Kollisionserkennung
|
|
|
- Lisa Kopp
- vor 9 Jahren
- Abrufe
Transkript
1 1
2 Kollisionserkennung von Jens Schedel, Christoph Forman und Philipp Baumgärtel 2
3 1. Einleitung Wozu wird Kollisionserkennung benötigt? 3
4 - für Computergraphik 4
5 - für Simulationen 5
6 - für Wegeplanung 6
7 2. Einfache Kollisionserkennung Kollision und Abstand zwischen konvexen Polygonen / Polyedern 7
8 Kollision zwischen Polygonen - Schnittberechnung: Objekt 1: m Seiten Objekt 2: n Seiten Aufwand = O(mn) - Funktion liefert nur TRUE oder FALSE 8
9 Kollision zwischen Polygonen Schnitt zweier Linien: - wenn sich die zugehörigen Geraden schneiden - und der Schnittpunkt innerhalb der Begrenzung der Linien liegt 9
10 Abstand zwischen konvexen Polygonen kurzer Exkurs: Voronoi Regionen Voronoi Regionen eines Polygons basieren immer abwechselnd auf einer Ecke und einer Seite. Die Begrenzungen stehen immer in den Ecken senkrecht auf den Seiten. 10
11 Abstand zwischen konvexen Polygonen Fall 1: Ecke Ecke Voronoi Regionen: Jede Ecke liegt in der Voronoi Region der anderen Ecke 11
12 Abstand zwischen konvexen Polygonen Fall 2: Ecke Seite Voronoi Regionen: - Lotfußpunkt in der V. Region der Ecke - Ecke in der V. Region der Seite 12
13 Abstand zwischen konvexen Polygonen Fall 3: Seite - Seite Voronoi Regionen: Es gibt ein Paar von Lotfußpunkten, die in der Voronoi Region der jeweils anderen Seite liegen 13
14 Abstand zwischen konvexen Polygonen statische Vorberechnung: - Bestimmung des Falles in O(mn) dynamische Berechnung: - bei kurzen Zeitschritten: lineare Bestimmung des Falles 14
15 3. Hüllkörper (Bounding Volumes) AABB Kreis OBB k-dop Kollisionserkennung 1
16 3.1 Warum Hüllkörper? Hüllkörper vereinfachen komplexe geometrische Körper Kollisionserkennung wird einfacher und schneller Komplexere Kollisionserkennung nur, wenn sich die Hüllkörper überschneiden Kollisionserkennung 2
17 3.2 AABB (Axis Aligned Bounding Box) Beim AABB Algorithmus werden um den geometischen Körper achsenparalelle Quader gelegt. Diese Quader sind nach den Achsen des Koordinatensystems ausgerichtet. Effizienz Speicher Aufwand Komplexität Rotation Sehr schlecht Geringer Speicherbedarf Sehr einfache Erzeugung Geringe Komplexität Nicht möglich Kollisionserkennung 3
18 3.2 AABB (Axis Aligned Bounding Box) Beispiel für Kollisionserkennung im zweidimensionalen Raum Keine Kollision Kollision Im dreidimensionalen Raum funktioniert die Kollisionserkennung genauso, nur mit einer Ache mehr. Kollisionserkennung
19 3.3 Kugel Um den geometrischen Körper wird eine Kugel aufgespannt. Der Radius ist gleich der Entfernung vom Mittelpunkt zu dessen entferntesten Punkts. Dadurch kann der Körper in der Kugel beliebig gewendet, gedreht und bewegt werden. Effizienz Speicher Aufwand Komplexität Rotation Sehr schlecht Geringer Speicherbedarf Schwierig zu erstellen Geringere Komplexität Ohne Neuberechnung möglich Kollisionserkennung
20 3.4 OBB (Oriented Bounding Box) Der OBB Algorithmus funktioniert ähnlich wie der AABB. Jedoch werden die Quader nicht am nach den Achsen des Koordinatensystems ausgerichtet, sondern an dem geometrischen Körper. Dadurch bekommt man eine höhere Hülleffizienz als bei AABB. Effizienz Speicher Aufwand Komplexität Rotation Gute Hülleffizienz Höherer Speicherbedarf Rechenintensive Erzeugung Aufwendige Kollisionserkennung unproblematisch Kollisionserkennung
