Organic Computing: Peer-to-Peer-Netzwerke
|
|
|
- Rudolf Müller
- vor 9 Jahren
- Abrufe
Transkript
1 Organic Computing Peer-to-Peer-Netzwerke Rolf Wanka Sommersemester 2015
2 Inhalte Kurze Geschichte der Peer-to-Peer- Netzwerke Das Internet: Unter dem Overlay Die ersten Peer-to-Peer-Netzwerke CAN Napster Gnutella Chord Pastry Gradoptimierte Netzwerke Viceroy Netzwerke mit Suchbäumen Skipnet und Skip-Graphs P-Grid Selbstorganisation Pareto-Netzwerke Zufallsnetzwerke Sicherheit in Peer-to-Peer- Netzwerken Anonymität Datenzugriff: Der schnellere Download Peer-to-Peer-Netzwerke in der Praxis edonkey FastTrack Bittorrent Peer-to-Peer-Verkehr Juristische Situation 2
3 Gradoptimierte Netzwerke Viceroy A Scalable and Dynamic Emulation of the Butterfly Dahlia Malkhi, Moni Naor, David Ratajczak Tagungsband 21st Symposium on Principles of Distributed Computing, PoDC 2001, S
4 Erreichbarer Durchmesser CAN: Durchmesser O(n 1/2 ) Gesucht: Netzwerk mit kleinem Ausgangsgrad D.h. Eingangsgrad, Ausgangsgrad konstant, O(1) Durchmesser O(log n) Eine mögliche Lösung: Viceroy 4
5 Definition Butterfly-Graph (mit wrap-around-kanten) Knoten: (i, S) i ist aus {0,..,k-1} S ist k-stelliger Binärstring Interpretation m = 2 k Knoten pro Ebene k Ebenen In der Regel werden die Knoten der k-ten Ebene zweimal gezeichnet Kanten: Von (i, (b 0,..,b i,..., b k-1 )) nach ((i+1) mod k, (b 0,..,b i,..., b k-1 )) und ((i+1) mod k, (b 0,..,1-b i,..., b k-1 )) n = k 2 k Knoten 5
6 Eigenschaften Butterfly-Graph Kleiner Grad Eingangsgrad + Ausgangsgrad = 4 Kleiner Durchmesser mit log m = log n + log log n optimal Gute Simluationseigenschaften Andere Netzwerke können sehr effizient in einen Butterfly-Graphen eingebettet werden D.h. Eine Kante eines anderen Netzwerks wird durch sehr kurze Pfade im Butterfly-Graph ersetzt Einfache Routing-Algorithmen Routing-Entscheidung in konstanter Zeit möglich Kaum Flaschhälse Mit hoher W keit: Kein Knoten wird beim Routing mit Nachrichten überlastet Hohe Fehlertoleranz Ausfall von Knoten kann gut toleriert werden 6
7 Übersicht Viceroy Zielsetzung Skalierbarkeit Bewältigung von Dynamik Verteilung des Traffic Congestion Maximale Anzahl Nachrichten, die ein Peer zu bewältigen hat Kosten für Peer-Aufnahme/Entfernen Minimierung Anzahl Nachrichten/Zeit Dilation, Länge des Suchpfads Viceroy war das erste P2P-Netzwerk mit optimaler Grad/Durchmesser-Beziehung Techniken lassen sich auf andere Netzwerke übertragen 7
8 Aufbau Viceroy Knoten in Viceroy Wählen anfangs zufällig eine Ebene des Butterfly-Netzwerks (Hierzu ist es notwendig, log n zu kennen) Kombination aus drei Netzwerk- Strukturen 1. Ein Ring für alle Knoten Verkettet alle Knoten 2. Für jede Ebene ein Ring mit dem Intervall [0,1) 3. Das Butterfly-Netzwerk zwischen den Ebenen, d.h. in Ebene i gibt es Links von (i,x) zu 1.Nachfolger von (i+1,x) 2.Nachfolger von (i+1,x+2 -i ) 3.Vorgänger von (i-1, x) 8
9 Schätzung von log n Betrachte Ringnachbar auf dem Ring für alle Sei d der Abstand auf dem Ring [0,1) Dann gilt E[d] = 1/n Pr[d > c (log n)/n] < n -O(1) Pr[d < 1/n 1+c ] < n -c Damit ist log(1/d) mit hoher Wahrscheinlichkeit eine (1+ε)-Approximation von log n 9
10 Einfügen eines Peers 1. Füge Knoten an zufälliger Stelle des Rings für alle ein 2. Schätze log n ab durch Messen des Abstands zweier Peers 3. Wähle zufällige Ebene i uniform aus [1,..,log n] und x [0,1) 4. Suche Stelle im ViceRoy-Netzwerk durch LookUp ausgehend vom Ringnachbarn 5. Füge Peer in die Ebene i des ViceRoy-Netzwerks, indem der Peer in den Ring i des Netzwerks eingefügt wird die Ausgangszeiger von (i,x) Nachfolge-Peer der Position (i+1,x) Nachfolge-Peer der Position (i+1,x+2 -i ) Vorgänger-Peer der Position (i-1, x) ausgehend von den Zeigern des Nachbarn im Ring i gesucht werden Laufzeit/Anzahl Nachrichten Zeit von Lookup (O(log n)) + Finden der Nachfolger/Vorgänger (O(log n)) 10
11 Suche Peer (i,x) erhält Suchanfrage nach (j,y) IF i=j und x-y (log n) 2 /n THEN ELSE ENDIF Leite Suchanfrage auf Ringnachbar der Ebene i weiter IF y weiter rechts als x+2 i THEN Leite Suchanfrage an Nachfolger von (i+1,x+2 -i ) weiter ELSE Leite Suchanfrage an Z = Nachfolger von (i+1,x) weiter ENDIF IF Nachfolger Z weiter rechts als x THEN Suche auf dem Ring (i+1) von Z aus einen Knoten (i+1,p) mit p<x ENDIF Lemma Mit hoher Wahrscheinlichkeit benötigt Suche O(log n) Zeit und Nachrichten 11
