Vorlesung Sicherheit
|
|
|
- Gabriel Bader
- vor 10 Jahren
- Abrufe
Transkript
1 Vorlesung Sicherheit Dennis Hofheinz ITI, KIT / 32
2 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign Der Digital Signature Algorithm Zusammenfassung 3 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren 2 / 32
3 Juhuu, endlich ein Kryptographie-Wettbewerb! Superschurke Doktor Meta ist zurück! (Achtung, Klischees.) Und er hat Anette Gui, die Freundin unseres Superhelden Max Security an einen geheimen Ort entführt! Aus dramaturgischen Gründen schickt Doktor Meta ein ElGamal-Chiffrat mit dem Versteck an seine Schergen. Allerdings macht Doktor Meta hierbei einen Fehler... Helft Max, Anette zu finden! Brecht das ElGamal-Chiffrat! Wer uns als Erste(r) das Versteck nennt (mit Wegbeschreibung), erhält einen wertvollen Preis! 3 / 32
4 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign Der Digital Signature Algorithm Zusammenfassung 3 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren 4 / 32
5 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign Der Digital Signature Algorithm Zusammenfassung 3 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren 5 / 32
6 Erinnerung Grundidee: Alice pk (M,σ) Bob sk Signieren: σ Sig(sk, M) Verifizieren: Ver(pk, M, σ) {0, 1} Standard-Sicherheitsbegriff: EUF-CMA 6 / 32
7 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign Der Digital Signature Algorithm Zusammenfassung 3 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren 7 / 32
8 RSA als Signaturschema Erinnerung RSA-Signaturen: pk = (N, e) sk = (N, d) Sig(sk, M) = M d mod N Ver(pk, M, σ) = 1 : M = σ e mod N 8 / 32
9 Probleme von RSA-Signaturen Sig(sk, M) = M d mod N Ver(pk, M, σ) = 1 : M = σ e mod N Problem: unsinnige Nachrichten können signiert werden 1 Wähle zuerst Signatur σ Z N beliebig 2 Setze dann M := σ e mod N 3 Damit ist σ gültige RSA-Signatur für M Bricht EUF-CMA-Sicherheit, (künstliche) problematische Anwendungen denkbar 9 / 32
10 Probleme von RSA-Signaturen Sig(sk, M) = M d mod N Ver(pk, M, σ) = 1 : M = σ e mod N Weiteres Problem: Homomorphie von RSA 1 Angenommen, σ i = M d i mod N bekannt (für einige i) 2 Setze dann σ := i σ i = i Md i = ( i M i) d mod N 3 Damit ist σ gültige RSA-Signatur für M := i M i Neue Signaturen lassen sich aus bekannten berechnen Bricht auch EUF-CMA-Sicherheit, (leicht weniger künstliche) problematische Anwendungen denkbar 10 / 32
11 Lösungsvorschläge? Diskussion: Wie könnte man RSA-Signaturen reparieren? 11 / 32
12 RSA-PSS (RSA-)PSS: Probabilistic Signature Scheme Idee von RSA-PSS: Vorverarbeitung (Padding) der Nachricht: Sig(sk, M) = (pad(m)) d mod N Ver(pk, M, σ) = 1 : σ e mod N gültiges pad(m) 12 / 32
13 RSA-PSS Padding einer Nachricht: pad(m) (Quelle: Wikipedia) 13 / 32
14 RSA-PSS Verifikation einer gepaddeten Nachricht: (Quelle: Wikipedia) 14 / 32
15 Sicherheit von RSA-PSS RSA-PSS heuristisch (mit idealen H, MGF) EUF-CMA-sicher, sofern RSA-Funktion schwer zu invertieren Jeder EUF-CMA-Angreifer muss RSA-Funktion invertieren RSA-PSS (wie RSA-OAEP) Teil von PKCS#1 Bester bekannter Angriff: N faktorisieren (Zahlkörpersieb) Parameterwahl wie bei RSA-OAEP (somit log 2 (N) 2048) Festes, kleines e (z.b. e = 3) möglich effiziente Verifikation 15 / 32
16 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign Der Digital Signature Algorithm Zusammenfassung 3 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren 16 / 32
17 Hin zu ElGamal-Signaturen Signaturverfahren über zyklischer Gruppe G = g Wie bei Verschlüsselung: pk = (G, g, g x ), sk = (G, g, x) Erster Versuch: Sig(sk, M) = a mit a x = M mod G Ver(pk, M, σ) = 1 : (g x ) a = g M Frage: warum problematisch? 17 / 32
