Elemente optischer Netze
|
|
|
- Katrin Junge
- vor 8 Jahren
- Abrufe
Transkript
1 Vieweg+TeubnerPLUS Zusatzinformationen zu Medien des Vieweg+Teubner Verlags Elemente optischer Netze Grundlagen und Praxis der optischen Datenübertragung Erscheinungsjahr Auflage Kapitel 5 Bilder für den download Volkmar Brückner
2 Elektronenenergie (ev) Autor Buchtitel Vieweg+TeubnerPLUS Zusatzinformationen zu Medien des Vieweg+Teubner Verlags S1 Pumpe S2 Pumpe h f R 1 AM L z h f R 2 spontan induziert E 2 E 1 Abb. 5-1 Hauptelemente eines Lasers und Energieniveaus beim Laserübergang im aktiven Medium (AM) Energie E c-band E g Elektronen Abb. 5-2 Bändermodell in Halbleitern v-band 6 GaAs 6 Si 2 c-band a 2 a v-band k -2 3 a Abb. 5-3 Direkte und indirekte Halbleiter 2 a k 2,5 E g (ev) 2,0 1,5 1,0 0,5 GaP direkt AlAs GaAs indirekt InP In 0,52 Al 0,48 As 0,5 λ (µm) 0,7 1,0 1,5 In 0,53 Ga 0,47 As 2,0 3,0 InAs 0,55 GK (nm) 0,60 Abb. 5-4 Zur Auswahl von Mischkristallen (ternär bzw. quarternär) Vieweg+Teubner Verlag Wiesbaden 2010
3 Energie E E g X E g X X + hf + + E g c-band v-band (a) (b) (c) Abb. 5-5 Lineare (a), quadratische (b) und Auger-Rekombination (c) ΔE E P2 Z Δf F E g P1 Zahl der Z Zustände P1 Elektronen P2>P1 Elektronen Elektronend ichte Löcherdic hte (a) (b) ΔE (c) Abb. 5-6 Zur Entstehung der Linienbreite: Bandstruktur (a), Zustandsdichte und Elektronenzahl (b) und Elektronen- bzw. Löcherdichte (c) p-dotierung n-dotierung I F Fermi- Niveau I F Emission h. f Abb. 5-7 Emission im Halbleiterlaser mit p-n-übergang c-band Fermi-Niveau v-band
4 h. f AlGaAs GaAs AlGaAs n p p + h. f BZ W keine Absorption keine Absorption Abb. 5-8 Emission, Brechzahl (BZ) und Energiebandschema eines DH-Halbleiterlasers GaAs d AlGaAs D GaAs d Abb. 5-9 MQW-Struktur Stirnflächen DH-Struktur Licht Abb Fabry-Perot-Laser mit DH-Struktur
5 A 0 R 1 R 2 A 1 t A 1 r A 2 t r A 2 r A 3 Reflexion L A 3 t Transmission mit δ= 4 L Abb Zur Entstehung longitudinaler Moden, Transmissionsformel 1 T( ) 0, /nm Abb. 5-12a Transmissionsspektrum eines Resonators der Länge L = 1 mm T( ) Emissionsspektrum F = 42 nm longitudinale Moden Abb. 5-12b Transmissionsspektrum eines Fabry-Perot-Lasers der Länge L = 1 mm (nm) I F = 91 ma (a) (b) I F = 112 ma 50% der maximalen Leistung (nm) Abb Beispiel eines Spektrums eines Fabry-Perot-Lasers (nach [Ker 83])
6 DFB-Laser Brechzahlmodulation n H n L D stehende Wellen D Gitteraufbau: Gitterperiode D = /2n n high n low D Abb Verteilte Rückkopplung beim DSM-Laser Minispiegel DFB-Laser AM Brechzahl- Gitter AM DBR-Laser Abb. 5- Fehler! Kein Text mit angegebener Formatvorlage im Dokument.-1 DFB- und DBR-Laser P Emissionsspektrum (LED) F = 42 nm < 0.1 nm longitudinale Mode (nm) Abb Spektrum eines DSM-Lasers p 5.3 spontane Emission stimulierte Emission I th I F Abb P-I-Kennlinie
