Boolesche Operationen und lokale Manipulationen
|
|
|
- Carl Fried
- vor 7 Jahren
- Abrufe
Transkript
1 1 Boolesche Operationen und lokale Manipulationen Mit Hilfe Boolescher Operatoren werden komplexe Körper aus Instanzen generischer Grundkörper konstruiert.. Grundkörper Aus den Grundkörpern erzeugter Körper Beschreibung des Problems Die Eingabe des Booleschen Operation sind 2 Halbkanten Datenstrukturen a und B. A und B werden als korrekt angenommen, d.h. sie sind 2.Mannigfaltigkeiten, das bedeutet sie erfüllen folgende Kriterien:
2 2 1. Jede Kante gehört zu genau 2 Flächen 2. Jeder Knoten ist umgeben von genau einem Zykel von Kanten und Flächen. 3. Flächen schneiden sich nur an gemeinsamen Kanten und Punkten. Die Booleschen Operationen sind allerdings nicht angeschlossen für 2- Mannigfaltigkeit, d.h. z.b. kann der Differenz eines Würfels mit einem Prisma einen Körper ergeben, der keine 2 Mannigfaltigkeit ist. Um dieses Problem zu lösen, werden Pseudomanifolds benutzt. Dabei wird auf Kriterium 3 verzichtet und stattdessen eingeführt: 3': Flächen dürfen sich nicht in ihren inneren Punkten schneiden. Die anderen Schnitte dürfen die folgenden Formen haben: Zwei Kanten des Polyeders können koinzident sein. Dann müssen ihre Nachbarschaften disjunkt sein. Eine Kante K kann auf einer Fläche F liegen. Dann müssen beide zu K adjazenten Flächen auf der gleichen Seite von F liegen. Ein Punkt V kann auf einer Fläche F liegen. Dann müssen alle zu V adjazenten Kanten und Flächen auf der gleichen Seite von F liegen. Ein Punkt V kann auf einer Kante E oder einem Punkt V2 liegen. Dann müssen alle Kanten und Flächen adjazent zu V auf der gleichen Seite der Oberfläche liegen, auf der die Kante E oder der Punkt V2 liegen.
3 3 Die Oberfläche eines Körpers A kann in Bezug zu einem anderen Körper B klassifiziert werden in: = Teil von A der außerhalb B liegt. AinB = Teil von A der innerhalb B liegt. Wenn die beiden Körper A und B keine Flächen haben, an denen sie sich berühren und auch keine Kanten und kein Punkt eine Fläche des anderen Körpers berührt, kann man die Booleschen Operationen beschreiben mit: Definition 1 A B = A B = AinB A \ B = () -1 () -1 bedeutet dabei, dass die Orientierung alle Kanten umgedreht wird.
4 4 Um auch den Fall zu behandeln, dass Flächen sich berühren muss eine 8 Wege Klassifizierung benutzt werden. Aon B+ = Teile von b(a) die auf b(b) liegen, wo die Orientierung der Fläche gleich ist. Aon B= Teile von b(a) die auf b(b) liegen, wo die Orientierung der Fläche ungleich ist. Analog BonA+ und BonA-.
5 5 Die Booleschen Operationen können dann wir folgt berechnet werden: A B = Aon B+ A B = AinB Aon B+ A \ B = ()-1 Aon BUm die Berechnung zu vereinfachen werden für jede Operation die Kanten die auf den sich berührenden Flächen liegen jeweils einer der anderen Klassen zugeteilt. Tabelle 1
6 6 Aufbau des Algorithmus Teilen der Kanten Ermittlung der Spuren Ermittlung der Restkanten Aus der BRep Datenstruktur können die Beziehungen zwischen den Punkten(V), Kanten (E) und Flächen (F) abgeleitet werden. Zu jeder Fläche wird die Normaldarstellung ax+by+cz+d=0 notiert und auf welcher Seite innen ist. Wenn die Außenberandung jeweils gegen den Uhrzeigersinn erfolgt zeigt das Vektorprodukt a x b von zwei adjazenten Kanten a und b, wobei b auf a folgt, nach außen. Gilt für den Punkt c= (xc,yc,zc)= a x b : a*xc+b*yc+c*zc+d>0 so wird bei der Fläche +1 notiert, sonst -1. So kann später bei 2 Flächen, die auf der gleichen Ebene liegen festgestellt werden, ob sie die gleiche Orientierung haben. D:\CA DV orlesung\bool2.k OG n F n 2 n V 2 n E Teilen der Kanten Jede Kante eines Körpers wird mit allen Flächen des anderen Körpers geschnitten Kante e soll mit Fläche F geschnitten werden Es gibt folgende Möglichkeiten: 1. Die Kante e liegt ganz auf einer Seite von F => kein Schnitt 2. Die Knoten von e liegen auf verschiedenen Seiten von F, der Schnittpunkt vi kann berechnet werden. vi liegt: a. innerhalb von F b. außerhalb von F c. auf einer Kante von F d. auf einem Knoten von F 3. Ein oder beide Knoten von v liegen auf F. Knoten wie bei (2) klassifizieren Bei 2a, 2c und 2d wird die Kante jeweils am Schnittpunkt geteilt.
