Quadtrees und Meshing
|
|
|
- Tomas Junge
- vor 8 Jahren
- Abrufe
Transkript
1 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg
2 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung auf Platinen kann man die finite Elemente Methode (FEM) einsetzen: zerlege die Platine in kleine homogene Elemente (z.b. Dreiecke) Mesh eigene Hitzeentwicklung und Einfluss auf Nachbarn je Element bekannt approximiere numerisch die gesamte Hitzeentwicklung der Platine
3 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung auf Platinen kann man die finite Elemente Methode (FEM) einsetzen: zerlege die Platine in kleine homogene Elemente (z.b. Dreiecke) Mesh eigene Hitzeentwicklung und Einfluss auf Nachbarn je Element bekannt approximiere numerisch die gesamte Hitzeentwicklung der Platine Qualitätseigenschaften von FEM: je feiner das Mesh desto besser die Approximation je gröber das Mesh desto schneller die Berechnung je kompakter die Elemente desto schneller die Konvergenz
4 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung auf Platinen kann man die finite Elemente Methode (FEM) einsetzen: zerlege die Platine in kleine homogene Elemente (z.b. Dreiecke) Mesh eigene Hitzeentwicklung und Einfluss auf Nachbarn je Element bekannt approximiere numerisch die gesamte Hitzeentwicklung der Platine Qualitätseigenschaften von FEM: je feiner das Mesh desto besser die Approximation je gröber das Mesh desto schneller die Berechnung je kompakter die Elemente desto schneller die Konvergenz Ziel: adaptive Meshgröße (klein an Materialgrenzen, sonst gröber) wohlgeformte Dreiecke (nicht zu schmal)
5 Adaptive Dreiecksnetze Geg.: Quadrat Q =[0,U] [0,U] für Zweierpotenz U =2 j mit oktilinearen, ganzzahligen Polygonen im Inneren. Ges.: Dreiecksnetz für Q mit folgenden Eigenschaften
6 Adaptive Dreiecksnetze Geg.: Quadrat Q =[0,U] [0,U] für Zweierpotenz U =2 j mit oktilinearen, ganzzahligen Polygonen im Inneren. unzulässige Dreiecksknoten Ges.: Dreiecksnetz für Q mit folgenden Eigenschaften keine Dreiecksknoten im Inneren von Kanten
7 Adaptive Dreiecksnetze Geg.: Quadrat Q =[0,U] [0,U] für Zweierpotenz U =2 j mit oktilinearen, ganzzahligen Polygonen im Inneren. nicht Teil des Dreiecksnetzes Ges.: Dreiecksnetz für Q mit folgenden Eigenschaften keine Dreiecksknoten im Inneren von Kanten Eingabekanten müssen Teil des Dreiecksnetzes sein
8 Adaptive Dreiecksnetze Geg.: Quadrat Q =[0,U] [0,U] für Zweierpotenz U =2 j mit oktilinearen, ganzzahligen Polygonen im Inneren. unzulässige Winkel Ges.: Dreiecksnetz für Q mit folgenden Eigenschaften gültig { keine Dreiecksknoten im Inneren von Kanten Eingabekanten müssen Teil des Dreiecksnetzes sein Dreieckswinkel zwischen 45 und 90
9 Adaptive Dreiecksnetze Geg.: Quadrat Q =[0,U] [0,U] für Zweierpotenz U =2 j mit oktilinearen, ganzzahligen Polygonen im Inneren. uniformes Dreiecksnetz Ges.: Dreiecksnetz für Q mit folgenden Eigenschaften gültig { keine Dreiecksknoten im Inneren von Kanten Eingabekanten müssen Teil des Dreiecksnetzes sein Dreieckswinkel zwischen 45 und 90 adaptiv, d.h. fein an den Polygonkanten, sonst gröber
10 Adaptive Dreiecksnetze Geg.: Quadrat Q =[0,U] [0,U] für Zweierpotenz U =2 j mit oktilinearen, ganzzahligen Polygonen im Inneren. Ges.: Dreiecksnetz für Q mit folgenden Eigenschaften gültig { uniformes Dreiecksnetz keine Dreiecksknoten im Inneren von Kanten Eingabekanten müssen Teil des Dreiecksnetzes sein Dreieckswinkel zwischen 45 und 90 adaptiv, d.h. fein an den Polygonkanten, sonst gröber Kennen wir schon sinnvolle Triangulierungen für Q?
