Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Größe: px
Ab Seite anzeigen:

Download "Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild"

Transkript

1 Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene parallele Kanten des Körpers werden als unverkürzte Strecken gezeichnet. - Zur Bildebene senkrechte Kanten des Körpers werden als Strecken unter einem festen Verzerrungswinkel zur Waagerechten und um einen festen Faktor (k) verkürzt gezeichnet. Winkel und Verkürzungsfaktor hängen von der Richtung ab, aus der projiziert wird. Dreitafelprojektion Bei der Dreitafelprojektion werden die Punkte eines Körpers senkrecht auf drei Flächen projiziert. Die Flächen stehen dabei jeweils senkrecht aufeinander. Meist beschränkt man sich dabei auf Eck- und Kantenpunkte, sowie den Umriss des Projektionsbildes. Die Dreitafelprojektion stellt bei Einzeichnung der verdeckten Kanten in der Regel eine eineindeutige Abbildung dar, d.h. hier lässt sich der Körper eindeutig aus seiner Projektion rekonstruieren. Eine sehr häufig verwendete Form des Schrägbilds ist die Kavaliersperspektive. Kanten, die parallel zur Bildebene liegen, werden in wahrer Grösse, Kanten, die senkrecht zur Bildebene verlaufen, werden unter einem Winkel von 45 und um die Hälfte verkürzt gezeichnet. Abwicklung Eine Abwicklung entsteht, indem ein Körper entlang einiger Kanten aufgeschnitten wird, so dass die Seitenflächen in die Ebene ausgelegt werden können. Es entsteht ein Bastelbogen für die Figur. Polyedernetz Ein Polyedernetz erhält man, indem eine Fläche entfernt und das nun offene Gebilde flach in die Ebene ausgebreitet wird. Die Anzahl der Ecken, Kanten und Flächen bleiben gleich, wenn die entfernte Fläche der Aussenfläche, quasi "unendlichen" Fläche zugeordnet wird. Beispiel: Polyedernetz des Würfels

2 Reguläre Polyeder (platonische Polyeder) Ein Polyeder heisst regulär, wenn alle seine Oberflächen aus demselben regelmässigen Vieleck bestehen und in jeder Ecke gleich viele dieser Vielecke zusammenstoßen. Spätestens seit Platon ist bekannt, dass es nur genau fünf reguläre konvexe Polyeder gibt: Tetraeder Hexaeder Oktaeder Dodekaeder Ikosaeder Halbreguläre Polyeder (archimedische Polyeder) Ein Polyeder heisst halbregulär oder semiregulär, wenn alle seine Oberflächen aus regelmässigen Vielecken (eventuell unterschiedlicher Eckenzahl) bestehen, und jede Ecke des Polyeders durch eine seiner Symmetrieoperationen auf jede andere Ecke abgebildet werden kann. Neben den Prismen, Antiprismen und platonischen Polyedern gibt 13 archimedische Polyeder. Diese archimedischen Polyeder entstehen, indem man bei den regulären Polyedern in geeigneter Weise Ecken wegschneidet. Beispiel 1: Ein Ikosaederstumpf ( Fussball ) entsteht, indem man einem Ikosaeder alle Ecken wegschneidet. Beispiel 2: Ein Hexaderstumpf entsteht, indem man einem Würfel wie beim Ikosaeder alle Ecken wegschneidet Beispiel 3: Ein Kuboktaeder entsteht, indem man die Kantenmitten eines Würfels als Eckpunkte eines neuen Polyeders betrachtet. 2

3 Polyedersatz von Euler E K F Tetraeder Bestimme die Anzahl Ecken (E), Kanten (K) und Flächen (F) der angegebenen Polyeder und trage die Zahlen in der Tabelle ein Hexaeder Oktaeder Es gibt einen Zusammenhang zwischen der Anzahl Ecken, Kanten und Flächen eines Polyeders: Dodekaeder Ikosaeder E.. K.. F =... Kuboktaeder (Polyedersatz von Euler) Ikosaederstumpf 5-seitige Pyramide Formeln zur Volumenberechnung Prisma: V = Grundfläche h Pyramide: V 1 = Grundfläche h 3 Kreiszylinder: Kreiskegel: Kugel: Oberfläche: O = 4πr 2 3