7 7 Der erzeugte Knoten ist adjazent zu beiden Teilkanten und zu allen Flächen die adjazent zu beiden Knoten der Kante sind und zur Fläche, die die Kante geschnitten hat. Damit sind alle Knoten, die im Ergebniskörper vorkommen erzeugt. Die Kanten der Ausgangskörper können klassifiziert werden. AinB,,, bzw. minus(d.h. mit umgedrehter Kantenrichtung. Ermittlung der Spuren Spuren sind die Kanten, die bei der Operation neu entstehen. Dazu werden alle Flächen des einen Körpers mit den Flächen des anderen Körpers geschnitten. Bei einem Polyeder ist dies eine Gerade. Von dieser Geraden werden die Teile genommen, die in beiden Flächen liegen. Die Endpunkte dieser Linie liegen auf einem der vorher ermittelten Punkte. Diese Kanten gehören auf jeden Fall zum Ergebniskörper Die Spurkanten sind jeweils adjazent zu den geschnittenen Flächen. Ermittlung der neuen Flächen Aus den originalen Kanten und den beim Teilen der Kanten ermittelten Kanten und den Spurkanten werden die zugehörigen Flächen ermittelt. Zu den Flächen werden die adjazenten Kanten ermittelt. Aus diesen werden die Umrandungen ermittelt, ähnlich wie im 2D. Diese Flächen können wie folgt klassifiziert werden: : AinB: AonBhaben. Flächen von A außerhalb von B Flächen von A innerhalb von B Flächen von B außerhalb von A Flächen von B innerhalb von A Flächen von A die B berühren und die gleiche Orientierung haben. Flächen von A die B berühren und die unterschiedliche Orientierung Gleiche Orientierung bedeutet, dass auf der gleichen Seite außen ist. Da die entstandenen Flächen alle disjunkt sind kann leicht festgestellt werden, in welche Klasse eine Fläche gehört. Es gilt: wenn ein Knoten von A echt außerhalb von B AinB wenn ein Knoten echt innerhalb von B Für und analog. Für die restlichen Flächen von A sind alle Knoten auf dem Rand von B. Es gilt, wenn die Orientierung gleich ist und AonB- sonst.
8 8 E:\CadVorlesung\2quader.PIC AinB A sei der tiefere Quader und B der breitere In das Ergebnis werden folgende Flächen übernommen: A B = Aon B+ A B = AinB Aon B+ A \ B = () -1 Aon B- () -1 bedeutet, dass die Orientierung geändert wird.
9 9 E:\CadVorlesung\2quaderUnion.PIC Anschließend müssen noch die koplanaren Flächen zusammengefasst werden. Im Beispiel sind dies auf der oberen Fläche, und Auf der linken Fläche: und Beim Durchschnitt erhält man: E:\CadVorlesung\2quaderInters.PIC AinB Hier müssen keine Flächen zusammen gefasst werden. Und bei der Differenz A-B:
10 10 E:\CadVorlesung\2quaderMinus.PIC Auch hier sind keine Flächen zusammen zu fassen. Lokale Manipulationen C:\CadVorlesung\runden0.PIC Bei dem Quader soll die Kante oben rechts abgerundet werden. Dazu wird ein Quader mit der Seitenlänge des Radius beim Runden an die Kante gelegt. Ferner ein Zylinder mit dem Rundenradius und einer Achse durch die innere Kante des zweiten Quaders.
