (Typen von Begrenzungsvolumina) Kugel an Hauptachsen ausgerichtete Box an Objekt ausgerichtete Box k-dop konvexe Hülle Auswahlkriterien effizienter Überlappungstest eng anliegend am Objekt effiziente Generierung und Aktualisierung bei Objekttransformation speichereffizient
26 Kugel Kugel sind repräsentiert durch Mittelpunkt Radius r c c 1 c 2 r 2 zwei Kugel überlappen nicht, wenn r 1 (c 1 c 2 )(c 1 c 2 )>(r 1 +r 2 ) 2
27 Ausgerichtete Quader AABB AABB-Repräsentation Mittelpunkt Radien, c r x r y y c 1 zwei AABBs in 2D überlappen nicht, wenn 1 (c 1 c 2 ) 0 0 (c 1 c 2 ) 1 >r x 1+r x 2 >r y 1 +ry 2 c 2 r y 2 r x 2 x
28 Optimales Begrenzungsvolumen schwer zu bestimmen Approximationsqualität Effizienz des Überlappungs-Tests Kugel an Hauptachsen ausgerichtete Box an Objekt ausgerichtete Box k-dop konvexe Hülle
29 Bereichsbaum Hierarchie von Begrenzungsvolumina
30 Datenstruktur Knoten enthalten Bereiche / Begrenzungsvolumina Blätter enthalten Objektprimitive (Polygone, Dreiecke) BV für Teile des Objekts BV für das ganze Objekt BV BV BV BV BV BV für wenige Objektprimitive Polygone Polygone Polygone
31 Überlappungs-Test wenn zwei Bereiche überlappen, werden die Kinder rekursiv getestet an Blättern werden Polygone gegen Polygone oder BVs getestet effizientes Aussondern von Bereichen, die nicht kollidieren können
32 Zusammenfassung (1) Begrenzungsvolumen (2) Bereichsbaum Kugel AABB OBB k-dop (3) Kollisionstest
33 Implementierung des Bereichsbaums zur Kollisionsdetektion Ziele balancierter Baum eng anliegende Bereiche / Begrenzungsvolumina minimale Überlappung von Bereichen in einer Ebene des Baums (R* - Baum) Parameter Typ des Bereichs / Begrenzungsvolumens top-down / bottom-up was wird unterteilt / zusammengeführt: Polygone oder Bereiche wieviel Polygone pro Blatt
34 Implementierung des Begrenzungsvolumens ausgerichtete Quader (AABB) sind einfach über die Bereichsgrenzen der Polygone bestimmt (xmin, xmax, ymin, ymax) aber: AABBs müssen bei Rotation der Polygone neu berechnet werden Kugeln sind in der Generierung aufwendiger, können aber bei Rotationen und Translationen des Objekts beibehalten werden.
35 Zusammenfassung Blattsuchbäume k-d Baum Octree, Quadtree BSP Baum R Baum Schlüssel sind in Blättern gespeichert erlauben Bereichsanfragen in mehreren Dimensionen Anwendungen Datenbanken Rendering Kollisionsdetektion
36 Nächstes Thema Algorithmen / Datenstrukturen Zusammenfassung
Algorithmen und Datenstrukturen Balancierte Suchbäume
Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
Kapiteltests zum Leitprogramm Binäre Suchbäume
Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm
Kollisionserkennung
1 Kollisionserkennung von Jens Schedel, Christoph Forman und Philipp Baumgärtel 2 1. Einleitung Wozu wird Kollisionserkennung benötigt? 3 - für Computergraphik 4 - für Simulationen 5 - für Wegeplanung
Tutorium Algorithmen & Datenstrukturen
June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten
4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.
Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel
Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10
Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: [email protected] Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume
Kapitel 5: Dynamisches Programmieren Gliederung
Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen
Binäre Bäume Darstellung und Traversierung
Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail [email protected] Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.
1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen
3D-Rendering Ulf Döring, Markus Färber 07.03.2011 1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen Anzeigefläche (a) Worin besteht das Sichtbarkeitsproblem?
Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
Graphische Datenverarbeitung und Bildverarbeitung
Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Clippen in 2D und 3D Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 1 Einordnung in die Inhalte der Vorlesung Einführung
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
Proseminar: Website-Managment-System. NetObjects Fusion. von Christoph Feller
Proseminar: Website-Managment-System NetObjects Fusion von Christoph Feller Netobjects Fusion - Übersicht Übersicht Einleitung Die Komponenten Übersicht über die Komponenten Beschreibung der einzelnen
Nachtrag zu binären Suchbäumen
Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement
368 4 Algorithmen und Datenstrukturen
Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist
Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20
Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:
t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )
Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Inhalt. 1 Einleitung AUTOMATISCHE DATENSICHERUNG AUF EINEN CLOUDSPEICHER
AUTOMATISCHE DATENSICHERUNG AUF EINEN CLOUDSPEICHER Inhalt 1 Einleitung... 1 2 Einrichtung der Aufgabe für die automatische Sicherung... 2 2.1 Die Aufgabenplanung... 2 2.2 Der erste Testlauf... 9 3 Problembehebung...
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
WinWerk. Prozess 4 Akonto. KMU Ratgeber AG. Inhaltsverzeichnis. Im Ifang 16 8307 Effretikon
Prozess 4 Akonto WinWerk 8307 Effretikon Telefon: 052-740 11 11 Telefax: 052 740 11 71 E-Mail [email protected] Internet: www.winwerk.ch Inhaltsverzeichnis 1 Akonto... 2 1.1 Allgemein... 2 2 Akontobeträge
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici. 12.Übung 13.1. bis 17.1.2014
17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici 12.Übung 13.1. bis 17.1.2014 1 BEFRAGUNG http://1.bp.blogspot.com/- waaowrew9gc/tuhgqro4u_i/aaaaaaaaaey/3xhl 4Va2SOQ/s1600/crying%2Bmeme.png
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Vorkurs Informatik WiSe 15/16
Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner
Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele
Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung
Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY
Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung
Eine Bürokratiekostenfolgenabschätzung zum zweiten Gesetz für moderne Dienstleistungen am Arbeitsmarkt im Hinblick auf die Einführung einer Gleitzone
Eine Bürokratiekostenfolgenabschätzung zum zweiten Gesetz für moderne Dienstleistungen am Arbeitsmarkt im Hinblick auf die Einführung einer Gleitzone Das IWP Institut für Wirtschafts- und Politikforschung
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)
Algorithmische Kryptographie
Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Quantenkryptographie 1 Einleitung Grundlagen aus der Physik 2 Datenübertragung 1. Idee 2. Idee Nochmal Physik 3 Sichere
Erfahrungen mit Hartz IV- Empfängern
Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November
Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung
Erinnerung Arbeitsschritte der Computergraphik Modellierung Animation Generierung Ausgabemedium Graphik/-Pipeline Wandelt die Beschreibung einer Szene im dreidimensionalen Raum in eine zweidimensionale
Kap. 4.2: Binäre Suchbäume
Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:
EndTermTest PROGALGO WS1516 A
EndTermTest PROGALGO WS1516 A 14.1.2016 Name:................. UID:.................. PC-Nr:................ Beachten Sie: Lesen Sie erst die Angaben aufmerksam, genau und vollständig. Die Verwendung von
Anforderungen an die HIS
Anforderungen an die HIS Zusammengefasst aus den auf IBM Software basierenden Identity Management Projekten in NRW Michael Uebel [email protected] Anforderung 1 IBM Software Group / Tivoli Ein Feld zum
Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.
Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen
Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer
Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Klassendiagramme Ein Klassendiagramm dient in der objektorientierten Softwareentwicklung zur Darstellung von Klassen und den Beziehungen,
Algorithmische Mathematik
Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)
Blumen-bienen-Bären Academy. Kurzanleitung für Google Keyword Planer + Google Trends
Kurzanleitung für Google Keyword Planer + Google Trends Der Google Keyword Planer Mit dem Keyword Planer kann man sehen, wieviele Leute, in welchen Regionen und Orten nach welchen Begriffen bei Google
Es gibt zwei Wege die elektronischen Daten aus Navision zu exportieren.