4 Prinzip von Cavalieri Liegen zwei Körper zwischen zueinander parallelen Ebenen E 1 und E 2 und werden sie von jeder zu E 1 parallelen Ebene E' so geschnitten, dass gleich grosse Schnittflächen entstehen, so haben die Körper gleiche Volumen. Aufgabe: Berechne Volumen und Oberfläche eines Zylinders, einer Halbkugel und eines Kreiskegels, welche alle gleich hoch sind und die gleiche Grundfläche, ein Kreis mit dem Radius r, besitzen. Vergleiche die Ergebnisse. Die Kugel Definition: Die Kugelfläche (Sphäre) ist die Menge aller Punkte im dreidimensionalen Raum, deren Abstand von einem festen Punkt des Raumes gleich einer gegebenen positiven reellen Zahl r ist. Der feste Punkt wird als Mittelpunkt oder Zentrum der Kugel bezeichnet, die Zahl r als Radius der Kugel. 4

5 Aufgaben Darstellung räumlicher Figuren 1. Stelle für die nebenstehenden Polyeder die Dreitafelprojektion, die Abwicklung und das Gitternetz dar 2. Zeichne ein Schrägbild des Körpers, von dem die Abwicklung gegeben ist (siehe Skizze rechts), und berechne sein Volumen und die gesamte Kantenlänge. 3. Bestimme für die Körper aus Aufgaben 1) und 2) die Anzahl der Ecken, der Kanten und der Flächen. Gibt es einen Zusammenhang zwischen diesen Zahlen? 4. Welches ist der kürzeste Weg auf dem Würfel, wenn man vom Punkt A (Mittelpunkt der vorderen Seitenfläche) zum Punkt B (Eckpunkt hinten) gelangen will. Wähle eine geeignete Darstellung für den Würfel. Zeichne im Würfel den kürzesten Weg ein und berechne die Länge des Weges, wenn die Kantenlänge des Würfels a = 2 beträgt. A B Volumenberechnungen 5. Berechne das Volumen und den Oberflächeninhalt der nebenstehenden Figur (ein Kreiszylinder mit quadratischem Loch, die Quadratseite ist gleich lang wie der Kreisradius r). Kreisradius r = 5 cm, Höhe h = 20 cm 6. Ein Sektglas mit einem 10,6 cm hohen kegelförmigen Kelch fasst insgesamt 277,5 cm 3 (=2,775 dl). a) Berechne den Radius der oberen Glasöffnung b) Wie viel des Getränkes enthält das Glas, wenn es nur bis zur halben Höhe gefüllt ist? 7. Der abgebildete Körper besteht aus drei Metallplatten von 5 cm Dicke und aus zwei Metallstützen, deren Querschnitt ein Quadrat mit Seitenlänge 4 cm ist. Berechne das Volumen in dm 3. 5

6 Verschiedene Aufgaben 8. Es liegen zwei kongruente, quadratische Stücke Papier mit der Kantenlänge s vor. a) Aus dem einen wird der Mantel eines Zylinders geformt, berechne sein Volumen. b) Aus dem andern wird ein möglichst grosser Viertelkreis ausgeschnitten und daraus der Mantel eines Kegels gebildet. Berechne das Volumen dieses Kegels. s s 9. Gegeben ist ein Tetraeder. a) Zeichne ein Polyedernetz des Tetraeders. b) Die Mittelpunkte der Tetraederkanten bilden nun die Ecken eines neuen Polyeders. Um was für ein Polyeder handelt es sich? c) Welches Volumen hat dieses neue Polyeder, wenn das gegebene Tetraeder ein Volumen von 560 cm 3 aufweist? 6

7 10. Zeichne ein Schrägbild und konstruiere eine genaue Dreitafelprojektion dieses Körpers, dessen Abwicklung gegeben ist. 7

Stereometrie. Rainer Hauser. Dezember 2010

Stereometrie. Rainer Hauser. Dezember 2010 Stereometrie Rainer Hauser Dezember 2010 1 Einleitung 1.1 Beziehungen im Raum Im dreidimensionalen Euklid schen Raum sind Punkte nulldimensionale, Geraden eindimensionale und Ebenen zweidimensionale Unterräume.