18 ElGamal-Signaturen Erster Versuch: pk = (G, g, g x ), sk = (G, g, x), und Sig(sk, M) = a mit a x = M mod G Zweiter Versuch (ElGamal-Signaturen): setze a := g e für zufälliges e b als Lösung von a x + e b = M mod G Sig(sk, M) = (a, b) Ver(pk, M, σ) = 1 : (g x ) a a b = g M Achtung: a = g e wird sowohl als G-Element als auch als Exponent interpretiert (zunächst nur für G = Z p gedacht) 18 / 32
19 Angriffe auf ElGamal-Signaturen Erinnerung: σ = (a = g e, b) mit a x + e b = M mod G Nie zweimal dasselbe e (für verschiedene M) verwenden: Sonst: (a = g e, b, M) und (a = g e = a, b, M ) bekannt mit a x + e b = M mod G a x + e b = M mod G Daraus folgt e = (M M )/(b b ) mod G und damit x Wird bei zufälliger Wahl von e vernachlässigbar oft passieren 19 / 32
20 Angriffe auf ElGamal-Signaturen Erinnerung: σ = (a = g e, b) mit a x + e b = M mod G ElGamal-Signaturen wie RSA nicht EUF-CMA-sicher: (a, b) = (g x, a) gültig für M = a x + e b = 0 mod G Randomisierung Signaturen für unsinnige Nachrichten 1 Wähle c zufällig 2 Setze a := g c g x = g c+x und b := a mod G 3 Damit ist (a, b) gültige Signatur für die Nachricht M := a x + e b = a x a(c + x) = ac mod G Frage: wie kann ElGamal repariert werden? 20 / 32
21 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign Der Digital Signature Algorithm Zusammenfassung 3 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren 21 / 32
22 Hash-Then-Sign-Paradigma Theorem (Sicherheit des Hash-Then-Sign-Paradigmas) Sei (Gen, Sig, Ver) EUF-CMA-sicher und H eine kollisionsresistente Hashfunktion. Dann ist das durch Gen (1 k ) = Gen(1 k ) Sig (sk, M) = Sig(sk, H(M)) Ver (pk, M, σ) = Ver(pk, H(M), σ) erklärte Signaturverfahren EUF-CMA-sicher. Beweis wie im MAC-Fall (Reduktion) Vorteil: Angriffe, die Signaturen für unsinnige Nachrichten liefern, müssen nicht mehr funktionieren 22 / 32
23 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign Der Digital Signature Algorithm Zusammenfassung 3 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren 23 / 32
24 Der Digital Signature Algorithm Erinnerung ElGamal: σ = (a = g e, b) mit a x + e b = M mod G Digital Signature Algorithm (DSA): σ = (a = g e, b) mit a x + e b = H(M) mod G (hierbei H kollisionsresistente Hashfunktion) EUF-CMA-Sicherheit gegenwärtig unklar Vorgeschlagene Gruppen: G Z P oder G F q (wobei G ) Elliptische Kurven: G = E(F q ) (mit G ) 24 / 32
25 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign Der Digital Signature Algorithm Zusammenfassung 3 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren 25 / 32
26 Zusammenfassung digitale Signaturen Digitale Signaturen sichern Integrität/Authentizität Asymmetrisches Gegenstück zu MACs Sicherheitskriterium: EUF-CMA Wichtige Verfahren: RSA(-PSS), ElGamal/DSA Wichtig: Verfahren nicht ungepadded/ungehasht benutzen! 26 / 32
27 Aktuelle Forschung digitale Signaturen Gitterbasierte Signaturen (asymptotische Effizienz) NTRU(-Verschlüsselung, -Signaturen) Delegierbare Signaturen Problem: momentan noch sperrige Signatur-/Schlüsselgrößen Pairingbasierte Signaturen (effizient, platzsparend) Automorphe Signaturen (Zero-Knowledge-kompatibel) Delegierbare Signaturen 27 / 32
28 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign Der Digital Signature Algorithm Zusammenfassung 3 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren 28 / 32
29 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign Der Digital Signature Algorithm Zusammenfassung 3 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren 29 / 32
30 Motivation Ziel: gemeinsamen geheimen Schlüssel K aushandeln Alice Bob Kommunikationskanal unsicher, aber K soll geheim bleiben Verschiedene Szenarien denkbar: Altes K schon vorhanden (frisches K gewünscht) Secret-Key-Infrastruktur (mit Schlüsselzentrale) Alice hat K A, Bob hat K B, Schlüsselzentrale kennt K A und K B Public-Key-Infrastruktur pk A und pk B öffentlich, Alice kennt sk A, Bob kennt sk B Alice und Bob haben gemeinsames Passwort Alice und Bob haben keine weiteren Informationen Prinzipbedingt unsicher gegen aktive Angriffe 30 / 32