7 p p (a) I F (b) I F Abb Einfluss von Temperatur (a) und Alterung (b) auf die P-I-Kennlinie P 0 Abb Emissionsspektrum eines Lasers LWL (a) 5.8 LWL (b) Abb Abstrahlcharakteristik von Flächen- (a) und Kantenstrahler (b) gechirptes Gitter ungechirptes Gitter Abb Vergleich eines ungechirpten mit einem gechirpten Gitter
8 I B dreigeteilte Stromzufuhr I C gechirptes DFB-Gitter I S MQW z Abb Gechirptes Gitter DFB-Gitter y x gekrümmter Wellenleiter Gitter entlang des Wellenleiters (axiale Richtung z) Abb Gekrümmte Gitter I C I B Au Au SiO 2 Schichtaufbau Au-Kontakt p-ingaas-schicht p-inp-schicht I S Au 1,28 µm InAlGaAs mit Gitterstruktur InGaAs/ InAlGaAs-QW 1,28 µm InAlGaAs n-inp Au-Ge InP-Substrat Au-Ge-Kontakt Abb Struktur und Schichtaufbau eines MQW-Lasers mit gekrümmtem Gitter
9 Wellenlänge (µm) 1,530 1,528 I B = 65 ma I S = 50 ma I B = 20 ma I S = 10 ma 1,526 1,524 InGaAs/InAlGaAs MQW-Laser L = 300 µm I B = 25 ma I S = 85 ma Injektionsstrom I C (ma) Abb Durchstimmung des MQW-Lasers mit gekrümmter DFB-Gitterstruktur 5 p-dotierter DBR-Spiegel: 25 Perioden Al 0,3Ga 0,7As/AlAs { aktive Zone: 220 nm Al 0,3Ga 0,7As mit 3 QW Al 0,12Ga 0,88As n-dotierter DBR-Spiegel: 40 Perioden Al 0,3Ga 0,7As/AlAs Abb Prinzipaufbau eines Vertical Cavity Surface Emitting Laser Emission Optischer Chip Substrat (wafer) VCSEL kreisförmig Divergenz ca. 5 O LED kreisförmig Divergenz ca. 20 O Kantenstrahler elliptisch Divergenz ca. 10 O x40 O Abb Abstrahlcharakteristik von VCSEL, LED und Kantenstrahler
10
Elemente optischer Netze
Vieweg+TeubnerPLUS Zusatzinformationen zu Medien des Vieweg+Teubner Verlags Elemente optischer Netze Grundlagen und Praxis der optischen Datenübertragung Erscheinungsjahr 211 2 Auflage Kapitel 8 Bilder
Verbesserte Resonatoren: DFB-Struktur
Verbesserte Resonatoren: DFB-Struktur FB-Resonatoren (=Kantenemitter) sind einfach herzustellen Nachteil: - Es werden sehr viele longitudinale Moden unterstützt - es gibt keine eingebaute Modenselektivität
Kapitel 2 Halbleiterlaser als Sendeelement
Kapitel 2 Halbleiterlaser als Sendeelement 2. Halbleiterlaser als Sendeelement 2.1 Einführung 2.2 Halbleiter Grundlagen 2.3 Absorption und Emission von Licht im Halbleiter 2.4 Halbleiterlaser Strukturierung
Halbleiter- Optoelektronik
Wolfgang Bludau Halbleiter- Optoelektronik Die physikalischen Grundlagen der LED's, Diodenlaser und pn-photodioden mit 114 Bildern Carl Hanser Verlag München Wien Inhaltsverzeichnis 1. Wellen- und Quantennatur
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter WS 2013/14
11. Elektronen im Festkörper
11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter 1 11.4 Metalle,
Halbleiterlaser. Seminar Laserphysik
Halbleiterlaser Seminar Laserphysik 17.06.15 Gliederung a) Halbleiter Eigenschaften Dotierung pn Übergang LED b) Diodenlaser Ladungsinversion Bauformen Strahlprofil Leistungsangaben c) Anwendungsgebiete
Laserdioden-gepumpter Nd:YAG Laser und Frequenzverdoppelung