11 Delaunay-Triangulierung? maximiert kleinste Winkel
12 Delaunay-Triangulierung? maximiert kleinste Winkel ist definiert für Punkte und ignoriert vorhandene Kanten
13 Delaunay-Triangulierung? maximiert kleinste Winkel ist definiert für Punkte und ignoriert vorhandene Kanten kann trotzdem sehr kleine Winkel produzieren
14 Delaunay-Triangulierung? maximiert kleinste Winkel ist definiert für Punkte und ignoriert vorhandene Kanten kann trotzdem sehr kleine Winkel produzieren verwendet keine zusätzlichen Steiner-Punkte Winkel zulässig, aber uniform Winkel zulässig und adaptiv 512 Dreiecke 52 Dreiecke
15 Quadtrees Def.: Ein Quadtree ist ein Wurzelbaum, in dem jeder innere Knoten vier Kinder hat. Jeder Knoten entspricht einem Quadrat und die Quadrate der Blätter bilden eine Unterteilung des Wurzelquadrats. NO NW SW SO
16 Quadtrees Def.: Ein Quadtree ist ein Wurzelbaum, in dem jeder innere Knoten vier Kinder hat. Jeder Knoten entspricht einem Quadrat und die Quadrate der Blätter bilden eine Unterteilung des Wurzelquadrats. Kanten Seiten NO NW SW SO Ecken Nachbarn
17 Quadtrees Def.: Ein Quadtree ist ein Wurzelbaum, in dem jeder innere Knoten vier Kinder hat. Jeder Knoten entspricht einem Quadrat und die Quadrate der Blätter bilden eine Unterteilung des Wurzelquadrats. Def.: Für eine Punktmenge P in einem Quadrat Q =[x Q,x Q ] [y Q,yQ ] gilt für den Quadtree T (P ) ist P 1, soistt (P ) ein Blatt, das P und Q speichert sonst sei x mid = x Q+x Q und y 2 mid = y Q+yQ und 2 P NO := {p P p x >x mid and p y >y mid } P NW := {p P p x x mid and p y >y mid } P SW := {p P p x x mid and p y y mid } P SO := {p P p x >x mid and p y y mid } T (P ) besteht aus Wurzel v, dieq speichert, mit vier Kindern für P i und Q i (i {NO,NW,SW,SO}.
18 Beispiel
19 Beispiel
20 Beispiel
21 Beispiel
22 Beispiel
23 Beispiel
24 Quadtree Eigenschaften Die rekursive Definition eines Quadtrees lässt sich direkt in einen Algorithmus zur Konstruktion umsetzen.
25 Quadtree Eigenschaften Die rekursive Definition eines Quadtrees lässt sich direkt in einen Algorithmus zur Konstruktion umsetzen. Welche Tiefe hat ein Quadtree für n Punkte?
26 Quadtree Eigenschaften Die rekursive Definition eines Quadtrees lässt sich direkt in einen Algorithmus zur Konstruktion umsetzen. Welche Tiefe hat ein Quadtree für n Punkte? Lemma 1: Die Tiefe von T (P ) ist höchstens log(s/c)+3/2, wobei c der kleinste Abstand in P ist und s die Seitenlänge des Wurzelquadrats Q.