Mehr

Polyeder, Konvexität, Platonische und archimedische Körper

Polyeder, Konvexität, Platonische und archimedische Körper Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

11: Die Euler sche Polyederformel für planare Graphen

11: Die Euler sche Polyederformel für planare Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

35 Eine Säule mit quadratischem Querschnitt hat die Mantelfläche M=1.76m 2 und das Volumen V=0.088m 3. Wie hoch ist sie?

35 Eine Säule mit quadratischem Querschnitt hat die Mantelfläche M=1.76m 2 und das Volumen V=0.088m 3. Wie hoch ist sie? BERECHNUNGSÜBUNGEN 1 Berechnen Sie angenähert die Masse der Luft in einem quaderförmigen Schulzimmer mit der Breite 6m, der Länge 7.m und der Höhe.6m. Die Dichte der Luft beträgt bei Raumtemperatur ca.

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Stereometrie

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Eigenschaften als reguläre Parkettierungen der Sphäre Seien E die der Ecken, F die der Flächen und K die der Kanten eines konvexen Polyeders, dann gilt: K E = F 2 als reguläre Parkettierungen der Sphäre

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

2.10. Aufgaben zu Körperberechnungen

2.10. Aufgaben zu Körperberechnungen Aufgabe Vervollständige die folgende Tabelle:.0. Aufgaben zu Körperberechnungen a, cm 7,8 cm 0,5 mm, dm b 5,5 m,5 cm,5 cm, cm 0, m cm c,5 dm,6 dm 6 dm V 5, cm,5 dm 6 dm cm 9,5 mm 6,6 dm 8 dm 0 cm Aufgabe

Mehr

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge.

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. STEREOMETRIE I Grundlagen 1. Punkte, Geraden und Ebenen Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. a) Gerade Axiom:

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Körper kennen lernen Station 1

Körper kennen lernen Station 1 Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele

Mehr

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Prismen und Zylinder: 1. Berechne den Inhalt der Oberfläche, das Volumen und die Länge der Raumdiagonalen eines Würfels mit der Kantenlänge s = 30cm.

Mehr

Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2

Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2 Stereometrie-Formeln Quadrat eines Quadrats mit der Seitenlänge a? A = a Quadrat Wie lang ist die Diagonale d eines Quadrats mit der Seitenlänge a? d = a Rechteck eines Rechtecks mit den Seitenlängen a

Mehr

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

Schrägbilder zeichnen

Schrägbilder zeichnen Was sind Schrägbilder und welchen Zweck haben sie? Durch ein Schrägbild wird auf einer ebenen Fläche (z.b. Blatt Papier) ein Körper räumlich dargestellt (räumliche Perspektive des Körpers). Es gibt sehr

Mehr

Ein Prisma ist ein geometrischer Körper mit einer Grundfläche und einer Deckfläche.

Ein Prisma ist ein geometrischer Körper mit einer Grundfläche und einer Deckfläche. 1 Das Prisma Ein Prisma ist ein geometrischer Körper mit einer Grundfläche und einer Deckfläche. Grund- und Deckfläche sind deckungsgleich und zueinander parallele Vielecke. Die Höhe des Prismas ist der

Mehr

Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen

Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen Körperberechnung Würfel - Einheitswürfel - Oberfläche - Volumen Quader - Oberfläche - Volumen - zusammengesetzte Körper Prisma - Oberfläche Zylinder - Oberfläche Pyramide - Oberfläche - Volumen Kegel -

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde

Mehr

Stereometrie-Formeln Zusatzübungen (2)