31 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign Der Digital Signature Algorithm Zusammenfassung 3 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren 31 / 32
32 Symmetrische Verfahren Szenario mit Schlüsselzentrum KC: Alice KA Bob KB Key Center (KC) KA,K B Alice kennt K A, Bob kennt K B, KC kennt K A und K B Kommunikation mit KC möglich, soll aber minimiert werden Werkzeug der Wahl: symmetrische Verschlüsselung (Enc, Dec) Grund: Effizienz, Lösungen allein mit (Enc, Dec) möglich 32 / 32
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 13.05.2013 1 / 16 Überblick 1 Asymmetrische Verschlüsselung Erinnerung Andere Verfahren Demonstration Zusammenfassung 2 Symmetrische Authentifikation von Nachrichten
Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen
Sommersemester 2008 Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick
Voll homomorpe Verschlüsselung
Voll homomorpe Verschlüsselung Definition Voll homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : R R für Ringe R, R. Π heißt voll homomorph, falls 1 Enc(m 1 ) + Enc(m 2 ) eine gültige
Vorlesung Sicherheit
Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs
Digitale Signaturen. Sven Tabbert
Digitale Signaturen Sven Tabbert Inhalt: Digitale Signaturen 1. Einleitung 2. Erzeugung Digitaler Signaturen 3. Signaturen und Einweg Hashfunktionen 4. Digital Signature Algorithmus 5. Zusammenfassung
Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002
Diffie-Hellman, ElGamal und DSS Vortrag von David Gümbel am 28.05.2002 Übersicht Prinzipielle Probleme der sicheren Nachrichtenübermittlung 'Diskreter Logarithmus'-Problem Diffie-Hellman ElGamal DSS /
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 10.06.2013 1 / 26 Überblick 1 Schlüsselaustauschprotokolle Transport Layer Security (TLS) Weitere Schlüsselaustauschtypen Zusammenfassung 2 Identifikationsprotokolle
11. Das RSA Verfahren und andere Verfahren
Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern
Sicherheit von hybrider Verschlüsselung
Sicherheit von hybrider Verschlüsselung Satz Sicherheit hybrider Verschlüsselung Sei Π ein CPA-sicheres PK-Verschlüsselungsverfahren und Π ein KPA-sicheres SK-Verschlüsselungsverfahren. Dann ist das hybride
Authentikation und digitale Signatur
TU Graz 23. Jänner 2009 Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Begriffe Alice und
Elliptische Kurven in der Kryptographie
Elliptische Kurven in der Kryptographie Projekttage Mathematik 2002 Universität Würzburg Mathematisches Institut Elliptische Kurven in der Kryptographie p.1/9 Übersicht Kryptographie Elliptische Kurven
10.6 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen
10.6 Authentizität Zur Erinnerung: Geheimhaltung: nur der Empfänger kann die Nachricht lesen Integrität: Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde Authentizität: es ist sichergestellt,
Homomorphe Verschlüsselung
Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung
Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC:
Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC: Hashe m {0, 1} auf einen Hashwert in {0, 1} n. Verwende Π MAC3 für Nachrichten fixer Länge auf dem Hashwert. Wir konstruieren Π MAC3 mittels
8: Zufallsorakel. Wir suchen: Einfache mathematische Abstraktion für Hashfunktionen
Stefan Lucks 8: Zufallsorakel 139 Kryptogr. Hashfunkt. (WS 08/09) 8: Zufallsorakel Unser Problem: Exakte Eigenschaften von effizienten Hashfunktionen nur schwer erfassbar (z.b. MD5, Tiger, RipeMD, SHA-1,...)