27 Quadtree Eigenschaften Die rekursive Definition eines Quadtrees lässt sich direkt in einen Algorithmus zur Konstruktion umsetzen. Welche Tiefe hat ein Quadtree für n Punkte? Lemma 1: Die Tiefe von T (P ) ist höchstens log(s/c)+3/2, wobei c der kleinste Abstand in P ist und s die Seitenlänge des Wurzelquadrats Q. Satz 1: Ein Quadtree T (P ) für n Punkte und mit Tiefe d hat O((d + 1)n) Knoten und kann in O((d + 1)n) Zeit konstruiert werden.
28 Nachbarn finden NorthNeighbor(v, T ) Input: Knoten v in Quadtree T Output: tiefster Knoten v nicht tiefer als v mit v.q nördl. Nachbar von v.q if v = root(t ) then return nil π parent(v) if v = SW-/SO-Kind von π then return NW-/NO-Kind von π µ NorthNeighbor(π, T ) if µ = nil oder µ Blatt then return µ else if v = NW-/NO-Kind von π then return SW-/SO-Kind von µ
29 Nachbarn finden NorthNeighbor(v, T ) Input: Knoten v in Quadtree T Output: tiefster Knoten v nicht tiefer als v mit v.q nördl. Nachbar von v.q if v = root(t ) then return nil π parent(v) if v = SW-/SO-Kind von π then return NW-/NO-Kind von π µ NorthNeighbor(π, T ) if µ = nil oder µ Blatt then return µ else if v = NW-/NO-Kind von π then return SW-/SO-Kind von µ Satz 2: Sei T ein Quadtree mit Tiefe d. DerNachbareines Knotens v in beliebiger Richtung kann in O(d + 1) Zeit gefunden werden.
30 Balancierte Quadtrees Def.: Ein Quadtree heißt balanciert, wenn die Seitenlänge von je zwei Nachbarquadraten in der zugeh. Unterteilung sich um einen Faktor von höchstens 2 unterscheidet.
31 Balancierte Quadtrees Def.: Ein Quadtree heißt balanciert, wenn die Seitenlänge von je zwei Nachbarquadraten in der zugeh. Unterteilung sich um einen Faktor von höchstens 2 unterscheidet.
32 Balancierte Quadtrees Def.: Ein Quadtree heißt balanciert, wenn die Seitenlänge von je zwei Nachbarquadraten in der zugeh. Unterteilung sich um einen Faktor von höchstens 2 unterscheidet.
33 Quadtrees balancieren BalanceQuadtree(T ) Input: Quadtree T Output: balancierter Quadtree T L Liste aller Blätter von T while L nicht leer do µ extrahiere Blatt aus L if µ.q zu groß then Teile µ.q in vier Teile und lege vier Blätter in T an füge neue Blätter zu L hinzu if µ.q hat jetzt zu große Nachbarn then füge sie zu L hinzu return T
34 Quadtrees balancieren BalanceQuadtree(T ) Input: Quadtree T Output: balancierter Quadtree T L Liste aller Blätter von T while L nicht leer do µ extrahiere Blatt aus L if µ.q zu groß then Wie? Teile µ.q in vier Teile und lege vier Blätter in T an füge neue Blätter zu L hinzu if µ.q hat jetzt zu große Nachbarn then füge sie zu L hinzu return T Wie?
35 Quadtrees balancieren BalanceQuadtree(T ) Input: Quadtree T Output: balancierter Quadtree T L Liste aller Blätter von T while L nicht leer do µ extrahiere Blatt aus L if µ.q zu groß then Wie? Teile µ.q in vier Teile und lege vier Blätter in T an füge neue Blätter zu L hinzu if µ.q hat jetzt zu große Nachbarn then füge sie zu L hinzu return T Wie? Wie groß kann ein balancierter Quadtree werden?
36 Quadtrees balancieren BalanceQuadtree(T ) Input: Quadtree T Output: balancierter Quadtree T L Liste aller Blätter von T while L nicht leer do µ extrahiere Blatt aus L if µ.q zu groß then Teile µ.q in vier Teile und lege vier Blätter in T an füge neue Blätter zu L hinzu if µ.q hat jetzt zu große Nachbarn then füge sie zu L hinzu return T Satz 3: Sei T ein Quadtree mit m Knoten und Tiefe d. Die balancierte Version T B von T hat O(m) Knoten und kann in O((d + 1)m) Zeit konstruiert werden.