11 C:\CadVorlesung\runden1.PIC C:\CadVorlesung\runden2.PIC 11 Der Zylinder wird vom zweiten Quader abgezogen. Das Ergebnis wird dann vom Quader abgezogen und ergibt die Rundung.
12 C:\CadVorlesung\runden3.PIC C:\CadVorlesung\runden6.PIC 12 Analog kann auch die Kante oben vorne gerundet werden. Erzeugen eines Schnittes Für technische Zeichnungen werden Schnitte durch einen Körper benötigt. Dazu muss der Körper an der Schnittebene in 2 Körper geteilt werden. Dies kann mit einem ähnlichen Algorithmus wie bei den booleschen Operationen geschehen. Es werden die Schnitte aller Kanten mit der Schnittebene ermittelt.
13 13 Dies sind im Beispiel die Punkte 1,2,3,4,5,6,7,8. An den Schnittpunkten werden Nullkanten eingefügt. Die Nullkanten einer Fläche werden verbunden und ergeben das Ergebnis.
Featurebasierte 3D Modellierung
1 Featurebasierte 3D Modellierung Moderne 3D arbeiten häufig mit einer Feature Modellierung. Hierbei gibt es eine Reihe von vordefinierten Konstruktionen, die der Reihe nach angewandt werden. Diese Basis
Boolesche Operationen in 2D
1 Boolesche Operationen in 2D Bevor die komplizierten Operationen mit 3 dimensionalen Körpern gebracht werden, soll das Prinzip am Beispiel von 2 Flächen demonstriert werden. Die 2D Flächen seien Polygone,
Projektaufgabe Rohrsysteme
Projektaufgabe Rohrsysteme Um die hintere Wand des Badezimmers zu konstruieren extrudiert man ein Rechteck mit den Längen 30 * 2 in die Höhe von 20. Der Grundkörper der Badewanne (hier blau) hat die Maße
Darstellungsarten für 3D-Körper. Boundary Representation (BRep):
Darstellungsarten für 3D-Körper Boundary Representation (BRep): Darstellung eines (verallgemeinerten) Polyeders durch das System seiner Ecken, Kanten und Facetten Abspeichern durch (Teilgraphen des) vef-graphen
4.22 Buch XI der Elemente
4.22 Buch XI der Elemente In Buch XI werden die Grundbegriffe der räumlichen Geometrie eingeführt und für viele Propositionen aus den Büchern I und VI die entsprechende dreidimensionale Aussagen bewiesen.
Tools und Techniken. Gängige Arbeitsabläufe. Ein Gesicht formen
1 1 1 1 1 1 1 1 Tools und Techniken Gängige Arbeitsabläufe Ein Gesicht formen In diesem Kapitel gebe ich besonders Einsteigern einen Überblick über den Einsatz gängiger Softwarewerkzeuge. Anhand von kurzen
Kurs zur Ergänzungsprüfung Darstellende Geometrie CAD. Ebenes Zeichnen (2D-CAD) und die ersten Befehle
CAD Ebenes Zeichnen (2D-CAD) und die ersten Befehle Schnellzugriff-Werkzeugkasten (Quick Access Toolbar) Registerkarten (Tabs) Gruppenfenster (Panels) Zeichenfläche Befehlszeile: für schriftl. Eingabe
Oberfläche von Körpern
Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h
Abitur 2013 Mathematik Geometrie V
Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die
1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.
Themenerläuterung Bei diesem Thema werden die unterschiedlichsten Körper vorgegeben wie Würfel, Prisma, Zylinder, Kegel und Pyramide. Auf den Außenflächen bzw. in den Körpern befinden sich Strecken, deren
1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.