Stereometrie-Formeln Zusatzübungen (2) Stereometrie-Formeln Zusatzübungen () 1. Gegeben: Würfel mit Oberflächeninhalt S = 81.1m Gesucht: Kantenlänge a. Gegeben: Würfel mit Volumen V =.5m Gesucht: Kantenlänge a. Gegeben: Würfel mit Körperdiagonale

Mehr

4.22 Buch XI der Elemente

4.22 Buch XI der Elemente 4.22 Buch XI der Elemente In Buch XI werden die Grundbegriffe der räumlichen Geometrie eingeführt und für viele Propositionen aus den Büchern I und VI die entsprechende dreidimensionale Aussagen bewiesen.

Mehr

8.1 Vorstellen im Raum

8.1 Vorstellen im Raum äumliche Geometrie 1 8 äumliche Geometrie 8.1 Vorstellen im aum 1. Alle dargestellten Körper sind aus elf Würfeln zusammengesetzt. a) Welche der Körper sind deckungsgleich zueinander? b) Welche der Körper

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

1 Grundwissen Pyramide

1 Grundwissen Pyramide 1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Bastelbogen platonische Körper

Bastelbogen platonische Körper E s gibt in der Geometrie einige wenige Körper, die die größtmögliche Symmetrie besitzen. Sie wurden nach dem griechischen Philosophen Platon (428-348 v. Chr.) benannt und heißen deswegen platonische Körper.

Mehr

Körper zum Selberbauen Polydron

Körper zum Selberbauen Polydron Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist

Mehr

Kongruenz, Vierecke und Prismen

Kongruenz, Vierecke und Prismen Kongruenz, Vierecke und Prismen Kongruente Figuren Ziele: Begriff: Kongruenz, Kongruenzsätze für Dreiecke Schrittfolgen für Konstruktionen beschreiben, über Eindeutigkeit entscheiden kongruente Teilfiguren

Mehr

Flächeninhalt, Volumen und Integral

Flächeninhalt, Volumen und Integral Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1

Mehr

Platonische Körper. 1 Die fünf platonischen Körper

Platonische Körper. 1 Die fünf platonischen Körper Platonische Körper Vortrag von Annamaria Jahn Im Proseminar Lehramt am 11.1.006 Kontakt: annamaria.jahn@online.de 1 Die fünf platonischen Körper Ein platonischer Körper ist ein Polyeder mit zueinander

Mehr

Raumgeometrie - Zylinder, Kegel

Raumgeometrie - Zylinder, Kegel Realschule / Gymnasium Raumgeometrie - Zylinder, Kegel 1. Ein Meßzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Meßzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Gliederung. Körpergrundformen - Grundbegriffe Körpermodelle und netze

Gliederung. Körpergrundformen - Grundbegriffe Körpermodelle und netze Raumgeometrie K I N G A SZŰ C S F R I E D R I C H - S C H I L L E R - U N I V E R S I T Ä T J E N A F A K U L T Ä T F Ü R M A T H E M A T I K U N D I N F O R M A T I K A B T E I L U N G D I D A K T I K

Mehr

REGULÄRE UND SEMIREGULÄRE POLYTOPE

REGULÄRE UND SEMIREGULÄRE POLYTOPE REGULÄRE UND SEMIREGULÄRE POLYTOPE regulare und semireguläre polytope ANDREAS PAFFENHOLZ FU Berlin Germany Eulersche Polyederformel Theorem Für ein Polytop mit Ecken Eulersche Polyederformel Kanten und

Mehr

G1.02 In jedes der drei Muster hat sich ein Fehler eingeschlichen. Kennzeichne diesen, indem du den Bereich mit roter Farbe einringelst!