37 Quadtrees und adaptive Dreiecksnetze Erinnerung: Geg.: Quadrat Q =[0,U] [0,U] für Zweierpotenz U =2 j mit oktilinearen, ganzzahligen Polygonen im Inneren. Ges.: Dreiecksnetz für Q mit folgenden Eigenschaften gültig { keine Dreiecksknoten im Inneren von Kanten Eingabekanten müssen Teil des Dreiecksnetzes sein Dreieckswinkel zwischen 45 und 90 adaptiv, d.h. fein an den Polygonkanten, sonst gröber
38 Quadtrees und adaptive Dreiecksnetze Erinnerung: Geg.: Quadrat Q =[0,U] [0,U] für Zweierpotenz U =2 j mit oktilinearen, ganzzahligen Polygonen im Inneren. Ges.: Dreiecksnetz für Q mit folgenden Eigenschaften gültig { Idee: keine Dreiecksknoten im Inneren von Kanten Eingabekanten müssen Teil des Dreiecksnetzes sein Dreieckswinkel zwischen 45 und 90 adaptiv, d.h. fein an den Polygonkanten, sonst gröber Nutze Quadtree als Ausgangsbasis für das Dreiecksnetz!
39 Quadtrees und adaptive Dreiecksnetze Erinnerung: Geg.: Quadrat Q =[0,U] [0,U] für Zweierpotenz U =2 j mit oktilinearen, ganzzahligen Polygonen im Inneren. Ges.: Dreiecksnetz für Q mit folgenden Eigenschaften gültig { Idee: keine Dreiecksknoten im Inneren von Kanten Eingabekanten müssen Teil des Dreiecksnetzes sein Dreieckswinkel zwischen 45 und 90 adaptiv, d.h. fein an den Polygonkanten, sonst gröber Nutze Quadtree als Ausgangsbasis für das Dreiecksnetz! Was muss angepasst werden?
40 Quadtrees und adaptive Dreiecksnetze Erinnerung: Geg.: Quadrat Q =[0,U] [0,U] für Zweierpotenz U =2 j mit oktilinearen, ganzzahligen Polygonen im Inneren. Ges.: Dreiecksnetz für Q mit folgenden Eigenschaften gültig { Idee: keine Dreiecksknoten im Inneren von Kanten Eingabekanten müssen Teil des Dreiecksnetzes sein Dreieckswinkel zwischen 45 und 90 adaptiv, d.h. fein an den Polygonkanten, sonst gröber Nutze Quadtree als Ausgangsbasis für das Dreiecksnetz! Anpassung: Zerteile Quadrate bis sie nicht mehr von Polygon geschnitten werden oder Größe 1 haben
41 Quadtrees und adaptive Dreiecksnetze Erinnerung: Geg.: Quadrat Q =[0,U] [0,U] für Zweierpotenz U =2 j mit oktilinearen, ganzzahligen Polygonen im Inneren. Ges.: Dreiecksnetz für Q mit folgenden Eigenschaften gültig { Idee: keine Dreiecksknoten im Inneren von Kanten Eingabekanten müssen Teil des Dreiecksnetzes sein Dreieckswinkel zwischen 45 und 90 adaptiv, d.h. fein an den Polygonkanten, sonst gröber Quadrate und Kanten sind abgeschlossen Nutze Quadtree als Ausgangsbasis für das Dreiecksnetz! Anpassung: Zerteile Quadrate bis sie nicht mehr von Polygon geschnitten werden oder Größe 1 haben
42 Vom Quadtree zum Dreiecksnetz
43 Vom Quadtree zum Dreiecksnetz
44 Vom Quadtree zum Dreiecksnetz Beob.: wenn das Innere eines Quadrats im Quadtree geschnitten wird, dann durch Diagonale
45 Vom Quadtree zum Dreiecksnetz Beob.: wenn das Innere eines Quadrats im Quadtree geschnitten wird, dann durch Diagonale Wie bekommt man ein gültiges Dreiecksnetz?