Laserdioden-gepumpter Nd:YAG Laser und Frequenzverdoppelung Markus Rosenstihl 1 Ziel des Versuchs In diesem Versuch untersuchen wir Funktionsweise von Festkörperlasern sowie Frequenzverdoppelnde Kristalle
V. Optik in Halbleiterbauelementen
V.1: Einführung V. Optik in Halbleiterbauelementen 1. Kontakt 1. 3.. 1. Kontakt Abb. VI.1: Spontane Emission an einem pn-übergang Rekombination in der LED: - statistisch auftretender Prozess - Energie
Erzeugung durchstimmbarer Laserstrahlung. Laser. Seminarvortrag von Daniel Englisch
Erzeugung durchstimmbarer Laserstrahlung Seminarvortrag von Daniel Englisch Laser 11.01.12 Institute of Applied Physics Nonlinear Optics / Quantum Optics Daniel Englisch 1 Motivation - Anwendungsgebiete
Einführung in die optische Nachrichtentechnik. Halbleiterlaserstrukturen (HL-STRUK)
Einführung in die optische Nachrichtentechnik HL-STRUK/1 1 Quantum-well Laser Halbleiterlaserstrukturen (HL-STRUK) Im Abschnitt HL hatten wir im wesentlichen Halbleiterlaserstrukturen betrachtet mit Dicken
Praktikum Lasertechnik, Protokoll Versuch Halbleiter
Praktikum Lasertechnik, Protokoll Versuch Halbleiter 16.06.2014 Ort: Laserlabor der Fachhochschule Aachen Campus Jülich Inhaltsverzeichnis 1 Einleitung 1 2 Fragen zur Vorbereitung 2 3 Geräteliste 2 4 Messung
Spektrale Eigenschaften von Halbleiterlasern (SPEK)
C! C SPEK/ Spektrale Eigenschaften von Halbleiterlasern (SPEK) In diesem Kapitel werden die spektralen Eigenschaften von Halbleiterlasern behandelt. Die Spektren von index- und gewinngeführten Lasern (vergl.
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723
Übersicht über die Vorlesung
Übersicht über die Vorlesung OE 3.1 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien III.1 Epitaxie III.2 Halbleiterquantenstrukturen IV. Halbleiterleuchtdioden
32. Lektion. Laser. 40. Röntgenstrahlen und Laser
32. Lektion Laser 40. Röntgenstrahlen und Laser Lernziel: Kohärentes und monochromatisches Licht kann durch stimulierte Emission erzeugt werden Begriffe Begriffe: Kohärente und inkohärente Strahlung Thermische
Laserdiode & Faraday-Effekt (V39)
Laserdiode & Faraday-Effekt (V39) 1. Laser Prinzip und Eigenschaften Optisches Pumpen Laserverstärkung Lasermoden und Selektion 2. Halbleiter-Laser pn-übergang Realisierung Kennlinien 3. Faradayeffekt
Lichtemittierende Dioden (LED)
@ Einführung in die optische Nachrichtentechnik LED/1 Lichtemittierende Dioden (LED) Lumineszenzdioden und Halbleiterlaser werden in der optischen Nachrichtentechnik überwiegend als Doppel-Heterostrukturdioden
Elemente optischer Netze
Vieweg+TeubnerPLUS Zusatzinforationen zu Medien des Vieweg+Teubner Verlags Eleente optischer Netze Grundlagen und Praxis der optischen Datenübertragung Erscheinungsjahr 0. Auflage Kapitel Bilder für den
1 Beschreibung von Photonen und Elektronen
Einführung in die optische Nachrichtentechnik L/ Grundlagen von Laser und LED (L) In diesem Kapitel werden die physikalischen Grundlagen von Emissions- und Absorptionsprozessen in Halbleitern behandelt.