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 03.06.2013 1 / 34 Überblick 1 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren Asymmetrische Verfahren Transport Layer Security (TLS) 2 / 34
Erste Vorlesung Kryptographie
Erste Vorlesung Kryptographie Andre Chatzistamatiou October 14, 2013 Anwendungen der Kryptographie: geheime Datenübertragung Authentifizierung (für uns = Authentisierung) Daten Authentifizierung/Integritätsprüfung
9 Schlüsseleinigung, Schlüsselaustausch
9 Schlüsseleinigung, Schlüsselaustausch Ziel: Sicherer Austausch von Schlüsseln über einen unsicheren Kanal initiale Schlüsseleinigung für erste sichere Kommunikation Schlüsselerneuerung für weitere Kommunikation
Verschlüsselung. Chiffrat. Eve
Das RSA Verfahren Verschlüsselung m Chiffrat m k k Eve? Verschlüsselung m Chiffrat m k k Eve? Aber wie verteilt man die Schlüssel? Die Mafia-Methode Sender Empfänger Der Sender verwendet keine Verschlüsselung
10. Public-Key Kryptographie
Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe
Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer
Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der
RSA Full Domain Hash (RSA-FDH) Signaturen
RSA Full Domain Hash (RSA-FDH) Signaturen Signatur RSA-FDH Sei H : {0, 1} Z N ein Random-Oracle. 1 Gen: (N, e, d) GenRSA(1 n ) mit pk = (N, e) und sk = (N, d). 2 Sign: Für eine Nachricht m {0, 1} berechne
Informatik für Ökonomen II HS 09
Informatik für Ökonomen II HS 09 Übung 5 Ausgabe: 03. Dezember 2009 Abgabe: 10. Dezember 2009 Die Lösungen zu den Aufgabe sind direkt auf das Blatt zu schreiben. Bitte verwenden Sie keinen Bleistift und
Nachrichten- Verschlüsselung Mit S/MIME
Nachrichten- Verschlüsselung Mit S/MIME Höma, watt is S/MIME?! S/MIME ist eine Methode zum signieren und verschlüsseln von Nachrichten, ähnlich wie das in der Öffentlichkeit vielleicht bekanntere PGP oder
U3L Ffm Verfahren zur Datenverschlüsselung
U3L Ffm Verfahren zur Datenverschlüsselung Definition 2-5 Symmetrische Verschlüsselung 6-7 asymmetrischer Verschlüsselung (Public-Key Verschlüsselung) 8-10 Hybride Verschlüsselung 11-12 Hashfunktion/Digitale
IT-Sicherheit Kapitel 3 Public Key Kryptographie
IT-Sicherheit Kapitel 3 Public Key Kryptographie Dr. Christian Rathgeb Sommersemester 2013 1 Einführung In der symmetrischen Kryptographie verwenden Sender und Empfänger den selben Schlüssel die Teilnehmer
ElGamal Verschlüsselungsverfahren (1984)
ElGamal Verschlüsselungsverfahren (1984) Definition ElGamal Verschlüsselungsverfahren Sei n ein Sicherheitsparameter. 1 Gen : (q, g) G(1 n ), wobei g eine Gruppe G der Ordnung q generiert. Wähle x R Z
Kryptographische Verfahren auf Basis des Diskreten Logarithmus
Kryptographische Verfahren auf Basis des Diskreten Logarithmus -Vorlesung Public-Key-Kryptographie SS2010- Sascha Grau ITI, TU Ilmenau, Germany Seite 1 / 18 Unser Fahrplan heute 1 Der Diskrete Logarithmus
Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur
Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip
Zur Sicherheit von RSA
Zur Sicherheit von RSA Sebastian Petersen 19. Dezember 2011 RSA Schlüsselerzeugung Der Empfänger (E) wählt große Primzahlen p und q. E berechnet N := pq und ϕ := (p 1)(q 1). E wählt e teilerfremd zu ϕ.
Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau
Asymmetrische Verschlü erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Gliederung 1) Prinzip der asymmetrischen Verschlü 2) Vergleich mit den symmetrischen Verschlü (Vor- und Nachteile)
10. Kryptographie. Was ist Kryptographie?
Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem
Kap. 2: Fail-Stop Unterschriften
Stefan Lucks 2: Fail-Stop Unterschriften 17 Digital Unterschreiben und Bezahlen Kap. 2: Fail-Stop Unterschriften Digitale Unterschriften (Synomym: Digitale Signaturen ): Fälschen mutmaßlich hart (RSA-Wurzeln,
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Mitschrift Vorlesung Einführung in die Kryptographie vom 18. Januar 2011
Mitschrift Vorlesung Einführung in die Kryptographie vom 18. Januar 2011 Dominic Scheurer 6. Februar 2012 Inhaltsverzeichnis 30 Digitale Signaturen (cont'd) - One-Time-Signaturen (OTS) 1 31 Public-Key-Verschlüsselung
Linux User Group Tübingen
theoretische Grundlagen und praktische Anwendung mit GNU Privacy Guard und KDE Übersicht Authentizität öffentlicher GNU Privacy Guard unter KDE graphische Userinterfaces:, Die dahinter
Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09
Verschlüsselung Fabian Simon BBS Südliche Weinstraße Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern 12.10.2011 Fabian Simon Bfit09 Inhaltsverzeichnis 1 Warum verschlüsselt man?...3
Programmiertechnik II
X.509: Eine Einführung X.509 ITU-T-Standard: Information Technology Open Systems Interconnection The Directory: Public Key and attribute certificate frameworks Teil des OSI Directory Service (X.500) parallel
Public-Key-Algorithmen WS2015/2016
Public-Key-Algorithmen WS2015/2016 Lernkontrollfragen Michael Braun Was bedeuten die kryptographischen Schutzziele Vertraulichkeit, Integrität, Nachrichtenauthentizität, Teilnehmerauthentizität, Verbindlichkeit?
Computeralgebra in der Lehre am Beispiel Kryptografie
Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit
RSA Full Domain Hash (RSA-FDH) Signaturen
RSA Full Domain Hash (RSA-FDH) Signaturen Signatur RSA-FDH Sei H : {0, 1} Z N ein Random-Oracle. 1 Gen: (N, e, d) GenRSA(1 n ) mit pk = (N, e) und sk = (N, d). 2 Sign: Für eine Nachricht m {0, 1} berechne
RSA Verfahren. Kapitel 7 p. 103
RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen
Cryptoparty: Einführung
Cryptoparty: Einführung Eine Einführung in E-Mail-Sicherheit mit GPG ifsr TU Dresden 22. Januar 2015 Zum Verlauf der Veranstaltung oder: Willkommen! Dreiteilige Veranstaltung 1. Zuerst: Konzeptuelle Einführung
27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln
27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?
Digital Rights Management (DRM) Verfahren, die helfen Rechte an virtuellen Waren durchzusetzen. Public-Key-Kryptographie (2 Termine)
Digital Rights Management (DRM) Verfahren, die helfen Rechte an virtuellen Waren durchzusetzen Vorlesung im Sommersemester 2010 an der Technischen Universität Ilmenau von Privatdozent Dr.-Ing. habil. Jürgen
Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009
Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen
PKI-Outsourcing: Vertrauen ist gut, Kryptografie ist besser
PKI-Outsourcing: Vertrauen ist gut, Kryptografie ist besser Theoretische Informatik Prof. Johannes Buchmann Technische Universität Darmstadt Graduiertenkolleg Enabling Technologies for Electronic Commerce
Stammtisch 04.12.2008. Zertifikate
Stammtisch Zertifikate Ein Zertifikat ist eine Zusicherung / Bestätigung / Beglaubigung eines Sachverhalts durch eine Institution in einem definierten formalen Rahmen 1 Zertifikate? 2 Digitale X.509 Zertifikate
E-Mail-Verschlüsselung
E-Mail-Verschlüsselung German Privacy Foundation e.v. Schulungsreihe»Digitales Aikido«Workshop am 15.04.2009 Jan-Kaspar Münnich ([email protected]) Übertragung von E-Mails Jede E-Mail passiert mindestens
Leichte-Sprache-Bilder
Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Klausur 21.07.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen
Kryptographie mit elliptischen Kurven
Kryptographie mit elliptischen Kurven Gabor Wiese Universität Regensburg Kryptographie mit elliptischen Kurven p. 1 Problemstellung Kryptographie mit elliptischen Kurven p. 2 Problemstellung Caesar Kryptographie
Modul Diskrete Mathematik WiSe 2011/12
1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung
Kurze Einführung in kryptographische Grundlagen.