21 3.4 OBB (Oriented Bounding Box) Beispiel für Kollisionserkennung im zweidimensionalen Raum: Keine Kollision Keine Kollision Kollision, da keine trennende Achse gefunden Kollisionserkennung
22 3.5 k-dop (K-Discrete Oriented Polytop) Der wesentliche Unterschied zum OBB Algorithmus liegt darin, dass es mehrere Beschränkungsflächen gibt. Somit hat ein k-dop eine wesentlich höhere Hülleffizienz. Effizienz Speicher Aufwand Kompexität Rotation Sehr gut Größerer Speicherbedarf Einfache Erzeugung Geringeste Komplexität Mit Neuberechnung Kollisionserkennung
23 3.5 k-dop (K-Discrete Oriented Polytop) Anwendung des separierenden Achsentheorems. Die Intervalle werden in K/2 Richtungen auf Überlappung getestet. Überlappen sich alle Intervalle, so liegt eine Kollision vor. Kollisionserkennung
24 3.6 Hierarchie-Baum Warum Hierarchie Bäume? + Man führt die Kollisionserkennung mit einer sehr groben Hüllkörper durch. Sollte eine Kollision erkannt werden, so verwendet man zur Erkennung genauere Hüllkörper. - Es müssen für eine Kollisionserkennung bei Verdacht auf Kollision mehrere Berechnungen durchgeführt werden. Kollisionserkennung
25 3.6 Hierarchie-Baum Methoden zur Erstellung von Hierarchie Bäumen Top-Down Man erzeugt einen Hüllkörper für den gesamten geometrischen Körper. Nun teilt man diesen Körper in zwei Teile und erzeugt wieder einen Hüllkörper Dieses Verfahren wiederholt man bis man nur noch einen Hüllkörper um ein Polygon hat. Bottom-Up Man erzeugt einen Hüllkörper um ein Polygon. Nun fügt man zwei Hüllkörper zu einem neuen Hüllkörper zusammen. Dieses Verfahren wiederholt man bis man nur noch einen Hüllkörper um den kompletten geometrischen Körper hat. Kollisionserkennung
26 4. Raumunterteilung 4.1 uniforme Raumunterteilung 4.2 Quadtree / Octree 4.3 Ausblick: BSP Baum 4.4 Sweep-and-Prune 1
27 4.1 uniforme Raumunterteilung - gleichmässiges Gitter wird über Szene gelegt - jedes Objekt wird mindestens einer Zelle zugeordnet 2
28 3
29 4.1 uniforme Raumunterteilung Vorteile: - einfaches Verfahren Nachteile: - bei bewegten Objekten muss das Gitter ständig aktualisiert werden - bei verschieden großen Objekten ist es schwer die Gitterweite zu bestimmen 4
30 4.2 Quadtree / Octree Quadtree: - Baumstruktur - Wurzel repräsentiert die komplette Szene - rekursive Zerlegung in jeweils vier Quadranten (Knoten), bis gewünschte Auflösung erreicht 5
31 6
32 Quadtree Vorteile: - weniger zu speichernde Daten - Zellengröße leichter wählbar Nachteile: - bei dynamischen Objekten, ist Struktur aufwändig zu Aktualisieren Für dreidimensionale Szenen werden Octrees verwendet. 7
33 Octree 8
34 4.3 Ausblick: BSP-Bäume (Binary Space Partitioning) - Raum wird durch Flächen von Polygonen geteilt - gleichmäßige Anzahl der Objekte in entstehenden Teilräumen - wenig durch Teilebene geschnittene Objekte - Objekte werden jeweils den Teilräumen zugeordnet - geschnittene Objekte werden an Teilungsebenen geteilt, und Teile jeweils einem Teilraum zugeordnet 9
35 4.3 Ausblick: BSP-Bäume 10
36 4.4 Sweep-and-Prune - Projektion des achsenorientierten Hüllkörpers (AABB) auf die Koordinationachsen ergibt ein Intervall - Intervallüberscheidungen bestimmen - nur wenn zwei AABBs sich überlappen, können sich die dazugehörigen Objekte überlappen - auch für dynamische Objekte geeignet: überstrichener Raum wird von AABB eingehüllt 11