Laser: Was bedeutet das? Light Amplification by Stimulated Emission of. Radiation. Inversion der Besetzung
Laser: Was bedeutet das? Light Amplification by Stimulated Emission of Bezeichnung für einen Prozeß Heute: Apparat zur Erzeugung von Licht Radiation Hochwertige Form von Licht: Laserlicht - 3 - Inversion
In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter.
II.2: Erinnerung an die Halbleiterphysik II.2.1: Kristalline Festkörper In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches
Das große. Halbleiterlaser. Clicker-Quiz
Das große Halbleiterlaser Clicker-Quiz Aufbau eines Lasers Was wird bei der Separate Confinement Heterostructure separat eingeschlossen? a) Elektronen und Löcher b) Ladungsträger und Photonen c) Dotieratome
LEDs und Laserdioden: die Lichtrevolution. Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR
LEDs und Laserdioden: die Lichtrevolution Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR Wie erhält man verschiedenfarbige LEDs? Warum ist die Farbe blau so wichtig? Wo werden HL-Laser Im Alltag
Halbleiter. pn-übergang Solarzelle Leuchtdiode
Halbleiter pn-übergang Solarzelle Leuchtdiode Energie der Elektronenzustände von Natrium als Funktion des Abstandes a der Natriumatome a 0 ist der Abstand im festen Natrium 3.1a Spezifischer elektrischer
Bandstrukturen von Halbleitern. Ansätze
Bandstruturen von Halbleitern Ansätze 1. letron in periodischem Potential letron als Welle in periodischem Potential => Änderung der Dispersion des letrons, es ommt zur Bildung von nergiebändern und Bandlücen.
Vorlesung 19: Roter Faden: Röntgenstrahlung Laserprinzip. Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag
Vorlesung 19: Roter Faden: Röntgenstrahlung Laserprinzip Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag Juni 21, 2005 Atomphysik
Komponenten, Aufbau und Funktionsweise einer. Glasfaserdatenübertragung
Komponenten, Aufbau und Funktionsweise einer Folie 1 Folie Optische Kommunikation (1) 1880 Photophon (Graham Bell) Sonnenlicht Spiegel Halbleiter Lautsprecher Änderung der Lichtstärke Übertragung von der
Photonik 1: Fragenkatalog und Hinweise zur mündlichen Prüfung
Photonik 1: Fragenkatalog und Hinweise zur mündlichen Prüfung Prof. Reider Stand: 27. August 2011 1. Licht als elektromagnetische Welle 1.1 (S.8) Brechungsindex(zahl) in der Optik Allgemein Warum haben
Praktikum über Spektroskopie
Praktikum über Spektroskopie Versuch 8 Nd YAG Laser Vorbemerkungen: 1. Der linke Abdeckkasten muss bei sämtlichen Experimenten den Diodenlaser, den Kollimator und die Fokussierlinse auf der optischen Bank
Spektroskopie mit einem Halbleiterlaser
Spektroskopie mit einem Halbleiterlaser J. Kalden, M. Wittenberg 24. November 2003 1 Einleitung Dieser Versuch setzt sich mit dem Funktionsprinzip eines Halbleiterlasers und Spektroskopie mittels temperaturabhängiger
Photonische Kristalle Clemens Ringpfeil
Photonische Kristalle 22.11.2001 Clemens Ringpfeil Inhalt Einführung Grundlagen Historischer Überblick Herstellung Anwendungen Passive Wellenleiter Optische Bauelemente können nur sehr beschränkt auf einem
Volkmar Brückner. Optische Nachrichtentechnik