Kurze Einführung in kryptographische Grundlagen. Was ist eigentlich AES,RSA,DH,ELG,DSA,DSS,ECB,CBC [email protected] GPG-Fingerprint: D19E 04A8 8895 020A 8DF6 0092 3501 1A32 491A 3D9C git clone
Lenstras Algorithmus für Faktorisierung
Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit
Import des persönlichen Zertifikats in Outlook 2003
Import des persönlichen Zertifikats in Outlook 2003 1. Installation des persönlichen Zertifikats 1.1 Voraussetzungen Damit Sie das persönliche Zertifikat auf Ihren PC installieren können, benötigen Sie:
E-mail Zertifikate an der RWTH
E-mail e an der RWTH Elekronische Signatur fortgeschrittene elektronische Signatur, mit Adobe Reader erstellt einfache elektronische Signatur 2 von 15 Elekronische Signatur fortgeschrittene elektronische
Zusammenfassung der Vorlesung vom 15.4.2015
Zusammenfassung der Vorlesung vom 15.4.2015 Für welche Schutzziele ist Kryptographie der geeignete Schutzmechanismus? Was genau kann erreicht werden (verhindern / entdecken)? Was besagt das Prinzip von
E-Mail-Zertifikatsverwaltung
E-Mail-Zertifikatsverwaltung Inhalt 1. Administration und Funktion... 2 2. Anzeige Verschlüsselungsstatus von Mails... 4 2.1. Fehlerprotokollierung... 4 3. Begriffe signieren und verschlüsseln... 5 4.
Projekt u23 Symmetrische Kryptografie, Betriebsmodi von Blockchiffren
Symmetrische Kryptografie Betriebsmodi von Blockchiffren und was man sonst damit machen kann Martin e.v. https://koeln.ccc.de 12. Oktober 2015 Definition Krypto-System Tupel (M, C, K, E, D) Message, Ciphertext,
Kryptographie II. Introduction to Modern Cryptography. Jonathan Katz & Yehuda Lindell
Kryptographie II Introduction to Modern Cryptography Jonathan Katz & Yehuda Lindell Universität zu Köln, WS 13/14 Medienkulturwissenschaft / Medieninformatik AM2: Humanities Computer Science Aktuelle Probleme
E-Mail-Verschlüsselung mit GPG. Von der Key-Erzeugung zur verschlüsselten E-Mail. Chemnitzer Linux-Tage 2010. 13.März 2010 Vortrag
E-Mail-Verschlüsselung mit GPG. Von der Key-Erzeugung zur verschlüsselten E-Mail. Chemnitzer Linux-Tage 2010. 13.März 2010 Vortrag Schlüssel signieren Private Key??? Key Signing Party Key Server E-Mail
Qualitätsbedingungen schulischer Inklusion für Kinder und Jugendliche mit dem Förderschwerpunkt Körperliche und motorische Entwicklung
Forschungsprojekt: Qualitätsbedingungen schulischer Inklusion für Kinder und Jugendliche mit dem Förderschwerpunkt Körperliche und motorische Entwicklung Leichte Sprache Autoren: Reinhard Lelgemann Jelena
Betriebssysteme und Sicherheit Sicherheit. Signaturen, Zertifikate, Sichere E-Mail
Betriebssysteme und Sicherheit Sicherheit Signaturen, Zertifikate, Sichere E-Mail Frage Public-Key Verschlüsselung stellt Vertraulichkeit sicher Kann man auch Integrität und Authentizität mit Public-Key
Regeln für das Qualitäts-Siegel
Regeln für das Qualitäts-Siegel 1 Inhalt: Die Qualitäts-Regeln vom Netzwerk Leichte Sprache 3 Die Übersetzung in Leichte Sprache 5 Die Prüfung auf Leichte Sprache 6 Wir beantworten jede Anfrage 7 Wir schreiben
Grundlagen der Verschlüsselung und Authentifizierung (2)
Grundlagen der Verschlüsselung und Authentifizierung (2) Benjamin Klink Friedrich-Alexander Universität Erlangen-Nürnberg [email protected] Proseminar Konzepte von Betriebssystem-Komponenten
E-Mail-Verschlüsselung mit S/MIME
E-Mail-Verschlüsselung mit S/MIME 17. November 2015 Inhaltsverzeichnis 1 Zertifikat erstellen 1 2 Zertifikat speichern 4 3 Zertifikat in Thunderbird importieren 6 4 Verschlüsselte Mail senden 8 5 Verschlüsselte