G1.02 In jedes der drei Muster hat sich ein Fehler eingeschlichen. Kennzeichne diesen, indem du den Bereich mit roter Farbe einringelst! 1 Muster (Teil 1) G1.01 Vervollständige das Muster, sodass der gesamte Raster ausgefüllt ist! Verwende dazu ein Geodreieck und einen gespitzten Bleistift oder einen Druckbleistift mit einer 0,5 mm HB-Mine

Mehr

Übungsserie 1: Würfel und Quader

Übungsserie 1: Würfel und Quader Kantonsschule Solothurn Stereometrie RYS Übungsserie 1: Würfel und Quader 1. Berechne die fehlenden Quadergrössen: a b c V O a) 7 cm 11 cm 3 cm b) 8 mm 12.5 cm 45 cm 3 c) 3 cm 4 cm 108 cm 2 d) 54 cm 16.4

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Schrägbilder von Körpern Quader

Schrägbilder von Körpern Quader Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme

Mehr

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw. Themenerläuterung Bei diesem Thema werden die unterschiedlichsten Körper vorgegeben wie Würfel, Prisma, Zylinder, Kegel und Pyramide. Auf den Außenflächen bzw. in den Körpern befinden sich Strecken, deren

Mehr

Der Eulersche Polyedersatz

Der Eulersche Polyedersatz Der Eulersche Polyedersatz Def Die Anzahl der k Seiten eines konvexen Polytops P bezeichnen wir mit f k (P) oder kurz mit f k. Das n Tupel (f 0,f 1,...,f n 1 ) Z n heißt dann der f Vektor des (n dimensionalen)

Mehr

DARSTELLENDE GEOMETRIE I

DARSTELLENDE GEOMETRIE I DARSTELLENDE GEOMETRIE I VON DR. RUDOLF BEREIS Professor und Direktor des Instituts für Geometrie an der Technischen Universität Dresden Mit 361 Abbildungen AKADEMIE-VERLAG BERLIN 1964 h. INHALT Hinweise

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

Symmetrie im Raum An Hand der platonischen Körper

Symmetrie im Raum An Hand der platonischen Körper Symmetrie im Raum An Hand der platonischen Körper Simon Steurer 25.6.2013 Historisches Platonische Körper Vorüberlegungen Oktaeder Hexaeder Tetraeder Dodekaeder & Ikosaeder Historisches benannt nach Platon

Mehr

IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN. 1

IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN.  1 IV. BUCH: RAUM MIT n-dimensionen 8a. Die ARCHIMEDISCHEN www.udo-rehle.de 1 Archimedische Körper Zu den archimedischen Körpern gelangt man durch diverses Abschneiden der Ecken bei den platonischen Körpern.

Mehr

Kreis, Zylinder, Kegel, Kugel

Kreis, Zylinder, Kegel, Kugel Kreis, Zylinder, Kegel, Kugel Kreis Ziele: Kenntnis der Begriffe: Radius, Umfang, Durchmesser, Sehne, Sekante, Tangente, Berührungsradius einfache Berechnungen durchführen können, Formeln für Umfang und

Mehr

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte... 1.7 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................

Mehr

Inhaltsverzeichnis. III, Band, Stereometrie. 1. Die Ebene und Gerade int Raume 1

Inhaltsverzeichnis. III, Band, Stereometrie. 1. Die Ebene und Gerade int Raume 1 Inhaltsverzeichnis. III, Band, Stereometrie. Punkt 1. Die Ebene und Gerade int Raume 1 2. Ebene und Ebene 3 3. Die körperliche Ecke 4 4. Der Körper 5 5. Einteilung der Körper 5 6. Die fünf regelmäßigen

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen quadratischer Pyramiden genannt, wie z. B. Höhe, Seitenhöhe, Seitenkante, Grundkante, Mantel, Oberfläche und Volumen. Aus den Teilangaben

Mehr

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016 1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,

Mehr

II Geometrie im Raum. II.1 Polyeder

II Geometrie im Raum. II.1 Polyeder II Geometrie im Raum II1 Polyeder Eine begrenzte (beschränkte, endliche) Fläche nennt man ein Flächenstück Ein begrenztes (beschränktes, endliches) Stück des Raumes nennt man einen Körper Ein ebenes Flächenstück

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde

Mehr

Elemente der SchulgeometrieGrundschule. Aufgabenblatt 8 Körper und Kippen

Elemente der SchulgeometrieGrundschule. Aufgabenblatt 8 Körper und Kippen Elemente der SchulgeometrieGrundschule Aufgabenblatt 8 Körper und Kippen Aufgabe 1: a) Zeichnen Sie als Schrägbild (Winkel 45,Verkürzungsfaktor 0.5) einen Oktaeder mit der Seitenlänge 10 cm. (Achtung!