Elektronische Daten aus Navision (Infoma) exportieren Es gibt zwei Wege die elektronischen Daten aus Navision zu exportieren. 1. GDPdU 1.1 Manuelle Einrichtung der GDPdU-Definitionsgruppe und Ausführung
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 Bäume [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden
R-Baum R + -Baum X-Baum M-Baum
R-Baum und Varianten R-Baum R + -Baum X-Baum M-Baum [email protected] 1 R-Baum R-Baum: Guttman 1984 Erweiterung B-Baum um mehrere Dimensionen Standardbaum zur Indexierung im niedrigdimensionalen Raum
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Anleitung Typo3-Extension - Raumbuchungssystem
Anleitung Typo3-Extension - Raumbuchungssystem t3m_calendar v 1.1 Stand 15.12.2011 Mehr Datails siehe: http://www.typo3-macher.de/typo3-ext-raumbuchungssystem.html 1 INHALT 1. Bedienungsanleitung der Anwendung...
Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19
Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen
Softwaretechnik (Allgemeine Informatik) Überblick
Softwaretechnik (Allgemeine Informatik) Überblick 1 Einführung und Überblick 2 Abstraktion 3 Objektorientiertes Vorgehensmodell 4 Methoden der Anforderungs- und Problembereichsanalyse 5 UML-Diagramme 6
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
ChangePoint-Analysen - ein Überblick
ChangePoint-Analysen - ein Überblick Gliederung Motivation Anwendungsgebiete Chow Test Quandt-Andrews Test Fluktuations-Tests Binary Segmentation Recursive circular and binary segmentation algorithm Bayesscher
Programmiersprachen und Übersetzer
Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch
Exploration und Klassifikation von BigData
Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)
Der Voxtron Konferenz-Server
Der Voxtron Konferenz-Server Eine vertikale Applikation auf der Basis des Voxtron- Sprachportals Axxium für Telefonkonferenzen! Voxtron GmbH Tel: +49 2382-98974-0 Fax: +49 2382-98974-74 [email protected]
Grundlagen der Programmierung 2. Bäume
Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)
Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen
Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Stephan Rosebrock Pädagogische Hochschule Karlsruhe 23. März 2013 Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe)
Gründe für fehlende Vorsorgemaßnahmen gegen Krankheit
Gründe für fehlende Vorsorgemaßnahmen gegen Krankheit politische Lage verlassen sich auf Familie persönliche, finanzielle Lage meinen, sich Vorsorge leisten zu können meinen, sie seien zu alt nicht mit
Kapitel 8: Physischer Datenbankentwurf
8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen
Leichte-Sprache-Bilder
Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen
Agentur für Werbung & Internet. Schritt für Schritt: E-Mail-Konfiguration mit Apple Mail
Agentur für Werbung & Internet Schritt für Schritt: E-Mail-Konfiguration mit Apple Mail E-Mail-Konfiguration mit Apple Mail Inhalt E-Mail-Konto erstellen 3 Auswahl des Servertyp: POP oder IMAP 4 Konfiguration
Anwendungspraktikum aus JAVA Programmierung im SS 2006 Leitung: Albert Weichselbraun. Java Projekt. Schiffe Versenken mit GUI
Anwendungspraktikum aus JAVA Programmierung im SS 2006 Leitung: Albert Weichselbraun Java Projekt Schiffe Versenken mit GUI 1. Über den Autor: Name: Marija Matejic Matrikelnummer: 9352571 E-mail: [email protected]
SharePoint Demonstration
SharePoint Demonstration Was zeigt die Demonstration? Diese Demonstration soll den modernen Zugriff auf Daten und Informationen veranschaulichen und zeigen welche Vorteile sich dadurch in der Zusammenarbeit
6.2 Scan-Konvertierung (Scan Conversion)
6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster
Kapitel 04 Strukturiertes Entity-Relationship-Modell. 4 Strukturiertes Entity-Relationship- Modell
Kapitel 04 Strukturiertes Entity-Relationship-Modell 4 Strukturiertes Entity-Relationship- Modell 4 Strukturiertes Entity-Relationship-Modell...1 4.1 Erste Verbesserung...4 4.2 Objekttypen in SERM...6
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015
Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet
Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.
LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung
Stellvertretenden Genehmiger verwalten. Tipps & Tricks
Tipps & Tricks INHALT SEITE 1. Grundlegende Informationen 3 2.1 Aktivieren eines Stellvertretenden Genehmigers 4 2.2 Deaktivieren eines Stellvertretenden Genehmigers 11 2 1. Grundlegende Informationen
Informatik Aufgaben. 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100.