Kryptographie eine erste Ubersicht
Kryptographie eine erste Ubersicht KGV bedeutet: Details erfahren Sie in der Kryptographie-Vorlesung. Abgrenzung Steganographie: Das Kommunikationsmedium wird verborgen. Klassische Beispiele: Ein Bote
Algorithmische Kryptographie
Algorithmische Kryptographie Walter Unger, Dirk Bongartz Lehrstuhl für Informatik I 27. Januar 2005 Teil I Mathematische Grundlagen Welche klassischen Verfahren gibt es? Warum heissen die klassischen Verfahren
Vorlesung Sicherheit
Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 28.05.2015 1 / 33 Überblick 1 Schlüsselaustauschprotokolle Symmetrische Verfahren Asymmetrische
Arbeit zur Lebens-Geschichte mit Menschen mit Behinderung Ein Papier des Bundesverbands evangelische Behindertenhilfe e.v.
Arbeit zur Lebens-Geschichte mit Menschen mit Behinderung Ein Papier des Bundesverbands evangelische Behindertenhilfe e.v. Meine Lebens- Geschichte Warum ist Arbeit zur Lebens-Geschichte wichtig? Jeder
12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW...
12 Kryptologie... immer wichtiger Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... Kryptologie = Kryptographie + Kryptoanalyse 12.1 Grundlagen 12-2 es gibt keine einfachen Verfahren,
Umstellung des Schlüsselpaares der Elektronischen Unterschrift von A003 (768 Bit) auf A004 (1024 Bit)
Umstellung des Schlüsselpaares der Elektronischen Unterschrift von A003 (768 Bit) auf A004 (1024 Bit) 1. Einleitung Die Elektronische Unterschrift (EU) dient zur Autorisierung und Integritätsprüfung von
Netzsicherheit I, WS 2008/2009 Übung 12. Prof. Dr. Jörg Schwenk 20.01.2009
Netzsicherheit I, WS 2008/2009 Übung 12 Prof. Dr. Jörg Schwenk 20.01.2009 Aufgabe 1 1 Zertifikate im Allgemeinen a) Was versteht man unter folgenden Begriffen? i. X.509 X.509 ist ein Standard (Zertifikatsstandard)
Kap. 8: Speziell gewählte Kurven
Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl
Sichere E-Mail Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere E-Mail. der
Sichere E-Mail der Nutzung von Zertifikaten / Schlüsseln zur sicheren Kommunikation per E-Mail mit der Sparkasse Germersheim-Kandel Inhalt: 1. Voraussetzungen... 2 2. Registrierungsprozess... 2 3. Empfang
Kryptographie Reine Mathematik in den Geheimdiensten
Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,
IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie
IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete
Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)
Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll
Die Invaliden-Versicherung ändert sich
Die Invaliden-Versicherung ändert sich 1 Erklärung Die Invaliden-Versicherung ist für invalide Personen. Invalid bedeutet: Eine Person kann einige Sachen nicht machen. Wegen einer Krankheit. Wegen einem
RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel:
RSA-Verschlüsselung Das RSA-Verfahren ist ein asymmetrisches Verschlüsselungsverfahren, das nach seinen Erfindern Ronald Linn Rivest, Adi Shamir und Leonard Adlemann benannt ist. RSA verwendet ein Schlüsselpaar
6.2 Perfekte Sicherheit
04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da
Installation Benutzerzertifikat
Benutzerzertifikate Installation Benutzerzertifikat 1 Zertifikat generieren Folgende E-Mail erhalten Sie vom Trust/Link Portal und werden damit eingeladen ein persönliches Benutzerzertifikat zu erstellen.