Mehr

: B * C < D 7,22 4 Satz des Pythagoras 36,12846,0. Das Volumen der Pyramide beträgt 128 '(. 8 ; +,-. * : +,-. 4 ;<=? 7,22 ;<= > 5 E" : E",

: B * C < D 7,22 4 Satz des Pythagoras 36,12846,0. Das Volumen der Pyramide beträgt 128 '(. 8 ; +,-. * : +,-. 4 ;<=? 7,22 ;<= > 5 E : E, 4 Aufgaben im Dokument Aufgabe P1/2010 Ein zusammengesetzter Körper besteht aus einem Zylinder und aufgesetztem Kegel. Aus diesem Körper wird eine Halbkugel herausgearbeitet (siehe Achsenschnitt). 3,0

Mehr

Kapitel 4: Zeichnerische Darstellung von Körpern. Darstellung von Körpern in der Ebene. Ziel bei der Darstellung von räumlichen Figuren (Körpern):

Kapitel 4: Zeichnerische Darstellung von Körpern. Darstellung von Körpern in der Ebene. Ziel bei der Darstellung von räumlichen Figuren (Körpern): Kapitel 4: Zeichnerische Darstellung von Körpern Darstellung von Körpern in der Ebene. Quelle im Wesentlichen: Krauter, Elementargeometrie S.1-17 Ziel bei der Darstellung von räumlichen Figuren (Körpern):

Mehr

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw. Themenerläuterung Im Kapitel Zusammengesetzte Körper geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. Es

Mehr

Wir beginnen das zweite Kapitel mit einer Faltarbeit (nach Mitchell 1997, S. 36f). Dazu benötigen wir 12 Blätter des DIN-Formates A, z.b. A 4.

Wir beginnen das zweite Kapitel mit einer Faltarbeit (nach Mitchell 1997, S. 36f). Dazu benötigen wir 12 Blätter des DIN-Formates A, z.b. A 4. 47 Polyeder.1 Einstiegsproblem Wir beginnen das zweite Kapitel mit einer Faltarbeit (nach Mitchell 1997, S. 36f). Dazu benötigen wir 1 Blätter des DIN-Formates A, z.b. A 4. H.-J. Gorski, S. Müller-Philipp,

Mehr

Polyedrische Approximation von Körpern mit Cabri 3D

Polyedrische Approximation von Körpern mit Cabri 3D Heinz Schumann Polyedrische Approximation von Körpern mit Cabri 3D Die Approximation von konvexen Körpern, deren Oberfläche nicht aus Polygonen besteht, mittels einbeschriebener konvexer Polyeder ist notwendig,

Mehr

Übersicht 2.1 Polyeder Schrägbilder Abwicklungen und Auffaltungen Zylinder und Kegel Kugeln...

Übersicht 2.1 Polyeder Schrägbilder Abwicklungen und Auffaltungen Zylinder und Kegel Kugeln... 2 Geometrie im Raum Übersicht 21 Polyeder 59 22 Schrägbilder 64 23 Abwicklungen und Auffaltungen 70 24 Zylinder und Kegel 72 25 Kugeln 76 21 Polyeder Eine begrenzte (beschränkte, endliche) Fläche nennt

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Einerseits: Zentralperspektive

Einerseits: Zentralperspektive VOM RAUM IN DIE EBENE UND ZURÜCK Ebene Figuren wie Dreiecke, Vierecke, andere Vielecke, Kreise lassen sich auf einem Zeichenblatt entweder in wahrer Größe oder unter Beibehaltung ihrer Form! maßstäblich