Volkmar Brückner Optische Nachrichtentechnik Volkmar Brückner Optische Nach richtentech n i k Grundlagen und Anwendungen Springer Fachmedien Wiesbaden GmbH Bibliografische Information der Deutschen Bibliothek
Niederdimensionale Halbleitersysteme I
Niederdimensionale Halbleitersysteme I SS 2013 Donat J. As Universität Paderborn, Department Physik [email protected] http://physik.upb.de/ag/ag-as/ P8.2.10 Tel.: 05251-60-5838 Inhalt Teil I: Einleitung
Inhaltsverzeichnis. Laserübergänge in neutralen Atomen Helium-Neon-Laser Metalldampf-Laser (Cu, Au) Jodlaser, COIL 80 Aufgaben 81
Licht, Atome, Moleküle, Festkörper 1 1.1 Eigenschaften von Licht 1 1.2 Atome: Elektronenbahnen, Energieniveaus 7 1.3 Atome mit mehreren Elektronen 9 1.4 Moleküle 12 1.5 Energieniveaus in Festkörpern 16
Gliederung der Vorlesung Festkörperelektronik
Gliederung der Vorlesung Festkörperelektronik 1. Grundlagen der Quantenphysik 2. Elektronische Zustände 3. Aufbau der Materie 4. Elektronen in Kristallen 5. Halbleiter 6. Quantenstatistik 7. Dotierte Halbleiter
Halbleiterarten. Technische Universität Ilmenau Institut für Werkstofftechnik. Halbleiter. elektronische Halbleiter
Halbleiterarten Halbleiter kristalline Halbleiter amorphe Halbleiter elektronische Halbleiter Ionenhalbleiter elektronische Halbleiter Ionenhalbleiter Element Halbleiter Verbindungshalbleiter Eigen Halbleiter
Halbleiterphysik. Lehrbuch für Physiker und Ingenieure von Prof. Dr. Rolf Sauer. Oldenbourg Verlag München
Halbleiterphysik Lehrbuch für Physiker und Ingenieure von Prof. Dr. Rolf Sauer Oldenbourg Verlag München Inhaltsverzeichnis 1 Einleitung 1 1.1 Definition des Halbleiters 1 1.2 Stellung der Halbleiter im
Übersicht über die Vorlesung
Übersicht über die Vorlesung OE 7.1 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien IV. Halbleiterleuchtdioden V. Optik in Halbleiterbauelementen VI. Laserdioden
Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306
Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 [email protected]
Lichtquellen für Mess- und Signalübertragungszwecke beurteilt mit optischen Spektrumanalysatoren. Optische Spektralanalyse Jörg Latzel Juli 2009
Lichtquellen für Mess- und Signalübertragungszwecke beurteilt mit optischen Spektrumanalysatoren Optische Spektralanalyse Jörg Latzel Juli 2009 Wir beschäftigen uns im folgenden mit Licht Spektraler Bereich
Weber/Herziger LASER. Grundlagen und Anwendungen. Fachbereich S Hochschule Darmstad«Hochschulstraßa 2. 1J2QOI Physik Verlag
Weber/Herziger LASER Grundlagen und Anwendungen Fachbereich S Hochschule Darmstad«Hochschulstraßa 2 1J2QOI Physik Verlag Inhaltsverzeichnis 1. licht und Atome 1 1.1. Welleneigenschaften des Lichtes 1 1.1.1.
Laser. Jürgen Eichler Hans Joachim Eichler. Bauformen, Strahlführung, Anwendungen. Springer. Sechste, aktualisierte Auflage
Jürgen Eichler Hans Joachim Eichler Laser Bauformen, Strahlführung, Anwendungen Sechste, aktualisierte Auflage Mit 266 Abbildungen und 57 Tabellen, 164 Aufgaben und vollständigen Lösungswegen Springer
5 Ionenlaser... 83 5.1 Laser für kurze Wellenlängen... 83 5.2 Edelgasionenlaser... 85 5.3 Metalldampfionenlaser (Cd,Se,Cu)... 90 Aufgaben...