37 4.4 Sweep-and-Prune 12
38 5. Quellen
39 Download 14
Algorithmen und Datenstrukturen Bereichsbäume
Algorithmen und Datenstrukturen Bereichsbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung k-d Baum BSP Baum R Baum Motivation
Kollisionserkennung Kapitel 12 Collision and Rigid Body Dynamics aus Jason Gregory: Game Engine Architecture. (Seite )
Universität zu Köln Historisch-Kulturwissenschaftliche Informationsverarbeitung Softwaretechnologie II (Teil 2): Simulation und 3D-Programmierung Sommersemester 2013 Dozent: Prof. Dr. Manfred Thaller Kollisionserkennung
Wiederholung. Objekte) Hauptkosten beim Pathtracing Ziel: Beschleunigung durch Reduktion der Schnittpunktstestzahl. Ansätze
Wiederholung Pathtracing = Schnittpunktstests mit Geometrie: primäre Augstrahlen, Schattenstrahlen, sekundäre Strahlen Problem: Komplexität! (mindestens linear mit der Anzahl der Objekte) Hauptkosten beim
Raytracing. Beschleunigungsverfahren
Raytracing Beschleunigungsverfahren Naives/brute force Raytracing Komplexität: mxn p Auflösung des Bildes Anzahl der Primitives O (mxnxp) nur für die Primärstrahlen Raytracing Beschleunigungsverfahren
Seminar Computerspiele Räumliche Datenstrukturen. Ralf Pramberger
Seminar Computerspiele Räumliche Datenstrukturen Ralf Pramberger Themen 2 1. Grundlagen Szene Sichtbarkeit (Raytracing) Culling 2. Räumliche Datenstrukturen Bounding Volume Hierarchie Quadtree/Octree BSP-Tree
Kapitel 8 Kollisionserkennung
Kapitel 8 Kollisionserkennung Lukas Zimmer Gliederung Einführung Kollision mit einer Ebene Kugel - Ebene Quader - Ebene Räumliche Aufteilung Allgemeine Kugel Kollisionen Sliding Kollision von zwei Kugeln
Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem
Geometrische Algorithmen Einige einfache Definitionen: Punkt: im n-dimensionalen Raum ist ein n-tupel (n Koordinaten) Gerade: definiert durch zwei beliebige Punkte auf ihr Strecke: definiert durch ihre
Kollosionserkennung bei 3D- Objekten
Kollosionserkennung bei 3D- Objekten Stefan M. Grünvogel Laboratory for Mixed Realities Institut an der Kunsthochschule für Medien in Köln 1. Einführung Kollisionserkennung (collision detection, kurz:
Beschleunigungsverfahren für Raytracing Grids Hierarchische Grids Bewertung Fazit
Überblick Einführung Beschleunigungsverfahren für Raytracing Grids Hierarchische Grids Fazit Einführung Gewöhnliche Beschleunigungsverfahren & Raumunterteilung entworfen und optimiert für effizientes Traversieren
Algorithmische Geometrie 7. Punktsuche
Algorithmische Geometrie 7. Punktsuche JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4. Schnitte planarer
Darstellungsarten für 3D-Körper. Boundary Representation (BRep):
Darstellungsarten für 3D-Körper Boundary Representation (BRep): Darstellung eines (verallgemeinerten) Polyeders durch das System seiner Ecken, Kanten und Facetten Abspeichern durch (Teilgraphen des) vef-graphen
CELLmicrocosmos III. CELLeditor. Olga Mantler und Ufuk Aydin
CELLmicrocosmos III CELLeditor Olga Mantler und Ufuk Aydin 1 Inhalt Ziel Zelltypen Zellorganellen Problemen bei der Visualisierung Mögliche Lösungsansätze Kollisionserkennung Automatische Modellierung
Virtuelle Realität Kollisionserkennung