Informatik Aufgaben 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100. 2. Erstelle ein Programm, das die ersten 20 (z.b.) ungeraden Zahlen 1, 3, 5,... ausgibt und deren
SOZIALVORSCHRIFTEN IM STRAßENVERKEHR Verordnung (EG) Nr. 561/2006, Richtlinie 2006/22/EG, Verordnung (EU) Nr. 165/2014
LEITLINIE NR. 7 Gegenstand: Die Bedeutung von innerhalb von 24 Stunden Artikel: 8 Absätze 2 und 5 der Verordnung (EG) Nr. 561/2006 Leitlinien: Nach Artikel 8 Absatz 2 der Verordnung muss innerhalb von
Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining
Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung
Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und
Virtuelle Fotografie (CGI)
(CGI) Vorteile und Beispiele Das ist (k)ein Foto. Diese Abbildung ist nicht mit einer Kamera erstellt worden. Was Sie sehen basiert auf CAD-Daten unserer Kunden. Wir erzeugen damit Bilder ausschließlich
Wasserfall-Ansätze zur Bildsegmentierung
Wasserfall-Ansätze zur Bildsegmentierung von Philipp Jester Seminar: Bildsegmentierung und Computer Vision 16.01.2006 Überblick 1. Problemstellung 2. Wiederholung: Wasserscheiden-Ansätze 3. Der Wasserfall-Ansatz
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Grundbegriffe der Informatik
Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition
Tipps und Tricks zu Netop Vision und Vision Pro
Tipps und Tricks zu Netop Vision und Vision Pro Anwendungen auf Schülercomputer freigeben und starten Netop Vision ermöglicht Ihnen, Anwendungen und Dateien auf allen Schülercomputern gleichzeitig zu starten.
15 Optimales Kodieren
15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen
Die Bundes-Zentrale für politische Bildung stellt sich vor
Die Bundes-Zentrale für politische Bildung stellt sich vor Die Bundes-Zentrale für politische Bildung stellt sich vor Deutschland ist ein demokratisches Land. Das heißt: Die Menschen in Deutschland können
Was meinen die Leute eigentlich mit: Grexit?
Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07
Regression Trees Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Ao.Univ.Prof. Dr. Marcus Hudec [email protected] Institut für Scientific Computing, Universität Wien 2
4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum
4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.
Algorithmen & Datenstrukturen 1. Klausur
Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse
Programmierkurs Java
Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen
IBIS Professional. z Dokumentation zur Dublettenprüfung
z Dokumentation zur Dublettenprüfung Die Dublettenprüfung ist ein Zusatzpaket zur IBIS-Shopverwaltung für die Classic Line 3.4 und höher. Dubletten entstehen dadurch, dass viele Kunden beim Bestellvorgang
AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b
AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität
1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert
Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume
Allgemeines zu Datenbanken
Allgemeines zu Datenbanken Was ist eine Datenbank? Datensatz Zusammenfassung von Datenelementen mit fester Struktur Z.B.: Kunde Alois Müller, Hegenheimerstr. 28, Basel Datenbank Sammlung von strukturierten,
Teaser-Bilder erstellen mit GIMP. Bildbearbeitung mit GIMP 1
Teaser-Bilder erstellen mit GIMP 08.08.2014 Bildbearbeitung mit GIMP 1 Auf den folgenden Seiten werden die wichtigsten Funktionen von GIMP gezeigt, welche zur Erstellung von Bildern für die Verwendung
Das vorliegende Dokument beinhaltet vertrauliche Informationen und darf nicht an Dritte weitergereicht werden.
Konfigurationsanleitung: E-Mail Konfiguration mit Apple Mail Vertraulichkeitsklausel Das vorliegende Dokument beinhaltet vertrauliche Informationen und darf nicht an Dritte weitergereicht werden. SwissWeb
Echtzeitanomalieerkennung für Internetdienste (Abschlussvortrag)
Lehrstuhl für Netzarchitekturen und Netzdienste Institut für Informatik Technische Universität München Echtzeitanomalieerkennung für Internetdienste (Abschlussvortrag) Markus Sieber Betreuer: Ali Fessi,
3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1
3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)
Kapitel 1: Einführung. Was ist Informatik? Begriff und Grundprobleme der Informatik. Abschnitt 1.1 in Küchlin/Weber: Einführung in die Informatik
Was ist Informatik? Begriff und Grundprobleme der Informatik Abschnitt 1.1 in Küchlin/Weber: Einführung in die Informatik Was ist Informatik? Informatik = computer science? Nach R. Manthey, Vorlesung Informatik