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: 47 Kopiervorlagen Geometrie (3) - Stereometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: 47 Kopiervorlagen Geometrie (3) - Stereometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: 47 Kopiervorlagen Geometrie (3) - Stereometrie Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Stereometrie

Mehr

Alle Unterlagen finden Sie auch auf der Internetseite

Alle Unterlagen finden Sie auch auf der Internetseite Alle Unterlagen finden Sie auch auf der Internetseite http://www.ken.ch/%7elueg/sol/ Einleitung Darum geht es: Stereometrie ist die Geometrie des Raums. In dieser SOL-Einheit sollen Sie mit einigen geometrischen

Mehr

Elementare Mathematik

Elementare Mathematik Elementare Mathematik Skript zum Workshop Platonische Körper -1- 1 Einleitung Das Thema des vorliegenden Workshops hat einen Schwerpunkt in der Geometrie des dreidimensionalen Raums, genauer: in der Mathematik

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /06/18 11:41:08 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /06/18 11:41:08 hk Exp $ $Id: convex.tex,v 1.25 2015/06/18 11:41:08 hk Exp $ 3 Konvexgeometrie 3.3 Automorphismengruppen platonischer Körper Wir behandeln gerade die Symmetrien platonischer Körper, ist P ein platonischer Körper

Mehr

4 x

4 x Quadratwurzeln und reelle Zahlen. Bestimme die Definitionsmenge des Wurzelterms in G = R a) T(x) = x b) x c) x d) x e) x +. Vereinfache a) 0 + 90 b) 6 7 + 08 7 7 c) 0 0 + d) 6. Mache den Nenner rational

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

Gegenstände der Geometrie

Gegenstände der Geometrie Gegenstände der Geometrie Inhalt Quadrat Kreis Würfel Das Das Pentagramm Parkette --- --- Seite 2 1. 1. Das Quadrat Gerade Linien in in der der Natur? Lichtstrahlen, fallende Körper, Wasseroberfläche,

Mehr

III.1. Symmetrien und Gruppen

III.1. Symmetrien und Gruppen 50 III.1. Symmetrien und Gruppen συµµετρι α heißt so viel wie Ebenmaß, richtiges Verhältnis, Harmonie. Definition: Eine Bewegung der Ebene (des Raumes), die eine Figur (einen Körper) auf sich abbildet,

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte) SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

11. Geometrische Extremalprobleme I

11. Geometrische Extremalprobleme I 11. Geometrische Extremalprobleme I Die hier behandelten geometrischen Extremalprobleme beruhen auf der Dreiecksungleichung Satz 1. Sind A, B, C drei Punkte der euklidischen Ebene mit A B, dann ist (1)

Mehr

2. Berechnungen mit Pythagoras

2. Berechnungen mit Pythagoras 2. Berechnungen mit 2.1. Grundaufgaben 1) Berechnungen an rechtwinkligen Dreiecken a) Wie lang ist die Hypotenuse, wenn die beiden Katheten eines rechtwinkligen Dreiecks 3.6 cm und 4.8 cm lang sind? b)

Mehr

verschiedene Körper Lösung: a = 1 3 m 0,76m

verschiedene Körper Lösung: a = 1 3 m 0,76m verschiedene Körper 1 (a) Konstruiere die Höhe eines regulären Tetraeders mit der Seitenlänge 6 cm, sowie den Neigungswinkel einer Seitenkante gegen die Grundfläche (b) Die Oberfläche eines regulären Oktaeders

Mehr

Elementare Mathematik

Elementare Mathematik Elementare Mathematik Skript zum Workshop Platonische Körper - 1 - RF + KP 1/2012 1 Einleitung Das Thema des vorliegenden Workshops hat einen Schwerpunkt in der Geometrie des dreidimensionalen Raums, genauer:

Mehr

8 Gerundete Körper (angepasst an das Lehrmittel Mathematik 2)

8 Gerundete Körper (angepasst an das Lehrmittel Mathematik 2) Name: Geometrie-Dossier 8 Gerundete Körper (angepasst an das Lehrmittel Mathematik 2) Inhalt: Der Kreiszylinder: Definition Berechnung des Volumens von Zylindern Berechnung von Mantelfläche und Oberfläche

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

2 14,8 13,8 10,7. Werte einsetzen

2 14,8 13,8 10,7. Werte einsetzen Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte

Mehr

Übungsaufgaben Klassenarbeit

Übungsaufgaben Klassenarbeit Übungsaufgaben Klassenarbeit Aufgabe 1 (mdb633193): Berechne die Länge an der Flussmündung. (Maße in m) Aufgabe 2 (mdb633583): Die Höhe eines Kirchturms wird ermittelt. Dazu werden, wie in der Skizze dargestellt,

Mehr

Projektarbeit Prismen

Projektarbeit Prismen Projektarbeit Prismen Von: Noah, Pascal, Joshua, Jan und Dominik S. Schule: Realschule Golzheim Schuljahr: 2017/ 2018 Inhaltsverzeichnis 1. Was ist ein Prisma? Noah - Allgemeiner Aufbau - Prismen im Alltag

Mehr

Raumgeometrie. 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar.

Raumgeometrie. 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar. Raumgeometrie 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar. H G E F K D C A B (a) Berechne den Flächeninhalt des Dreiecks ABK. Runde das Ergebnis auf zwei

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende

Mehr

Fußbälle, platonische und archimedische Körper

Fußbälle, platonische und archimedische Körper Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?

Mehr

1.9 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...

1.9 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte... 1.9 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................

Mehr

Quader Für das Volumen eines Quaders der Länge l, Breite b und der Höhe h gilt: Maße: Höhe Breite Länge. V Q =5cm 3cm 4cm=60cm 3

Quader Für das Volumen eines Quaders der Länge l, Breite b und der Höhe h gilt: Maße: Höhe Breite Länge. V Q =5cm 3cm 4cm=60cm 3 Definition Die Größe des Raumes, die ein Körper einnimmt, nennt man. Körper können mit Hilfe von Einheitswürfeln gefüllt werden, womit das gemessen oder bei verschiedenen Körpern verglichen werden kann.

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Johnson Polyeder J 1 J 2

Johnson Polyeder J 1 J 2 Polyeder -Polyeder sind konvexe Polyeder, welche ausschließlich regelmäßige n-ecke als Seitenflächen besitzen. Davon ausgenommen werden die 5 regelmäßigen Platonischen Körper und die 13 halbregulären Archimedischen

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2014

Sekundarschulabschluss für Erwachsene. Geometrie A 2014 SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert)

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert) Seiten 4 / 5 1 Vorbemerkung: Die Konstruktionsaufgaben sind verkleinert gezeichnet. a) Aus dem Netz wird die Pyramidenhöhe herauskonstruiert. Dies mit dem rechtwinkligen Dreieck HS, wie im Raumbild angedeutet.

Mehr

Handeln und Denken im Raum

Handeln und Denken im Raum Handeln und Denken im Raum Vom Quadrat zur Dreieckspyramide Man nehme ein Quadrat (15cm x 15cm), zeichne die Diagonalen ein und schneide von einem Eckpunkt des Quadrates bis zum Schnittpunkt der Diagonalen

Mehr

Grundlagen. y P(4;3;2) Schrägbild 1. Punkte im Raum. Ein Punkt ist im Raum durch drei Koordinaten (x,y,z) festgelegt.

Grundlagen. y P(4;3;2) Schrägbild 1. Punkte im Raum. Ein Punkt ist im Raum durch drei Koordinaten (x,y,z) festgelegt. Grundlagen Schrägbild 1 Punkte im Raum z y P(4;3;2) 2 3 4 x Ein Punkt ist im Raum durch drei Koordinaten (x,y,z) festgelegt. ufgabe Versuche die Punkte (0;0;0), (1;1;1) und (3;2;-2) in einem Schrägbild

Mehr