46 Vom Quadtree zum Dreiecksnetz Beob.: wenn das Innere eines Quadrats im Quadtree geschnitten wird, dann durch Diagonale Wie bekommt man ein gültiges Dreiecksnetz? Knoten im Kanteninneren Diagonalen für alle verbleibenden Quadrate?
47 Vom Quadtree zum Dreiecksnetz Beob.: wenn das Innere eines Quadrats im Quadtree geschnitten wird, dann durch Diagonale Wie bekommt man ein gültiges Dreiecksnetz? zu kleine Dreieckswinkel Diagonalen für alle verbleibenden Quadrate? Nutze Unterteilungsknoten in Triangulierung? nein!
48 Vom Quadtree zum Dreiecksnetz Beob.: wenn das Innere eines Quadrats im Quadtree geschnitten wird, dann durch Diagonale Wie bekommt man ein gültiges Dreiecksnetz? Diagonalen für alle verbleibenden Quadrate? Nutze Unterteilungsknoten in Triangulierung? nein! nein! Balanciere Quadtree und füge ggf. einen Steinerknoten ein!
49 Vom Quadtree zum Dreiecksnetz Beob.: wenn das Innere eines Quadrats im Quadtree geschnitten wird, dann durch Diagonale Wie bekommt man ein gültiges Dreiecksnetz? Diagonalen für alle verbleibenden Quadrate? Nutze Unterteilungsknoten in Triangulierung? nein! nein! Balanciere Quadtree und füge ggf. einen Steinerknoten ein!
50 Algorithmus ErzeugeMesh(S) Input: Menge S oktilinearer, ganzzahliger Polygone in Q =[0, 2 j ] [0, 2 j ] Output: gültiges, adaptives Dreiecksnetz für S T CreateQuadtree T BalanceQuadtree(T ) D DCEL für Unterteilung von Q durch T foreach Facette f in D do if int(f) S = then füge entsprechende Diagonale in f zu D hinzu else if Knoten nur an Ecken von f then füge eine Diagonale in f zu D hinzu else erzeuge Steiner-Punkt in der Mitte von f und verbinde in D zu allen Knoten auf f return D
51 Zusammenfassung Satz 4: Für eine Menge S disjunkter, oktilinearer, ganzzahliger Polygone mit Gesamtumfang p(s) in einem Quadrat Q =[0,U] [0,U] kann in O(p(S) log 2 U) Zeit ein gültiges adaptives Dreiecksnetz mit O(p(S) log U) Dreiecken erzeugt werden.
52 Diskussion Gibt es auch Quadtree-Varianten mit linearer Größe in n?
53 Diskussion Gibt es auch Quadtree-Varianten mit linearer Größe in n? Ja, wenn man innere Knoten mit nur einem nicht-leeren Kind kontrahiert bekommt man einen sog. compressed Quadtree; eine weitere Verbesserung sind Skip Quadtrees mit Größe O(n) und Einfügen, Löschen und Suchen in O(log n) Zeit [Eppstein et al., 05]
54 Diskussion Gibt es auch Quadtree-Varianten mit linearer Größe in n? Ja, wenn man innere Knoten mit nur einem nicht-leeren Kind kontrahiert bekommt man einen sog. compressed Quadtree; eine weitere Verbesserung sind Skip Quadtrees mit Größe O(n) und Einfügen, Löschen und Suchen in O(log n) Zeit [Eppstein et al., 05] Welche weiteren Anwendungen gibt es?