Allgemeine Erläuterungen zu
en zu persönliche Zertifikate Wurzelzertifikate Zertifikatssperrliste/Widerrufsliste (CRL) Public Key Infrastructure (PKI) Signierung und Verschlüsselung mit S/MIME 1. zum Thema Zertifikate Zertifikate
Bedienungsanleitung für den Online-Shop
Hier sind die Produktgruppen zu finden. Zur Produktgruppe gibt es eine Besonderheit: - Seite 1 von 18 - Zuerst wählen Sie einen Drucker-Hersteller aus. Dann wählen Sie das entsprechende Drucker- Modell
Grundlagen der Kryptographie
Grundlagen der Kryptographie Die Kryptographie, aus dem Altgriehishen Geheimshrift abgeleitet, ist die Wissenshaft der Vershlüsselung von Nahrihten. Ursprünglih in der Antike eingesetzt, um diplomatishen
Kundenleitfaden zur Sicheren E-Mail per WebMail
Allgemeines Die E-Mail gehört heute für nahezu jeden von uns zu einem häufig verwendeten digitalen Kommunikationsmittel. Trotz des täglichen Gebrauchs tritt das Thema Sicherheit bei der Übermittlung von
Import des persönlichen Zertifikats in Outlook Express
Import des persönlichen Zertifikats in Outlook Express 1.Installation des persönlichen Zertifikats 1.1 Voraussetzungen Damit Sie das persönliche Zertifikat auf Ihrem PC installieren können, benötigen
Kryptographie. Ich doch hab nichts zu verbergen. IT-Security Bootcamp. Ziel. Was also tun? asymmetrisch. symmetrisch
Ich doch hab nichts zu verbergen Dann muss mich auch niemand überwachen! IT-Security Bootcamp Regierungen definieren was richtig und falsch ist! Was heute richtig ist, kann morgen falsch sein! 21.11.2013
Einführung in PGP/GPG Mailverschlüsselung
Einführung in PGP/GPG Mailverschlüsselung Vorweg bei Unklarheiten gleich fragen Einsteiger bestimmen das Tempo helft wo Ihr könnt, niemand ist perfekt Don't Panic! Wir haben keinen Stress! Diese Präsentation
AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b
AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität
Anleitung Thunderbird Email Verschlu sselung
Anleitung Thunderbird Email Verschlu sselung Christoph Weinandt, Darmstadt Vorbemerkung Diese Anleitung beschreibt die Einrichtung des AddOn s Enigmail für den Mailclient Thunderbird. Diese Anleitung gilt
! " # $ " % & Nicki Wruck worldwidewruck 08.02.2006
!"# $ " %& Nicki Wruck worldwidewruck 08.02.2006 Wer kennt die Problematik nicht? Die.pst Datei von Outlook wird unübersichtlich groß, das Starten und Beenden dauert immer länger. Hat man dann noch die.pst
Verteilte Systeme. 10.1 Unsicherheit in Verteilten Systemen
Verteilte Systeme Übung 10 Jens Müller-Iden Gruppe PVS (Parallele und Verteilte Systeme) Institut für Informatik Westfälische Wilhelms-Universität Münster Sommersemester 2007 10.1 Unsicherheit in Verteilten
Inhalt. Seminar: Codes und Kryptographie 1 1.6.2004
Inhalt Grundgedanken und bereits bestehende Verfahren Anforderungen an Elektronischen Geld und grundlegende Protokolle Blinde Signaturen und Probleme die daraus erwachsen On-line Cash Off-line Cash Random