lausthal Virtuelle Realität Kollisionserkennung. Zachmann lausthal University, ermany cg.in.tu-clausthal.de Anwendungsbeispiele Virtual Prototyping Physikalisch basierte Simulation. Zachmann Virtuelle
Featurebasierte 3D Modellierung
1 Featurebasierte 3D Modellierung Moderne 3D arbeiten häufig mit einer Feature Modellierung. Hierbei gibt es eine Reihe von vordefinierten Konstruktionen, die der Reihe nach angewandt werden. Diese Basis
Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen
Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Sommersemester 2012 Matthias Fischer [email protected] Vorlesung 12 26.6.2012 Matthias Fischer 374 Übersicht Motivation Modell der Sichtbarkeit Eigenschaft
Ray Tracing. 2. Ray Tracing-Prinzip und -Algorithmen. 3. Schnittpunkt- und Normalenberechnung
1. Vorbemerkungen 2. -Prinzip und -Algorithmen 3. Schnittpunkt- und Normalenberechnung 4. Verbesserte -Techniken 4.1 Supersampling 4.2 Adaptives Supersampling 4.3 Stochastisches Supersampling 4.4 Verteiltes
12. Flächenrekonstruktion aus 3D-Punktwolken und generalisierte Voronoi-Diagramme
12. Flächenrekonstruktion aus 3D-Punktwolken und generalisierte Voronoi-Diagramme (Einfache) Voronoi-Diagramme: Motivation: gegeben: Raum R, darin Menge S von Objekten Frage nach Zerlegung von R in "Einflusszonen"
5/24/07. Allgemeine Regeln zur Optimierung. Octree / Quadtree. 5D-Octree für Strahlen [Arvo u. Kirk 1987] Primitive in adaptiven Gittern / Octrees
Allgemeine Regeln zur Optimierung Octree / Quadtree "Premature Optimization is the Root of All Evil" [Knuth] Idee: extreme Variante der rekursiven itter Erst naïv und langsam implementieren, dann optimieren!
Übungsblatt 7 - Voronoi Diagramme
Karlsruher Institut für Technologie Algorithmische Geometrie Fakultät für Informatik Sommersemester 2012 ITI Wagner Martin Nöllenburg/Andreas Gemsa Übungsblatt 7 - Voronoi Diagramme 1 Voronoi-Zellen Sei
Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone
Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer
Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :
Hallo Welt für Fortgeschrittene
Hallo Welt für Fortgeschrittene Geometrie II Benjamin Zenke Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Inhalt Closest Pair Divide & Conquer Bereichssuche Gitterverfahren k-d-tree Sweep-Line-Algorithmen
Masterthesis. Vida Ostadzadeh Entwicklung eines Prototyps zur steuerungsbasierten Kollisionsvermeidung von komplexen 3D Objekten
Masterthesis Vida Ostadzadeh Entwicklung eines Prototyps zur steuerungsbasierten Kollisionsvermeidung von komplexen 3D Objekten Fakultät Technik und Informatik Department Informations- und Elektrotechnik
Abitur 2010 Mathematik GK Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.
Dynamische Geometrie
Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage
Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x
6. Texterkennung in Videos Videoanalyse
6. Texterkennung in Videos Videoanalyse Dr. Stephan Kopf 1 Übersicht Motivation Texterkennung in Videos 1. Erkennung von Textregionen/Textzeilen 2. Segmentierung einzelner Buchstaben 3. Auswahl der Buchstabenpixel
Prüfung WS 2006/07. Robotik
Prüfung WS 26/7 Robotik Anmerkungen: Aufgabenblätter auf Vollständigkeit überprüfen Nur Blätter mit Namen und Matr.Nr. werden korrigiert. Keine rote Farbe verwenden. Zu jeder Lösung Aufgabennummer angeben.