Themenerläuterung Im Kapitel Zusammengesetzte Körper geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. Es
Flächeninhalt, Volumen und Integral
Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1
Algorithmische Geometrie: Schnittpunkte von Strecken
Algorithmische Geometrie: Schnittpunkte von Strecken Nico Düvelmeyer WS 2009/2010, 3.11.2009 3 Phasen im Algorithmenentwurf 1. Konzentration auf das Hauptproblem 2. Verallgemeinerung auf entartete Eingaben
Pi über den Kreisumfang berechnen
Pi über den Kreisumfang berechnen Die Babylonier wussten schon vor über 4000 Jahren, dass das Verhältnis von Kreisumfang zum Durchmesser konstant sein muss. Tatsächlich beschreibt die Zahl das Verhältnis
8. Modelle für feste Körper
8. Modelle für feste Körper Modell: Abbild der Realität, welches bestimmte Aspekte der Realität repräsentiert (und andere ausblendet) mathematische Modelle symbolische Modelle Datenmodelle Experimentalmodelle
Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade (R 3 )
Analytische Geometrie - Das Lotfußpunktverfahren - Gerade/Gerade R 3 ) Gerade - Gerade in R 3 ) Der Fall sich schneidender Geraden ist uninteressant. Es existiert dann ein beliebiger Abstand je nach der
Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis
Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken
5. BOOLE SCHE OPERATIONEN
5. BOOLE SCHE OPERATIONEN In diesem Abschnitt wird gezeigt, wie sich händisches Zeichnen und CAD3D sinnvoll mit einander verbinden lassen. Zunächst kann mit Modellen operiert werden, anschließend sollen
WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten
WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren
Kollisionserkennung
1 Kollisionserkennung von Jens Schedel, Christoph Forman und Philipp Baumgärtel 2 1. Einleitung Wozu wird Kollisionserkennung benötigt? 3 - für Computergraphik 4 - für Simulationen 5 - für Wegeplanung
Abituraufgaben Analytische Geometrie Wahlteil 2008 BW
Aufgabe B In einem Würfel mit den Eckpunkten, und befindet sich eine Pyramide mit einem Dreieck als Grundfläche und der Spitze (vgl. Skizze). Die Eckpunkte der Pyramidengrundfläche sind 6, 6 und 5. a)
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern
Lösungsvorschlag zur Übungsklassenarbeit 10/3
Lösungsvorschlag zur Übungsklassenarbeit 10/ Michael Kopp α 1.1 -Release Aufgabe 1 Bei dieser Aufgabe muss man den gegebenen Körper in Teilkörper Zerlegen. Das Spitze Ende des Hammers kann man als Pyramide
Vorgehen. Vorzeichnung. Für einen Altbau soll ein Tonnengewölbe konstruiert werden. 2D Vorzeichnung erstellen. 2D in 3D wandeln
1 Aufgabe : Für einen Altbau soll ein Tonnengewölbe konstruiert werden. Vorgehen 2D Vorzeichnung erstellen 2D in 3D wandeln Eventuell Architekturebenen machen. Zuerst erstellen Sie sich eine Vorzeichnung
Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen
Körperberechnung Würfel - Einheitswürfel - Oberfläche - Volumen Quader - Oberfläche - Volumen - zusammengesetzte Körper Prisma - Oberfläche Zylinder - Oberfläche Pyramide - Oberfläche - Volumen Kegel -
Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg
Pflichtteilaufgaben zu Beschreiben und Begründen Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 06 Abituraufgaben (Haupttermin) Aufgabe
2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis)
.5 Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis 1 Definition einer Funktion.Grades. Die Verschiebung des Graphen 5.1 Die Verschiebung des Graphen in y-richtung.........................
Themenerläuterung. Die wichtigsten benötigten Formeln
Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben
Algorithmische Geometrie: Arrangements und
Algorithmische Geometrie: Arrangements und Dualität Nico Düvelmeyer WS 2009/2010, 19.1.2010 Überblick 1 Strahlenverfolgung und Diskrepanz 2 Dualität Dualitäts-Abbildung Transformation des Problems zur
Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen
Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Sommersemester 2012 Matthias Fischer [email protected] Vorlesung 12 26.6.2012 Matthias Fischer 374 Übersicht Motivation Modell der Sichtbarkeit Eigenschaft
Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift ... Allgemeine Hinweise
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 7 Prof. Dr. Javier Esparza Wintersemester 2008/09 Abschlussklausur 7. Februar 2009 Diskrete Strukturen Name Vorname Studiengang
Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :
Schrägbilder von Körpern Quader
Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme
Abitur 2011 G8 Musterabitur Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen
Invarianten in der Mathematik
Prof. Dr. A. Beliakova, 23. Schweizerischer Tag über Mathematik und Unterricht Was ist eine Invariante? Invarianten in der Mathematik Aufgabe 1 Können die 11 gezeichnenten Zahnräder sich gleichzeitig drehen?