12 Eigenschaften von ViceRoy Ausgangsgrad konstant Erwarteter Eingangsgrad konstant Durchmesser O(log n) Durch den Butterfly-Graphen kann die Kommunikationslast balanciert werden In den Butterfly-Graphen können beliebige andere Graphen effizient eingebettet werden 12
13 Die Sache mit dem Grad Ausgangsgrad: = 8 Bei perfekter Verteilung, d.h. Abstand zum Nachbarn Θ(1/n) Eingangsgrad konstant Tatsächlich Eingangsgrad: erwartet konstant aber auch Ω(log n / loglog n) kommt mit Wahrscheinlichkeit 1-n -1 vor Problem: Große Abstände auf dem Viceroy-Ring ziehen viele Links an Kleine Abstände bombardieren die Ringnachbarn Lösung: Ordne die Peers nicht durch Hashing zu Verwende das Prinzip der mehrfachen Auswahl (multiple choice). 13
14 Das Prinzip der mehrfachen Auswahl Beim Einfügen würfelt jeder Peer c log n Positionen Für jede Position p(j) wird die Abstand a(j) zwischen potentiellen linken und rechten Nachbar gemessen Peer wird an einer Position p(j) in der Mitte zwischen linken und rechten Nachbarn eingefügt, wo a(j) maximal in der Auswahl ist Lemma: Mit hoher Wahrscheinlichkeit ist der Abstand zweier Peers in den log n Viceroy-Ringen nur einen konstanten Faktor größer oder kleiner als der durchschnittliche Abstand (log n)/n. 14
15 Beweis der Korrektheit des Prinzips der mehrfachen Auswahl Lemma Nach dem Einfügen von n Peers auf einem Ring [0,1), wobei das Prinzip der mehrfachen Auswahl angewendet wird, bleiben nur Intervalle der Größe 1/(2n), 1/n und 2/n übrig. 1. Teil: Mit hoher W keit gibt es kein Intervall länger als 2/n: Beweis folgt aus folgenden Lemma: Lemma ** Sei das längste Intervall c/n (c kann von n abhängen). Dann sind nach Einfügen von 2n/c Peers alle Intervalle kürzer als c/(2n) mit hoher W keit. Wendet man dieses Lemma für c=n/2,n/4,...,4 an, folgt der erste Teil des Lemmas 15
16 Beweis der Korrektheit des Prinzips der mehrfachen Auswahl Lemma Nach Einfügen von n Peers auf einem Ring [0,1), wobei das Prinzip der mehrfachen Auswahl angewendet wird, bleiben nur Intervalle der Größe 1/(2n), 1/n und 2/n übrig. Beweis 2. Teil: Keine Intervalle kleiner als 1/(2n) entstehen Die Gesamtlänge der Intervalle der Größe 1/(2n) ist vor jedem Einfügen höchstens n/2 Ein solches Intervall wird mit Wahrscheinlichkeit höchstens 1/2 gewählt Die Wahrscheinlichkeit, dass unter c log n Intervallen nur solche gewählt werden, ist Damit wird für c>1 mit polynomiell kleiner Wahrscheinlichkeit ein Intervall der Länge 1/(4m) weiter unterteilt. 16
17 Chernov-Schranke Bernoulli-Experiment Entweder 0 mit Wahrscheinlichkeit 1-p Oder 1 mit Wahrscheinlichkeit p 17
18 Beweis von Lemma (** **) Sei das längste Intervall c/n (c kann von n abhängen). Dann sind nach Einfügen von 2n/c Peers alle Intervalle kürzer als c/(2n) mit hoher W keit. Betrachte ein Intervall der Länge c/n Mit W keit c/n wird ein solches Intervall von einem Peer getroffen Angenommen es werden für jeden Peer t log n Intervalle untersucht Die erwartete Anzahl von Treffern in diesem Intervall ist also Ist, werden alle diese Intervalle mindestens -mal getroffen Jedesmal, wenn ein Intervall geteilt wird, gab es t log n (zusätzliche) Treffer Wir wählen Dann wird jedes Intervall (mit hoher W keit) der Länge c/n geteilt. Die Chernov-Schranke liefert dann:. 18
19 Resumee ViceRoy Butterfly-Graph für Routing sehr gut geeignet viele erprobte, gute Algorithmen bekannt Erstes Peer-to-Peer-Netzwerk mit konstantem Ein- und Ausgangsgrad Aber: Mehrfache Ringstruktur relativ kompliziert Durch das Prinzip der mehrfachen Auswahl ist der Aufwand zum Einfügen O((log n) 2 ) Das Prinzip der mehrfachen Auswahl kann auch bei DeBrujin-Netzwerken angewendet werden Diese sind wesentlich einfacher Haben die gleichen Netzwerkeigenschaften 19
20 Ende
Rolf Wanka Sommersemester 2007 11. Vorlesung 05.07.2007 [email protected]
Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 11. Vorlesung 05.07.2007 [email protected] basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Inhalte Kurze Geschichte der
Peer-to-Peer- Netzwerke
Peer-to-Peer- Netzwerke Christian Schindelhauer Sommersemester 2006 14. Vorlesung 23.06.2006 [email protected] 1 Evaluation der Lehre im SS2006 Umfrage zur Qualitätssicherung und -verbesserung
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Definition. Gnutella. Gnutella. Kriterien für P2P-Netzwerke. Gnutella = +
Definition Gnutella Ein -to--netzwerk ist ein Kommunikationsnetzwerk zwischen Rechnern, in dem jeder Teilnehmer sowohl Client als auch Server- Aufgaben durchführt. Beobachtung: Das Internet ist (eigentlich