1 Licht, Atome, Moleküle, Festkörper...................... 1 1.1 Eigenschaften von Licht................................. 1 1.2 Atome: Elektronenbahnen, Energieniveaus................ 7 1.3 Atome mit mehreren
Eichler. Jürgen. Hans Joachim Eichler. Laser. Bauformen, Strahlführung, Anwendungen. 8., aktualisierte und überarbeitete Auflage. 4^ Springer Vieweq
Hans Joachim Eichler Jürgen Eichler Laser Bauformen, Strahlführung, Anwendungen 8., aktualisierte und überarbeitete Auflage 4^ Springer Vieweq 1 Licht, Atome, Moleküle, Festkörper 1 1.1 Eigenschaften von
2. Bestimmen Sie den Fokusdurchmesser und die Rayleigh Länge. 3. Welchen Einfluß haben die einzelnen Parameter des Aufbaus
Fortgeschrittenenpraktikum II Helium Neon Laser Themen für die Vorbesprechung: Grundlagen des Helium Neon Lasers, Resonatorkonfigurationen, Stabilitätsbereich, ABCD Formalismus, Sättigungseffekte, doppelbrechende
Solarzellen, Kristallstrukturen, Defekte und Ihre Stromrechnung
Solarzellen, Kristallstrukturen, Defekte und Ihre Stromrechnung Susanne Siebentritt Université du Luxembourg Was sind Dünnfilmsolarzellen? Wie machen wir Solarzellen? Wie funktioniert eine Solarzelle?
Interferenzspektralapparate im Vergleich
Interferenzspektralapparate im Vergleich Vortrag zum Proseminar SS 2009 (07.05.2009) Alexander Drabent Gliederung I. Grundlagen & Definitionen 1. Spektrometer / Spektroskop 2. Auflösungsvermögen Kriterium
Realisation eines 2D-Elektronengases
Realisation eines 2D-Elektronengases Gezeigt am Beispiel einer Heterojunction und eines MOS-FET T. Baumgratz J. Rosskopf Univerität Ulm Seminar zu Theorie der Kondensierten Materie II Gliederung 1 2 3
Axel Donges Physikalische Grundlagen der Lasertechnik
Axel Donges Physikalische Grundlagen der Lasertechnik Axel Donges Physikalische Grundlagen der Lasertechnik 3. Auflage Prof. Dr. Axel Donges (geboren 1954 in Bad König) studierte Physik an der TH Darmstadt.
Diode und OpAmp. Roland Küng, 2009
Diode und OpAmp Roland Küng, 2009 1 Diode Review Diodenmodelle: weiss: ideal schwarz: Flussspannung V D = 0.7 V V O, I D1? V out (t)? 2 Limiter Kennlinien für Diodenmodell V D = 0.7 V 3 DC-Restorer v c
Photonik. Physikalisch-technische Grundlagen der Lichtquellen, der Optik und des Lasers von Prof. Dr. Rainer Dohlus. Oldenbourg Verlag München
Photonik Physikalisch-technische Grundlagen der Lichtquellen, der Optik und des Lasers von Prof. Dr. Rainer Dohlus Oldenbourg Verlag München Vorwort VII 1 Grundlagen der Lichtentstehung 1 1.1 Einführung
Atom-, Molekül- und Festkörperphysik
Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,
Laser. Light Amplification by Stimulated Emission of Radiation
Laser Light Amplification by Stimulated Emission of Radiation Grundlagen F 4.1 Nach Einstein existieren 3 mögliche Wechselwirkungsmechanismen zwischen Atom und elektromagnetischer Strahlung: - Absorption:
22. Wärmestrahlung. rmestrahlung, Quantenmechanik
22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von
Hochleistungsdiodenlaser. Martin Kamp, Technische Physik Universität Würzburg
Hochleistungsdiodenlaser Martin Kamp, Technische Physik Universität Würzburg Hochleitungsdiodenlaser Diodenstacks http://www.jenoptik.com/ en-laser-stack Einzelne Emitter: 10-15 W Barren (10-20 Emitter):
Einführung Grundlagen Die Theorie der Ratengleichungen Verfeinerte Theorien. Der Laser. Florentin Reiter. 23. Mai 2007