Körper erkennen und beschreiben
Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form
Lösungen. Christian Haas. Durchdringungen. Ausbildungseinheit für Anlagen- und Apparatebauer/innen. Reform Lernziele:
Durchdringungen Ausbildungseinheit für Anlagen- und Apparatebauer/innen EFZ Reform 2013 13 Lösungen Lernziele: Durchdringungen im Zusammenhang mit den Abwicklungen konstruieren Christian Haas Zeichnungstechnik
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Zeichnen von Netzen in GAM
Zeichnen von Netzen in GAM Beispiel 1: Netz einer rechteckigen Pyramide mit den Maßen ( 4 x 6 x 7 ): Erzeuge zuerst die Pyramide ( schwarz ) und anschließend ein Raster (in heller Farbe), der groß genug
Mitschriebe, Skripten, Bücher, einfacher Taschenrechner
Prüfungsfach: Methoden der Darstellung Termin: 7. März 2013 Prüfungsbeginn: Prüfungsende: zugel. Hilfsmittel: Hinweis: 11.30 Uhr 12.30 Uhr Mitschriebe, Skripten, Bücher, einfacher Taschenrechner Wir bitten
Über die regelmäßigen Platonischen Körper
Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben
Triangulierung von Schnittflächen bei der Verschneidung räumlicher Geometrie
Triangulierung von Schnittflächen bei der Verschneidung räumlicher Geometrie Patrick Eggermann Seminarvortrag Januar 2013 Inhalt 1 Einleitung: Motivation 2 Anforderungen an den Algorithmus 3 Diskussion
Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016
1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,
Themenerläuterung. Die wichtigsten benötigten Formeln
Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen quadratischer Pyramiden genannt, wie z. B. Höhe, Seitenhöhe, Seitenkante, Grundkante, Mantel, Oberfläche und Volumen. Aus den Teilangaben
Geometrische Algorithmen Segmentschnitt
Folie 1 von 36 Geometrische Algorithmen Segmentschnitt Folie 2 von 36 Segmentschnitt Übersicht Zwei Segmente Lage zweier Segmente Prüfung auf Schnittfreiheit Formeln zum Geradenschnitt Feststellen des
Geometrische Algorithmen Segmentschnitt
Folie 1 von 36 Geometrische Algorithmen Segmentschnitt Folie 2 von 36 Segmentschnitt Übersicht Zwei Segmente! Lage zweier Segmente! Prüfung auf Schnittfreiheit! Formeln zum Geradenschnitt! Feststellen
Elemente der SchulgeometrieGrundschule. Aufgabenblatt 8 Körper und Kippen
Elemente der SchulgeometrieGrundschule Aufgabenblatt 8 Körper und Kippen Aufgabe 1: a) Zeichnen Sie als Schrägbild (Winkel 45,Verkürzungsfaktor 0.5) einen Oktaeder mit der Seitenlänge 10 cm. (Achtung!
Kugel - Kugelgleichung, Lagebeziehungen
. Kugelgleichung. Lage Punkt / Kugel 3. Lage Gerade / Kugel 3. Standardverfahren 3. Alternative Kugel - Kugelgleichung, Lagebeziehungen. Lage Ebene / Kugel 5. Lage Kugel / Kugel (Schnittkreis, Berührungspunkt).
Riss lesen mit Solid Edge
Riss lesen mit Solid Edge Konstruktion eines Würfels mit Ausschnitt Wähle die Datei Tschupik2a.dft In Solid Edge Zeichnung (Draft) ist es möglich aus den gegebenen Hauptrissen den Schrägriss abzuleiten.
Relationen und Graphentheorie
Seite Graphentheorie- Relationen und Graphentheorie Grundbegriffe. Relationen- und Graphentheorie gehören zu den wichtigsten Hilfsmitteln der Informatik, die aus der diskretenmathematik stammen. Ein Graph
Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x
Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,
2 14,8 13,8 10,7. Werte einsetzen
Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte
Mitschriebe, Skripten, Bücher, einfacher Taschenrechner
Prüfungsfach: Darstellende Geometrie Termin: 5. März 2018 Prüfungsbeginn: Prüfungsende: zugel. Hilfsmittel: Hinweis: 13.30 Uhr 14.30 Uhr Mitschriebe, Skripten, Bücher, einfacher Taschenrechner Wir bitten
Mitschriebe, Skripten, Bücher, einfacher Taschenrechner
Prüfungsfach: Darstellende Geometrie Termin: 25. Februar 2015 Prüfungsbeginn: Prüfungsende: zugel. Hilfsmittel: Hinweis: 10.00 Uhr 11.00 Uhr Mitschriebe, Skripten, Bücher, einfacher Taschenrechner Wir
} Symmetrieachse von A und B.