1 Rund um die Kugel. a) Mathematische Beschreibung
Rund um die Kugel a) Mathematische Beschreibung Die Punkte der Oberfläche haben vom Mittelpunkt M alle die Entfernung r. Oder, mit den Mitteln der analytischen Geometrie: Für alle Punkte der Kugeloberfläche
10.1 Geometrische Wegplanung im Konfigurationsraum
10 Pfadplanung 10.1 Geometrische Wegplanung im Konfigurationsraum Vorausetzungen Roboter bewegt sich in der Ebene, ohne sich zu drehen Hindernisse sind konvexe Polygone Beispiel Grundgedanke Problem wird
Geometrierepräsentation
Geometrierepräsentation Forderungen an Repräsentationsform: 1. mächtig (eine sinnvolle Menge von Objekten modellierbar) 2. eindeutig (es muß klar sein, was repräsentiert wird) H E D A F G C B Punkte, Linien,
Quadtrees. Christian Höner zu Siederdissen
Quadtrees Christian Höner zu Siederdissen Quadtrees Zum Verständnis benötigt... Was sind Quadtrees Datenstruktur Wofür Quadtrees Operationen auf dem Baum Vor- und Nachteile (spezialisierte Formen) Zum
M. Pester 29. Ein konvexes d-polytop ist eine begrenzte d-dimensionale polyedrale Menge. (d = 3 Polyeder, d = 2 Polygon)
M. Pester 29 6 Konvexe Hülle 6.1 Begriffe Per Definition ist die konvexe Hülle für eine Menge S von lich vielen Punkten die kleinste konvexe Menge, die S enthölt (z.b. in der Ebene durch ein umspannes
Boolesche Operationen und lokale Manipulationen
1 Boolesche Operationen und lokale Manipulationen Mit Hilfe Boolescher Operatoren werden komplexe Körper aus Instanzen generischer Grundkörper konstruiert.. Grundkörper Aus den Grundkörpern erzeugter Körper
Algorithmische Geometrie
Algorithmische Geometrie Martin Peternell TU Wien 31. Fortbildungstagung für Geometrie 2010, Strobl 1 Themen der Algorithmische Geometrie Entwurf von Algorithmen für geometrische Fragestellungen betreffend
Indizierung von Geodaten - Raumbezogene Indexstrukturen. Seminar mobile Geoinformationssystem Vortrag von Markus Steger
Indizierung von Geodaten - Raumbezogene Indexstrukturen Seminar mobile Geoinformationssystem Vortrag von Markus Steger Index wozu ist er gut? Index allgemein Effizienter Zugriff auf Daten, i.d.r. mit B-Baum
3D Modelle. 2.1 Constructive Solid Geometry (CSG) implizite Flächen. parametrische Flächen
Seminar Datenverarbeitung 2000 Kollisionserkennungs-Algorithmen Referent : cand.-ing. Mark Dunn Betreuer : Dipl.-Ing. Matthias Ortmann 12. Juli 2000 2 INHALTSVERZEICHNIS Inhaltsverzeichnis 1 Einleitung
{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen
4.4 MX-Quadtrees (I) MatriX Quadtree Verwaltung 2-dimensionaler Punkte Punkte als 1-Elemente in einer quadratischen Matrix mit Wertebereich {0,1} rekursive Aufteilung des Datenraums in die Quadranten NW,
Projektaufgabe Rohrsysteme
Projektaufgabe Rohrsysteme Um die hintere Wand des Badezimmers zu konstruieren extrudiert man ein Rechteck mit den Längen 30 * 2 in die Höhe von 20. Der Grundkörper der Badewanne (hier blau) hat die Maße
Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):
Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische
Inhaltsverzeichnis. 1 Hardwaregrundlagen
Inhaltsverzeichnis 1 Hardwaregrundlagen 2.4 2.5 Perspektivische 2.6 Parallele 2.7 Umsetzung der Zentralprojektion 2.8 Weitere 2.9 Koordinatensysteme, Frts. 2.10 Window to Viewport 2.11 Clipping 3 Repräsentation
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,
Distributed Algorithms. Image and Video Processing
Chapter 6 Optical Character Recognition Distributed Algorithms for Übersicht Motivation Texterkennung in Bildern und Videos 1. Erkennung von Textregionen/Textzeilen 2. Segmentierung einzelner Buchstaben
Dualität + Quad-trees
Übung Algorithmische Geometrie Dualität + Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 30.06.2011 Übersicht Übungsblatt 10 - Dualität
