Alexander Schwarz:

Ähnliche Dokumente
LS Kopplung. = a ij l i l j. W li l j. = b ij s i s j. = c ii l i s i. W li s j J = L + S. L = l i L = L(L + 1) J = J(J + 1) S = s i S = S(S + 1)

Tunnelspitzen. Vorlesung. Rastersondenmikroskopie WS 2010/11. Spitzenätzung. Themenüberblick. Priv. Doz. Dr. A. Schirmeisen

Magnetic Sensitive Force Microscopy

Understanding Magnetic Force Microscopy

Newest Generation of the BS2 Corrosion/Warning and Measurement System

Ewald s Sphere/Problem 3.7

Unravelling the systematics in ion beam sputter deposition of SiO 2. M. Mateev, T. Lautenschläger, D. Spemann, C. Bundesmann

Molecular dynamics simulation of confined multiphasic systems

PD Dr. André Schirmeisen. Raster-Kraft-Mikroskop (engl. Atomic Force Microscope, AFM)

Where are we now? The administration building M 3. Voransicht

Walter Buchmayr Ges.m.b.H.

Shock pulse measurement principle

Chemical Bonding. type Energies Forces. ionic E ~ 1/r F ~ 1/r 2. covalent E ~ 1/r 3 F ~ 1/r 4. van der Waals E ~ 1/r 5 F ~ 1/r 6.

Mock Exam Behavioral Finance

Introduction FEM, 1D-Example

Titanium The heaviest light metal

- Characteristic sensitive Small temperature differences. - Low Sensitivity 42,8 µv/k for Cu-Constantan

Unit 1. Motivation and Basics of Classical Logic. Fuzzy Logic I 6

Overview thermostat/ temperature controller

Wakefield computation of PETRAIII taper section Laura Lünzer

a) Name and draw three typical input signals used in control technique.

Antiferromagnetism in Thin Films Studied by Resonant Magnetic Soft X-Ray Scattering

Routing in WSN Exercise

Registration of residence at Citizens Office (Bürgerbüro)

Introduction FEM, 1D-Example

Phase diagrams: Effect of the potential range

Unit 4. The Extension Principle. Fuzzy Logic I 123

Introduction to geometric and structural Crystallography. Lecture No. 10: Crystallographic space groups

ATEX-Check list. Compiled by: Date: Signature: Acceptable practice at the determination of flash point: Closed cup according to ISO 2719

Cycling. and / or Trams

Industrial USB3.0 Miniature Camera with color and monochrome sensor

Cycling and (or?) Trams

Numerical Analysis of a Radiant Syngas Cooler

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency

Typenreihe GH Lifting Solenoids

Simulating the Idle: A New Load Case for Vehicle Thermal Management

Open queueing network model of a computer system: completed jobs

Tube Analyzer LogViewer 2.3

auf differentiellen Leitungen

USBASIC SAFETY IN NUMBERS

2011 European HyperWorks Technology Conference

prorm Budget Planning promx GmbH Nordring Nuremberg

FEM Isoparametric Concept

orientation of the Fe films are aligned solely along [110] (or [1-10]) direction (see Fig.1). Interestingly, for the films grown on type II NiO(001) s

Datenblatt. Remote-I/O - u-remote UR20-4AO-UI or 4-wire connection; 16-bit resolution; 4 outputs

Dynamic Hybrid Simulation

C-TEC Systemtechnik und Serviceleistung für die Werkstoffprüfung GmbH

Determination of tornado intensity from forest damage

Gas discharges. For low temperature plasmas:electric fields are important (stationary (DC) or alternating current (AC)) E - -

Deceleration Technology. Rotary Dampers with high-torque range WRD-H 0607 WRD-H 0805 WRD-H 1208 WRD-H 1610 WRD-H

In-Situ AFM Investigation of the Adhesion Behavior of Spherical Polyelectrolyte Brushes (SPB) on Mica

Comsol Conference Hannover Design of a High Field Gradient Electromagnet for Magnetic Drug Delivery to a Mouse Brain

Stahl-Zentrum. Koksqualität und Hochofenleistung - Theorie und Praxis. Düsseldorf, 05. Dezember Peter Schmöle

Quanten-Physik auf einem Chip

Finite Difference Method (FDM)

The Intelligent-Driver Model with Stochasticity:

Experimentalphysik III Experimentelle Grundlagen der Quantenphysik

Objekterkennung Visuelle Verarbeitung von Gesichtern Orientierungseffekte. Objekterkennung Visuelle Verarbeitung von Gesichtern Orientierungseffekte

Climate change and availability of water resources for Lima

Darstellung und Anwendung der Assessmentergebnisse

Production of titanium structural parts for aeroplanes - Requirements for high performance milling -

In situ SEM as a tool for investigating micro and nanoscale processes in materials research

Lukas Hydraulik GmbH Weinstraße 39 D Erlangen. Mr. Sauerbier. Lukas Hydraulik GmbH Weinstraße 39 D Erlangen

Atline Inspection of Casting Production Process at Volkswagen using VG Inline

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL - USER GUIDE June 2016

Geometrie und Bedeutung: Kap 5

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL USER GUIDE June 2016

Meteorological measurements at the Offshore Platform FINO 2 - new insights -

Toses GmbH & Co KG Geschäftsführer Burkhard Walder

Methoden moderner Röntgenphysik II Methods in modern X-ray physics II

Vorlesung 14: Roter Faden: Wiederholung Lamb-Shift. Hyperfeinstruktur. Folien auf dem Web:

SAMPLE EXAMINATION BOOKLET

Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow

Zehnder CLD. Housing for walls, floors and ceilings

Quantum Phase Transitions in XXZ Spin-1/2 Chain Materials Cs2CoCl4 and Cu(C4H4N2)(NO3)2