5 Symmetrieachsen Seite 1 von 6 5 Symmetrieachsen Gleicher Abstand von zwei Punkten Betrachtet man zwei fest vorgegebene Punkte A und B, drängt sich im Zusammenhang mit dem Abstandsbegriff eine Frage auf,
Der Preow-push-Algorithmus
Der Preow-push-Algorithmus Bea Schumann 26. Juni 2009 Inhaltsverzeichnis Einleitung 2 Der generische Algorithmus 2 2. Push und Relabel........................... 3 2.. Push..............................
Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14
Aufgabe A6/ Gegeben sind die Ebene 4 : Abituraufgaben Analytische Geometrie (Pflichtteil) ab und : 8. Bestimmen Sie eine Gleichung der Schnittgeraden. (Quelle Abitur BW Aufgabe 6) Aufgabe A7/ Gegeben sind
Ultrametrik. Christian Semrau Metrische Räume
Ultrametrik Christian Semrau 05.11.2002 Inhaltsverzeichnis 1 Metrische Räume 1 1.1 Definition der Metrik.................................. 1 1.2 Offene und abgeschlossene Mengen..........................
Lernmodul 2 Topologie. Lernmodul 2: Geoobjekte und ihre Modellierung - Topologie
Folie 1 von 71 Lernmodul 2 Topologie Folie 2 von 71 Topologie Übersicht Topologie - Allgemeines Punktmengentopologie Nachbarschaft Beispiele zur Nachbarschaft Nähe, offene/geschlossene Menge Abschluß,
3. Analyse der Kamerabewegung Video - Inhaltsanalyse
3. Analyse der Kamerabewegung Video - Inhaltsanalyse Stephan Kopf Bewegungen in Videos Objektbewegungen (object motion) Kameraoperationen bzw. Kamerabewegungen (camera motion) Semantische Informationen
35 Eine Säule mit quadratischem Querschnitt hat die Mantelfläche M=1.76m 2 und das Volumen V=0.088m 3. Wie hoch ist sie?
BERECHNUNGSÜBUNGEN 1 Berechnen Sie angenähert die Masse der Luft in einem quaderförmigen Schulzimmer mit der Breite 6m, der Länge 7.m und der Höhe.6m. Die Dichte der Luft beträgt bei Raumtemperatur ca.
Quader Für das Volumen eines Quaders der Länge l, Breite b und der Höhe h gilt: Maße: Höhe Breite Länge. V Q =5cm 3cm 4cm=60cm 3
Definition Die Größe des Raumes, die ein Körper einnimmt, nennt man. Körper können mit Hilfe von Einheitswürfeln gefüllt werden, womit das gemessen oder bei verschiedenen Körpern verglichen werden kann.