55 Diskussion Gibt es auch Quadtree-Varianten mit linearer Größe in n? Ja, wenn man innere Knoten mit nur einem nicht-leeren Kind kontrahiert bekommt man einen sog. compressed Quadtree; eine weitere Verbesserung sind Skip Quadtrees mit Größe O(n) und Einfügen, Löschen und Suchen in O(log n) Zeit [Eppstein et al., 05] Welche weiteren Anwendungen gibt es? Quadtrees werden in der Praxis häufig eingesetzt in Computergrafik, Bildverarbeitung, GIS etc., u.a. für Range Queries, obwohl sie theoretisch schlechter abschneiden als z.b. Range Trees oder kd-trees.
56 Diskussion Gibt es auch Quadtree-Varianten mit linearer Größe in n? Ja, wenn man innere Knoten mit nur einem nicht-leeren Kind kontrahiert bekommt man einen sog. compressed Quadtree; eine weitere Verbesserung sind Skip Quadtrees mit Größe O(n) und Einfügen, Löschen und Suchen in O(log n) Zeit [Eppstein et al., 05] Welche weiteren Anwendungen gibt es? Quadtrees werden in der Praxis häufig eingesetzt in Computergrafik, Bildverarbeitung, GIS etc., u.a. für Range Queries, obwohl sie theoretisch schlechter abschneiden als z.b. Range Trees oder kd-trees. Wie immer: höhere Dimensionen?
57 Diskussion Gibt es auch Quadtree-Varianten mit linearer Größe in n? Ja, wenn man innere Knoten mit nur einem nicht-leeren Kind kontrahiert bekommt man einen sog. compressed Quadtree; eine weitere Verbesserung sind Skip Quadtrees mit Größe O(n) und Einfügen, Löschen und Suchen in O(log n) Zeit [Eppstein et al., 05] Welche weiteren Anwendungen gibt es? Quadtrees werden in der Praxis häufig eingesetzt in Computergrafik, Bildverarbeitung, GIS etc., u.a. für Range Queries, obwohl sie theoretisch schlechter abschneiden als z.b. Range Trees oder kd-trees. Wie immer: höhere Dimensionen? Quadtrees lassen sich problemlos auf höhere Dimensionen verallgemeinern. Sie heißen dann auch Octrees.
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Suchen und Sortieren Sortieren. Heaps
Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die
Datenstruktur, die viele Operationen dynamischer Mengen unterstützt
Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)
Kurs 1613 Einführung in die imperative Programmierung
Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i
4.1 Einführung. 4.2 Z-Ordnung. 4.3 R-Bäume. 4.4 Quadtrees. Kapitel 3: Räumliche Indexstrukturen. 4. Räumliche Indexstrukturen
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Kapitel 3: Räumliche Indexstrukturen Skript zur Vorlesung Geo-Informationssysteme Wintersemester 2011/12 Ludwig-Maximilians-Universität
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum
4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)
Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der
Sortierte Folgen 250
Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:
Kostenmaße. F3 03/04 p.188/395
Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);
AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:
AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 Bäume [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
2. Lernen von Entscheidungsbäumen
2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse
t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )
Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen
4 Greedy-Algorithmen (gierige Algorithmen)
Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine
Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume
Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen
Definition. Gnutella. Gnutella. Kriterien für P2P-Netzwerke. Gnutella = +
Definition Gnutella Ein -to--netzwerk ist ein Kommunikationsnetzwerk zwischen Rechnern, in dem jeder Teilnehmer sowohl Client als auch Server- Aufgaben durchführt. Beobachtung: Das Internet ist (eigentlich
Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder
Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
Abschnitt: Algorithmendesign und Laufzeitanalyse
Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher
Informatik II. PVK Part1 Severin Wischmann [email protected] n.ethz.ch/~wiseveri
Informatik II PVK Part1 Severin Wischmann [email protected] n.ethz.ch/~wiseveri KAUM JAVA Kaum Java Viel Zeit wird für Java-spezifisches Wissen benützt Wenig wichtig für Prüfung Letztjähriger Assistent
Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20
Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:
6. Algorithmen der Computer-Geometrie
6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie
Algorithmen und Datenstrukturen Bereichsbäume
Algorithmen und Datenstrukturen Bereichsbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung k-d Baum BSP Baum R Baum Motivation
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
Computer Graphik II Tesselierung impliziter Kurven und Flächen
Computer Graphik II impliziter Kurven und Flächen 1 impliziter Flächen Problem: Nullstellenmenge kann nicht explizit berechnet werden! Lösung: ApproximaCon der Fläche auf Zellen Beispiel 2D: f p ( )
Tutorium Algorithmen & Datenstrukturen
June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten
4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.
Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Kap. 4.2: Binäre Suchbäume
Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe
6-1 A. Schwill Grundlagen der Programmierung II SS 2005
6-1 A. Schwill Grundlagen der Programmierung II SS 25 6. Suchen Suchen = Tätigkeit, in einem vorgegebenen Datenbestand alle Objekte zu ermitteln, die eine best. Bedingung, das Suchkriterium, erfüllen und
1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert
Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume
Grundlagen der 3D-Modellierung
April 28, 2009 Inhaltsverzeichnis 1 Einführung 2 Direkte Darstellungsschemata 3 Indirekte Darstellungsschemata 4 Parametrische Kurven und Freiformflächen 5 Abschluss Motivation Vom physikalischen Körper
Algorithmen und Datenstrukturen (WS 2007/08) 63
Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders
Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau
Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative
Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten
Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und
Binäre lineare Optimierung mit K*BMDs p.1/42
Binäre lineare Optimierung mit K*BMDs Ralf Wimmer [email protected] Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre
3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1
3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)
Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume
1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten
9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen
9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel
Kapiteltests zum Leitprogramm Binäre Suchbäume
Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm
Programmierung und Modellierung
Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:
Kapitel MK:IV. IV. Modellieren mit Constraints
Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren
Grundlagen der Programmierung 2. Bäume
Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)
12. Modelle für 3D-Objekte und -Szenen
12. Modelle für 3D-Objekte und -Szenen Modell: Abbild der Realität, welches bestimmte Aspekte der Realität repräsentiert (und andere ausblendet) mathematische Modelle symbolische Modelle Datenmodelle Experimentalmodelle
Falten regelmäßiger Vielecke
Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.
Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung)
Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Mathias Herrmann, Alexander Meurer Lösungsblatt zur Vorlesung Kryptanalyse WS 2009/2010 Blatt 6 / 23. Dezember
Data Mining und Text Mining Einführung. S2 Einfache Regellerner
Data Mining und Text Mining Einführung S2 Einfache Regellerner Hans Hermann Weber Univ. Erlangen, Informatik 8 Wintersemester 2003 [email protected] Inhalt Einiges über Regeln und Bäume R1 ein
Lösungsvorschläge. zu den Aufgaben im Kapitel 4
Lösungsvorschläge zu den Aufgaben im Kapitel 4 Aufgabe 4.1: Der KNP-Algorithmus kann verbessert werden, wenn in der Funktion nexttabelle die Zuweisung next[tabindex] = ruecksprung; auf die etwas differenziertere
Das Falten-und-Schneiden Problem
Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit
Algorithmische Methoden der Netzwerkanalyse
Algorithmische Methoden der Netzwerkanalyse Marco Gaertler 9. Dezember, 2008 1/ 15 Abstandszentralitäten 2/ 15 Distanzsummen auf Bäumen Lemma Sei T = (V, E) ein ungerichteter Baum und T s = (V S, E s )
Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany [email protected]. Stammbaum. Stammbaum. Stammbaum
lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany [email protected]. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum
Codierung, Codes (variabler Länge)
Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls
Algorithmen & Datenstrukturen 1. Klausur
Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse
Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen
Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter
3. Übung Algorithmen I
Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der
Organic Computing: Peer-to-Peer-Netzwerke
Organic Computing Peer-to-Peer-Netzwerke Rolf Wanka Sommersemester 2015 [email protected] Inhalte Kurze Geschichte der Peer-to-Peer- Netzwerke Das Internet: Unter dem Overlay Die ersten Peer-to-Peer-Netzwerke
Vorlesung 3 MINIMALE SPANNBÄUME
Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei
Frag die Maus. Sascha Kurz [email protected]. Diskrete Geometrie 09.05.2006. Universität Bayreuth. Frag die Maus. Sascha Kurz.