Korrelation (II) Korrelation und Kausalität
Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Algorithmentheorie. 13 - Maximale Flüsse
Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit:
Vorlesung 5.5. VERBINDUNGSNETZWERKE Kommunikation zwischen den einzelnen Komponenten eines arallelrechners wird i.d.r. über ein Netzwerk organisiert. Dabei unterscheidet man zwei Klassen der Rechner: TOOLOGIE:
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Algorithmische Mathematik
Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
Komplexe Netzwerke Robustheit
Ernst Moritz Arndt Universität Greifswald 19. 6. 2009 Komplexe Netzwerke Robustheit Dr. Matthias Scholz www.network-science.org/ss2009.html 7 Robustheit Wie robust ist ein Netzwerk bei Ausfall von Knoten?
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Konzentration auf das. Wesentliche.
Konzentration auf das Wesentliche. Machen Sie Ihre Kanzleiarbeit effizienter. 2 Sehr geehrte Leserin, sehr geehrter Leser, die Grundlagen Ihres Erfolges als Rechtsanwalt sind Ihre Expertise und Ihre Mandantenorientierung.
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29
1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Gleichungen und Ungleichungen
Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
nic.at - Salzamt im (österreichischen) Internet?
nic.at - Salzamt im (österreichischen) Internet? Dr. Barbara Schloßbauer Leiterin nic.at Rechtsabteilung Salzamt Das Wort Salzamt lebt vor allem in Österreich weiter als Ausdruck für eine nicht existierende
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
Grundlagen der Künstlichen Intelligenz
Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.
Algorithmische Kryptographie
Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Quantenkryptographie 1 Einleitung Grundlagen aus der Physik 2 Datenübertragung 1. Idee 2. Idee Nochmal Physik 3 Sichere
PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN
PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN Karlsruhe, April 2015 Verwendung dichte-basierter Teilrouten Stellen Sie sich vor, in einem belebten Gebäude,
Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)
Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen
Tutorial: Homogenitätstest
Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite
Lenstras Algorithmus für Faktorisierung
Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Plotten von Linien ( nach Jack Bresenham, 1962 )
Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels
Erstellen von x-y-diagrammen in OpenOffice.calc
Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei
LANiS Mailversender ( Version 1.2 September 2006)
LANiS-Mailversender (V 1.2) Installation und Bedienung 1 LANiS Mailversender ( Version 1.2 September 2006) Im LANiS- Schülermodul und im LANiS-Lehrermodul gibt es die Möglichkeit, Dateien aus der Schule
Die reellen Lösungen der kubischen Gleichung
Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang
sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des
Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen
Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Stephan Rosebrock Pädagogische Hochschule Karlsruhe 23. März 2013 Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe)
Melanie Kaspar, Prof. Dr. B. Grabowski 1
7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen
Repetitionsaufgaben Wurzelgleichungen
Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen
Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra
Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)
Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen
4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Peer-to-Peer- Netzwerke
Peer-to-Peer- Netzwerke Christian Schindelhauer Sommersemester 2006 1. Vorlesung 26.04.2006 [email protected] 1 Organisation Web-Seite http://cone.informatik.uni-freiburg.de/ teaching/vorlesung/peer-to-peer-s06/
AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b
AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität
Kreatives Occhi. - V o r s p a n n - Alle Knoten und Knüpfelemente sowie ihre Verwendbarkeit. Die Knoten
Kreatives Occhi - V o r s p a n n - Alle Knoten und Knüpfelemente sowie ihre Verwendbarkeit Die Knoten Der Doppelknoten: Er wird mit nur 1 Schiffchen gearbeitet (s. page Die Handhabung der Schiffchen )
Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673. Flachglasbranche.
Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673 Ug-Werte für die Flachglasbranche Einleitung Die vorliegende Broschüre enthält die Werte für
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )
Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen
Statuten in leichter Sprache
Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch
SCHRITT 1: Öffnen des Bildes und Auswahl der Option»Drucken«im Menü»Datei«...2. SCHRITT 2: Angeben des Papierformat im Dialog»Drucklayout«...
Drucken - Druckformat Frage Wie passt man Bilder beim Drucken an bestimmte Papierformate an? Antwort Das Drucken von Bildern ist mit der Druckfunktion von Capture NX sehr einfach. Hier erklären wir, wie
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Approximation durch Taylorpolynome
TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni
Information Systems Engineering Seminar
Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, 22.10.2012 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1 Planarität - Definition Ein Graph heißt
15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit
5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei
Zufallsgrößen und Wahrscheinlichkeitsverteilungen
RS 24.2.2005 Zufallsgroessen_i.mcd 1) Zufallsgröße Zufallsgrößen und Wahrscheinlichkeitsverteilungen Zu jedem Zufallsexeriment gehört ein Ergebnisraum Ω. Die einzelnen Ergebnisse ω i können Buchstaben,
Über Arrays und verkettete Listen Listen in Delphi
Über Arrays und verkettete Listen Listen in Delphi Michael Puff [email protected] 2010-03-26 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 2 Arrays 4 3 Einfach verkettete Listen 7 4 Doppelt verkettete
Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Algorithmen für Graphen Fragestellungen: Suche
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen
Media Teil III. Begriffe, Definitionen, Übungen
Media Teil III. Begriffe, Definitionen, Übungen Kapitel 1 (Intermedia- Vergleich: Affinität) 1 Affinitätsbewertung als Mittel des Intermedia-Vergleichs Um die Streugenauigkeit eines Werbeträgers zu bestimmen,
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
C.M.I. Control and Monitoring Interface. Zusatzanleitung: Datentransfer mit CAN over Ethernet (COE) Version 1.08
C.M.I. Version 1.08 Control and Monitoring Interface Zusatzanleitung: Datentransfer mit CAN over Ethernet (COE) de LAN LAN Beschreibung der Datentransfermethode Mit dieser Methode ist es möglich, analoge
Einführung in die Programmierung
: Inhalt Einführung in die Programmierung Wintersemester 2008/09 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund - mit / ohne Parameter - mit / ohne Rückgabewerte
Insiderwissen 2013. Hintergrund
Insiderwissen 213 XING EVENTS mit der Eventmanagement-Software für Online Eventregistrierung &Ticketing amiando, hat es sich erneut zur Aufgabe gemacht zu analysieren, wie Eventveranstalter ihre Veranstaltungen
Der Zwei-Quadrate-Satz von Fermat
Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat
WS 2008/09. Diskrete Strukturen
WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Diana Lange. GENERATIVE GESTALTUNG Arten des Zufalls
Diana Lange GENERATIVE GESTALTUNG Arten des Zufalls RANDOM int index = 0; while (index < 200) { float x = random(0, width); float y = random(0, height); float d = random(40, 100); ellipse(x, y, d, d);
4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum
4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
So versprüht man digitalen Lockstoff
So versprüht man digitalen Lockstoff ist ein Spezialist für hyperlokales mobiles Advertising. Wir haben eine Webanwendung entwickelt, mit der potenzielle Kunden genau da erreicht werden, wo Sie es wünschen.
Simulation LIF5000. Abbildung 1
Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles
Ein Einfaches AIDS Modell
Ein Einfaches AIDS Modell Martin Bauer: 990395 Guntram Rümmele: 99008 Das SIR - Modell Die Modellierung von epidemischen Modellen hat schon lange Tradition. Man hat schon immer versucht Erklärungen für
Erfahrungen mit Hartz IV- Empfängern
Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November