I. Zahlen. Zahlensysteme 2035= Zahlenmengen 2035=5 407= Teilbarkeitsregeln. Runden Z H T
I. Zahlen Zahlensysteme Unser Zahlensystem besteht aus den Ziffern 0 bis 9 (Dezimalsystem) und ist ein Stellenwertsystem; die Stelle einer Ziffer bestimmt ihren Wert in der Zahl. Das römische Zahlensystem
π und die Quadratur des Kreises
π und die Quadratur des Kreises Schnupper-Uni für SchülerInnen 8. Februar 2006 Dr. Michael Welter http://www.math.uni-bonn.de/people/welter 1 Konstruktionen mit Zirkel und Lineal Gegeben sei eine Menge
= x 2x = x (x 12) = 0 x 5 =0 (lokales Maximum) x 6,7 = ± 12 (lokale Minima)
Maturitätsprüfung 7 Mathematik Aufgabe Gegeben ist die Funktion f(x) = x x + a) Untersuchen Sie die Funktion bezüglich Symmetrien, bestimmen Sie die Nullstellen, zeigen Sie, dass es zwei Minimalstellen
Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9
1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}
1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung
Kapitel 4: Netzplantechnik Gliederung der Vorlesung
Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Netzplantechnik 5. Minimal spannende Bäume 6. Traveling Salesman Problem 7. Flüsse in Netzwerken
größer ist als die des Zylinders. Lösung: 311,0
Aufgabe W1a/2004 Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind: 12,4 52,8 Das Volumen der unteren Pyramide
Lösungen der Übungsaufgaben III
Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion
Vorkurs Mathematik B
Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 5. September 2011 Definition (Menge) Wir verstehen unter einer Menge eine Zusammenfassung von unterscheidbaren Objekten zu einem
Aufgabe W3b/2007. Aufgabe W2b/2009
8 Aufgaben im Dokument Aufgabe W1a/2004 Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind: 12,4 52,8 Das Volumen
GRUNDLAGEN. Ausrichtung der Würfel erfolgt immer nach den Mittelflächen (diese sind unveränderlich; zb sind weiss und gelb immer gegenüber)
GRUNDLAGEN Ausrichtung der Würfel erfolgt immer nach den Mittelflächen (diese sind unveränderlich; zb sind weiss und gelb immer gegenüber) U=up=oben R=right=rechts L=left=links F=front=vorne D=down=unten
Geometrische Algorithmen Segmentschnitt. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Segmentschnitt
Folie 1 von 37 Geometrische Algorithmen Segmentschnitt Folie 2 von 37 Segmentschnitt Übersicht Zwei Segmente Lage zweier Segmente Prüfung auf Schnittfreiheit Formeln zum Geradenschnitt Feststellen des
Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5
Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel
Datenstrukturen und Algorithmen (SS 2013)
Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes
Fit in Mathe. Mai Klassenstufe 9. Körper ohne π
Thema Musterlösungen 1 Körper ohne π Ein rechtwinkliges Dreieck besteht aus den Seiten a, b und c, wobei der Seite c ein rechter Winkel gegenüberliegt. Berechne jeweils die Länge der fehlenden Seite(n).
Aufgabe W4b/2007. Aufgabe W2b/2008 8,0 3,5. Ein kegelförmiges Gefäß ist gegeben durch:
Aufgaben im Dokument Aufgabe W3b/2005 Ein Kreis wird in zwei Kreisausschnitte geteilt. Beide Ausschnitte bilden jeweils den Mantel eines Kegels (siehe Skizze). Für Kegel 1 gilt: 12. Zeigen Sie ohne Verwendung
Punktlokalisation 1. Trapez-Zerlegungen. 2. Eine Suchstruktur. 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung
Punktlokalisation 1. Trapez-Zerlegungen 2. Eine Suchstruktur 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung 4. Analyse Punktlokalisation Einteilung in Streifen Anfragezeit:
Seiten 5 / 6. Lösungen Geometrie-Dossier Würfel und Quader
1 a) c) d) Seiten 5 / 6 Lösungen eometrie-ossier Würfel und Quader Aufgaben Würfel (Lösungen sind verkleinert gezeichnet) Bei allen drei entsteht das gleiche Bild. ie Lösungsidee: 1. Zuerst anhand der
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2007 11. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Das Rucksack-Problem Ein Dieb, der einen Safe
Neues in MegaCAD 2004
Neues in MegaCAD 2004 29.08.2003 Die nachfolgenden Zeilen geben einen Überblick, was sich in MegaCAD 2004 gegenüber der Vorläuferversion erweitert und geändert hat. Die Abschnitte sind gegliedert nach
Definition : Diechromatische Zahl eines Graphen G ist die kleinste Anzahl chromatische Zahl von Farben für eine zulässige Färbung.
4 Definition : Eine zulässige Färbung ist eine Färbung der Knoten des ( un- zulässige Färbung gerichteten ) Graphen, so daß je zwei adjazente Knoten verschiedene Farben haben. Trivial ist, daß n verschiedene
Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild
Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene
A Rechnen mit natürlichen Zahlen. Seite. B Geometrische Grundbegriffe. C Rechnen mit Größen. D Brüche und negative Zahlen.
A Rechnen mit natürlichen Zahlen Seite 1 Zahlen am Zahlenstrahl... 4 2 Große Zahlen... 5 3 Runden... 6 4 Addition... 7 5 Schriftliche Addition... 8 6 Subtraktion... 9 7 Schriftliche Subtraktion... 10 8