[email protected] Universität Bayreuth Diskrete Geometrie 09.05.2006 Gliederung 1 2 Frag doch mal die Maus Frag doch mal die Maus Für alle, die die große Samstagabend-Show im Ersten verpasst
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
Laufzeit und Komplexität
Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen
Modelle und Statistiken
Kapitel 4 Modelle und Statistiken In letzter Zeit werden vermehrt Parameter (Gradfolgen, Kernzahlfolgen, etc.) empirischer Graphen (Internet, WWW, Proteine, etc.) berechnet und diskutiert. Insbesondere
Einführung in die Informatik 1
Einführung in die Informatik 1 Datenorganisation und Datenstrukturen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 [email protected] Sprechstunde: Freitag, 12:30-14:00
Seminar Komplexe Objekte in Datenbanken
Seminar Komplexe Objekte in Datenbanken OPTICS: Ordering Points To Identify the Clustering Structure Lehrstuhl für Informatik IX - Univ.-Prof. Dr. Thomas Seidl, RWTH-Aachen http://www-i9.informatik.rwth-aachen.de
Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher [email protected]
Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme Faktorisierung Stefan Büttcher [email protected] 1 Definition. (RSA-Problem) Gegeben: Ò ÔÕ, ein RSA-Modul mit unbekannten Primfaktoren
Informatik II Greedy-Algorithmen
7/7/06 lausthal Erinnerung: Dynamische Programmierung Informatik II reedy-algorithmen. Zachmann lausthal University, ermany [email protected] Zusammenfassung der grundlegenden Idee: Optimale Sub-Struktur:
Binary Space Partitioning Trees: Konzepte und Anwendungen
Binary Space Partitioning Trees: Konzepte und Anwendungen Bastian Rieck Gliederung 1 Motivation 2 BSP Trees: Der klassische Ansatz Grundlagen Maleralgorithmus Probleme und Erweiterungen 3 BSP Trees: Anwendungen
Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. [email protected]
Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern [email protected] Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
Algorithmen und Datenstrukturen Balancierte Suchbäume
Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen
Algorithmentheorie. 13 - Maximale Flüsse
Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk
6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti
6 Baumstrukturen Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Beispiel: Hierarchisches File System 2
Sortierverfahren für Felder (Listen)
Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es
Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)
Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter
Gittergenerierungsmethoden zur Finite Elemente Simulation aus Bilddaten
Gittergenerierungsmethoden zur Finite Elemente Simulation aus Bilddaten Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science Westfälische Wilhelms-Universität Münster Fachbereich Mathematik
Praktikum Planare Graphen
1 Praktikum Planare Graphen Michael Baur, Martin Holzer, Steffen Mecke 10. November 2006 Einleitung Gliederung 2 Grundlagenwissen zu planaren Graphen Themenvorstellung Gruppeneinteilung Planare Graphen
CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles. Stefan Fleischer, Adolf Hille
CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles Stefan Fleischer, Adolf Hille Gliederung des Vortrags Motivation Physikalische Modellgrundlagen CPM im Einzelnen Resultate
Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering
Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas
Suchen und Sortieren
(Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten
Finite Elemente in Materialwissenschaften
Finite Elemente in Materialwissenschaften Dieter Süss Institut für Festkörperphysik (8. Stock gelb) Vienna University of Technology [email protected] http:/// http:///suess/papers Outline Geschichte
Programmierkurs Java
Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen
Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1
Sortieren durch Einfügen Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Schon wieder aufräumen Schon wieder Aufräumen, dabei habe ich doch erst neulich man findet alles schneller wieder Bücher auf Regal
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Überblick. Lineares Suchen
Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn
Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:
Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative
Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir
Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.