Der Laser Florentin Reiter 23. Mai 2007 Die Idee des Lasers A. Einstein (1916): Formulierung der stimulierten Emission von Licht als Umkehrprozess der Absorption Vorschlag zur Nutzung dieses Effektes zur
HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften
Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Überblick optische Eigenschaften Leitsatz: 21.04.2016 Die Ausbreitung von Licht durch ein
3.6. Zweidimensionale Wellenleiter
3.6. Zweidimensionale Wellenleiter Zweidimensionale Wellenleiter sind nur in speziellen Fällen z.b. bei Zlindersmmetrie analtisch eakt lösbar. Für die in Halbleiterlasern verwendeten Wellenleiter eistieren
C1: QP-Oberflächenemitter - Laser und Einzelphotonenquellen F. Hopfer und D. Bimberg, TU Berlin
1: QP-Oberflächenemitter - Laser und Einzelphotonenquellen F. Hopfer und D. Bimberg, TU Berlin VSEL Einzelphotonenemitter direkt moduliert indirekt moduliert n p p n Mode control DBR Aperture p DBR VSEL-
Bestimmung des planckschen Wirkungsquantums aus der Schwellenspannung von LEDs (A9)
25. Juni 2018 Bestimmung des planckschen Wirkungsquantums aus der Schwellenspannung von LEDs (A9) Ziel des Versuches In diesem Versuch werden Sie sich mit Light Emitting Diodes (LEDs) beschäftigen, diese
3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1
1 3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode 3.1 Allgemeines F 3.1 N isolierte Atome werden zum Festkörper (FK) zusammengeführt Wechselwirkung der beteiligten Elektronen Aufspaltung der Energieniveaus
Halbleiter-Bragg-Spiegeln. Eine neue Methode zur Metrologie von Dünn- und Vielschichtsystemen
1 in Halbleiter-Bragg-Spiegeln Eine neue Methode zur Metrologie von Dünn- und Vielschichtsystemen F., O. Ristow, T. Dekorsy Universität Konstanz, Center for Applied Photonics, Konstanz, Germany 2 Gliederung
Light Amplification by Stimulated Emission of Radiation
Light Amplification by Stimulated Emission of Radiation Licht: a) Elektromagnetische Welle E = E 0 sin(-kx) k = 2 p/l E = E 0 sin(t) = 2 p n = 2 p/t c = l n c = Lichtgeschwindigkeit = 2,99792458 10 8 m/s
VCSEL Vertical Cavitiy Surface Emitting Laser
VCSEL Vertical Cavitiy Surface Emitting Laser Philip Wolf Institutsseminar "Moderne Konzepte der Optoelektronik" Einführung 3 Grundlegende Unterschiede 3 Fernfeld... 3 Herstellung full wafer technology...
4.6: Laserdiodengepumpter Nd:YAG-Laser und Frequenzverdopplung
4.6: Laserdiodengepumpter Nd:YAG-Laser und Frequenzverdopplung Andreas Kleiner Anton Konrad Cyrol Matr-Nr.: 1574166 Matr-Nr.: 1639629 E-Mail: [email protected] E-Mail: [email protected]
Gepulste Laser PD Dr.-Ing. Cemal Esen Lehrstuhl für Laseranwendungstechnik
Gepulste Laser PD Dr.-Ing. Cemal Esen Lehrstuhl für Laseranwendungstechnik Aufbau eines Lasers 2 Prinzip eines 4-Niveau-Lasers Lehrstuhl für Laseranwendungstechnik 3 Betriebsarten eines Lasers Lehrstuhl
Optoelektronik 2. Nanophotonik. Prof. Dr. Markus-Christian Amann Lehrstuhl für Halbleitertechnologie Walter Schottky Institut TU München
Optoelektronik 2 Nanophotonik Prof. Dr. Markus-Christian Amann Lehrstuhl für Halbleitertechnologie Walter Schottky Institut TU München 1. Einmodige und abstimmbare Laserdioden 2. Periodische Strukturen
Von der Kerze zum Laser: Die Physik der Lichtquanten
Von der Kerze zum Laser: Die Physik der Lichtquanten Jörg Weber Institut für Angewandte Physik/Halbleiterphysik Technische Universität Dresden Was ist Licht? Wie entsteht Licht? Anwendungen und offene