Geometrische Algorithmen Segmentschnitt
Folie 1 von 36 Geometrische Algorithmen Segmentschnitt Folie 2 von 36 Segmentschnitt Übersicht Zwei Segmente Lage zweier Segmente Prüfung auf Schnittfreiheit Formeln zum Geradenschnitt Feststellen des
Geometrische Algorithmen Segmentschnitt
Folie 1 von 36 Geometrische Algorithmen Segmentschnitt Folie 2 von 36 Segmentschnitt Übersicht Zwei Segmente! Lage zweier Segmente! Prüfung auf Schnittfreiheit! Formeln zum Geradenschnitt! Feststellen
2.4. Triangulierung von Polygonen
Als drittes Problem haben wir in Kapitel 1 die Triangulierung von Polygonen identifiziert, die etwa bei der Überwachung eines Museums durch Kameras auftritt. F70 F71 Definition und Theorie: Definition
Voronoi Diagrams, Delaunay Triangulations and Alpha Shapes Nils Kubera (6kubera)
Voronoi Diagrams, Delaunay Triangulations and Alpha Shapes 12.11.2008 Nils Kubera 5886728 (6kubera) Inhalt Einleitung Algorithmen zur Generierung Beschränkungen Aktualität Quellen Inhalt Einleitung Algorithmen
Abitur 2013 Mathematik Geometrie V
Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die
Modellierung. Oliver Hartmann
Modellierung Oliver Hartmann [email protected] Inhalt Boolesche Operationen Splines B-Splines Bezier-Kurven NURBS Anwendung Sculpting Volumengrafik Marching Cubes Ray Casting Texture Mapping Boolesche
Cell Decomposition & Potential Field
Seminar EXRPR Cell Decomposition & Potential Field Gruppe 2: Thomas Janu Martin Koch Adrian J. Merkl Matthias Schneider Cell Decomposition & Potential Field 20.06.2005 Gruppe 2 Gliederung (1) 1.Cell Decomposition
Bachelorarbeit. Anne-Lena Kowalka. Analyse der Sichtbarkeitsberechnung anhand des View Frustum Cullings
Bachelorarbeit Anne-Lena Kowalka Analyse der Sichtbarkeitsberechnung anhand des View Frustum Cullings Fakultät Technik und Informatik Studiendepartment Informatik Faculty of Engineering and Computer Science
Geometrische Modellierung mittels Oktalbäumen und Visualisierung von Simulationsdaten aus der Strömungsmechanik. Klaus Daubner
Geometrische Modellierung mittels Oktalbäumen und Visualisierung von Simulationsdaten aus der Strömungsmechanik Klaus Daubner 1 / 22 Übersicht Motivation Geometriemodelle Oberflächenmodelle Volumenmodelle
4.7 Globale Beleuchtungsmodelle
Erinnerung: - Ein lokales Beleuchtungsmodell berücksichtigt nur das direkt einfallende Licht einer Lichtquelle - Nur lokale Beleuchtung + konstante ambiente Beleuchtung, um reflektiertes und gebrochenes
Mathematik verstehen 7 Lösungsblatt Aufgabe 6.67
Aufgabenstellung: Berechne die Schnittpunkte der e k1 und k mit den Mittelpunkten M1 bzw. M und den Radien r1 bzw. r a. k1: M1 3, 4, P 5, 3 k 1, k geht durch A 0 und B 4 0 r 5 M liegt im 1. Quadranten
2.4A. Reguläre Polyeder (Platonische Körper)
.A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:
Flächeninhalt, Volumen und Integral
Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1
INTERVALLBÄUME. Tanja Lehenauer, Besart Sylejmani
INTERVALLBÄUME Tanja Lehenauer, Besart Sylejmani Datenstrukturen in der Informatik Baumstrukturen Warum Intervallbäume? Centered Interval Tree Konstruktion Suchen eines Punktes Suchen eines Intervalls
Das Voronoi Diagramm. 1. Definition. 2. Eigenschaften. 3. Größe und Speicherung. 4. Konstruktion. 5. Verwendung
Das Voronoi Diagramm 1. Definition 2. Eigenschaften 3. Größe und Speicherung 4. Konstruktion 5. Verwendung Das Voronoi- Diagramm Voronoi Regionen Euklidische Distanz: d(p,q) = (px-qx)^2+(py-qy)^2 Das Voronoi-Diagramm
Eine Hilfe, wenn du mal nicht mehr weiterweisst...
Geometrie 6. Klasse Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Das 1 Das Viereck 2 Der Kreis 2 Die Winkel 3 Parallele Geraden zeichnen 4 Eine Senkrechte zeichnen 4 Die Spiegelsymmetrie
Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.
Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)
Quad-trees. Benjamin Niedermann Übung Algorithmische Geometrie
Übung Algorithmische Geometrie Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 02.07.2014 Übersicht Übungsblatt 11 - Quadtrees Motivation:
Tutorial. Übungsblatt CAD: Faltwerkdach für Bühne
Tutorial Übungsblatt CAD: Faltwerkdach für Bühne 1. REVERSE FOLDING Für das Reverse Folding nimmt man eine gefaltete Ebene schneidet diese mit einer geeigneten schrägen Ebene α in zwei Teile und spiegelt
Koordinatensystem: Der Nullpunkt des Koordinatensystems liegt im Schwerpunkt des Teils.
CNC Bahn des Fräskopfes berechnen (in 2 Dimensionen) Koordinatensystem: Der Nullpunkt des Koordinatensystems liegt im Schwerpunkt des Teils Vorzeichen des Drehsinns: Drehungen im Gegenuhrzeigersinn haben
Geometrie II. Deniz Neufeld Deniz Neufeld Geometrie II / 39
Geometrie II Deniz Neufeld 20.06.2016 Deniz Neufeld Geometrie II 20.06.2016 1 / 39 Ziel Umgehen mit großen, mehrdimensionalen Datenmengen Bereichssuche Nearest-Neighbour-Search Mehrdimensionale Datenverarbeitung
Quadtrees und Meshing
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.06.2012 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung
Abitur 2010 Mathematik LK Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte
Algorithmische Geometrie 3. Schnitte von Liniensegmenten
Algorithmische Geometrie 3. Schnitte von Liniensegmenten JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.
Algorithmische Geometrie: Rest Lokalisierung von Punkten; Voronoi Diagramme (1/2)
Algorithmische Geometrie: Rest Lokalisierung von Punkten; Voronoi Diagramme (1/2) Nico Düvelmeyer WS 2009/2010, 22.12.2009 Überblick 1 Fertigstellung Kapitel 7 2 Definition Voronoi Diagramm 3 Grundlegende
Geometrische Algorithmen Segmentschnitt. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Segmentschnitt
Folie 1 von 37 Geometrische Algorithmen Segmentschnitt Folie 2 von 37 Segmentschnitt Übersicht Zwei Segmente Lage zweier Segmente Prüfung auf Schnittfreiheit Formeln zum Geradenschnitt Feststellen des
Quadtrees und Meshing
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.06.2014 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung
Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:
Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:
entspricht der Länge des Vektorpfeils. Im R 2 : x =
Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.
Kreistangente. Tangente an Graph. Winkel(markierung)
Kreistangente Skizziere auf der Kreislinie ein T. Der erste Teilstrich deutet die Lage der Tangente an. Der letzte Teilstrich verläuft senkrecht dazu. sketchometry erzeugt einen Gleiter und eine Tangete
Hindernisumfahrung eines autonomen Roboters in einer unbekannten statischen Umgebung. Ronny Menzel
Hindernisumfahrung eines autonomen Roboters in einer unbekannten statischen Umgebung. Ronny Menzel Inhalt Aufgabenstellung Begriffserklärung Hindernisumfahrungsstrategien Anforderungen an die Hindernisumfahrung
Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen
Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Sommersemester 2012 Matthias Fischer [email protected] Vorlesung 5 24.4.2012 Matthias Fischer 135 Übersicht Quadtrees / Octrees Motivation Quadtrees für
4.22 Buch XI der Elemente
4.22 Buch XI der Elemente In Buch XI werden die Grundbegriffe der räumlichen Geometrie eingeführt und für viele Propositionen aus den Büchern I und VI die entsprechende dreidimensionale Aussagen bewiesen.
Räumliche Bereichsintegrale mit Koordinatentransformation
Räumliche Bereichsintegrale mit Koordinatentransformation Gegeben seien ein räumlicher Bereich, das heißt ein Körper K im R 3, und eine von drei Variablen abhängige Funktion f f(,, z). Die Aufgabe bestehe
Quadtrees und Meshing
Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 21.06.2011 Motivation: Meshing von Platinenlayouts Zur Simulation