2. Durch welche physikalischen Größen wird der Zustand eines Systems in der klassischen Mechanik definiert?
Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 28. Juli 2006 100 Fragen zur Festkörperelektronik
Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren
Wechselwirkung geladener Teilchen in Materie Physik VI Sommersemester 2008 Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Szintillationsdetektoren
Optik. Lichtstrahlen -Wellen - Photonen. Wolfgang Zinth Ursula Zinth. von. 4., aktualisierte Auflage. OldenbourgVerlag München
Optik Lichtstrahlen -Wellen - Photonen von Wolfgang Zinth Ursula Zinth 4., aktualisierte Auflage OldenbourgVerlag München Inhaltsverzeichnis Vorwort 1 Einführung und historischer Überblick v 1 Licht als
Optische Nachrichtentechnik
Eberhard Herter / Martin Graf Optische Nachrichtentechnik mit 184 Bildern Carl Hanser Verlag München Wien Inhaltsverzeichnis Vorwort 9 1 Einführung 11 2 Das nachrichtentechnische Umfeld 13 2.1 Nachrichtentechnik
Versuch 4.6: Laserdioden-gepumpter Nd:YAG-Laser und Frequenzverdopplung
Versuch 4.6: Laserdioden-gepumpter Nd:YAG-Laser und Frequenzverdopplung Nicole Martin und Cathrin Wälzlein February 18, 2008 Praktikumsbetreuer: Dominik Blömer Durchführungsdatum: 17.12.2007 1 1 Einleitung
Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen
Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin
Optoelektronische Schalter und Terahertz-Antennen auf der Basis von LT-InGaAs-Quantenfilmen (ein Projekt im Topic 4)
Optoelektronische Schalter und Terahertz-Antennen auf der Basis von LT-InGaAs-Quantenfilmen (ein Projekt im Topic 4) THz-Systeme und ihre Anwendungen Optoelektronische THz-Systeme zur Qualitätskontrolle
Rhodamin 6G Farbstofflaser (DLA)
Praktikum Spektroskopie Herbstsemester 2007 Rhodamin 6G Farbstofflaser (DLA) Simon Breitler, Studiengang Chemie, 5. Semester, [email protected] Matthias Geibel, Studiengang Chemie, 5. Semester, [email protected]
Laser in der Medizin. Historie
Sonne ist Licht. Licht ist Energie. Energie ist Leben. Durch Licht werden viele Funktionen in unserem Körper angeregt. Dieses Wissen wird seit jeher genutzt vom Schamanentum bis in die moderne Medizin.
"Einführung in die Festkörperphysik" Inhalt der Vorlesung. 5.7 Messung von Bandstrukturen, Zustandsdichte. 5.2 Das Modell des fast freien Elektrons
Inhalt der Vorlesung "Einführung in die Festkörperphysik" für Dezember 2009 ist geplant: 5. Energiebänder 5.1 Motivation 5.2 Das Modell des fast freien Elektrons 5.3 Das stark gebundene Elektron 5.4 Das
Halbleiterheterostrukturen. Vortrag von Alexej Klushyn
Halbleiterheterostrukturen Vortrag von Alexej Klushyn Übersicht Einführung in die Halbleiterphysik Physikalische Grundlagen der Halbleiterheterostrukturen Anwendungsmöglichkeiten der Halbleiterheterostrukturen
Real- und Imaginärteil der komplexen Dielektrizitätskonstante. Funktion der Frequenz. Brechungsindex einiger gebräuchlicher
Real- und Imaginärteil der komplexen Dielektrizitätskonstante als Funktion der Frequenz Brechungsindex einiger gebräuchlicher optischer Materialien in Anhängigkeit von der Wellenlänge dn Dispersion dλ