Harry gefangen in der Zeit Begleitmaterialien

Scanning Probe Microscopy - A plethora of possibilities

PELTIER-HOCHLEISTUNGSMODULE

DAS ERSTE MAL UND IMMER WIEDER. ERWEITERTE SONDERAUSGABE BY LISA MOOS

Eingebettete Taktübertragung auf Speicherbussen

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference

Cold Atoms. Cold Atoms

RECHNUNGSWESEN. KOSTENBEWUßTE UND ERGEBNISORIENTIERTE BETRIEBSFüHRUNG. BY MARTIN GERMROTH

Primärspannungsmessungen mit der. CSIRO Triaxialzelle

Advanced Track and Tire Modeling using SIMPACK User Routines

Hazards and measures against hazards by implementation of safe pneumatic circuits

Ion beam sputtering of Ag: Properties of sputtered and scattered particles

Electrical testing of Bosch common rail piezo injectors

New X-ray optics for biomedical diagnostics

GRIPS - GIS basiertes Risikoanalyse-, Informations- und Planungssystem

Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM)

Efficient Monte Carlo Simulation of Tunnel Currents in MOS Structures

CATALOGUE Radiation Detectors

Hypex d.o.o. Alpska cesta 43, 4248 Lesce Slovenija Tel: +386 (0) Fax: +386 (0)

Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds

EINSPEISEMANAGEMENT: GRUNDLAGEN, ANALYSE- UND PROGNOSEMÖGLICHKEITEN

AS Path-Prepending in the Internet And Its Impact on Routing Decisions

Teil 3: Spin-Spin Kopplung

Logik für Informatiker Logic for computer scientists

Wie man heute die Liebe fürs Leben findet

Transkript:

physics department prison football stadium FC St. Pauli AFM: Abteilung Fördernde Mitglieder (Department of Supporting Members)

Magnetic Sensitive Force Microscopy Alexander Schwarz, Universität Hamburg, Jungiusstr. 11, 20355 Hamburg, Germany Magnetism Basics (Part I & II) atomistic approach (origin of magnetism, magnetic exchange mechanisms) phenomenological approach (hysteresis, domains, domain walls) Magnetic Force Microscopy (MFM; Part I) tip preparation and tip properties separation of forces examples (thin films, superconductors, ) Magnetic Exchange Force Microscopy (MExFM; Part II) tip preparation and tip properties separation of forces examples (spectroscopy, switching, dissipation ) Review: Magnetic sensitive force microscopy : A. Schwarz & R. Wiesendanger, Nanotoday 3, 28 (2008).

Magnetism-Based Applications compass medical MRI door bell AMR angle sensor (1 mm 2 ) electro motor loud speaker hard drive with GMR head

Technological Impact of Magnetic Sensitive Force Microscopy MFM image continuous media the envisaged ultimate limit of magnetic data storage: MFM image patterned media bits from single atoms with spin up and spin down investigation/analysis requires nanonmeter down to atomic resolution

Forces in Force Microscopy Electromagnetic Forces F ts electrostatic force magnetostatic force van der Waals force 100 nm 10 nm 0 nn steps (topography) MFM (z > 10 nm) chemical force magnetic exchange force repulsive forces 1 nm -1 nn -0.3 nm AFM/MExFM atomic resolution z magnitude of forces: magnetic exchange 0.1 nn (d < 0.5 nm) magnetostatic 1 pn (d > 10 nm)

Part I Magnetic Force Microscopy (MFM)

Magnetic Order

Dipolar Interactions and Magnetic Ordering in Solids macroscopic observation: dipoles µ E = 0 µ 1 µ 3 2 µ 1 r µ 2 r 3 2 4πr r ( ) ( ) assumptions: atoms in solids = interacting atomic dipoles; interatomic distance 300 pm; dipole moment of atoms 1 µ B E = 2 23 2 µ µ 0 B 1,6 10 J 30 μev 3 4πr 0.3 K Curie temperature of ferromagnets (Fe, Ni, Co) > 300 K (> 20 mev)! magnetic ordering is a true quantum effect and rare in pure elements superconductivity occurs much more often, although not at RT!

Two Interacting Electrons with Spin QM: spin operator (S x, S y, S z ) S 2 χ = s (s+1) ħ 2 χ = ¾ ħ 2 χ ; s = ½ S z χ = m s ħ χ = ± ħ/2 χ ; m s = -s,, +s = ± ½ ( m s = 1 ) µ S = -g µ B S/ħ ; g 2 (Stern-Gerlach) spin states χ i χ 1+ = χ 1- = χ 2+ = > > χ 2- = > > Dirac Bra-Ket Notation 2 interacting electrons with spin s i = ½ s = s 1 ± s 2 = 0, 1 QM: product states of indistinguishable quantum particles

Two Interacting Electrons with Spin spin states χ i χ 1+ = χ 1- = χ 2+ = > > χ 2- = > > 2 electrons each with s = ½ & m s = ±½ 2 electron state χ(s,m) s m > 1 +1 0 0 singlett antismmetric 1 0 > 1-1 triplett symmetric s = s 1 - s 2,, s 1 + s 2 = s 1 ± s 2 = 0,1 and m = -s,, +s = -1,0,+1 ( m = 1) no spin dependent term! Coulomb Interaction V(r) + Pauli Principle & Indistinguishability Alignment of Spins Magnetic Order

Orbital Momentum and Spin-Orbit Coupling electron spin S : intrinsic degree of freedom of the electron with associated magnetic moment µ S orbital momentum L : movement of electrons around the nucleus generates a magnetic moment µ L µ S and µ L are usually expressed in units of µ B = eħ/2m e spin-orbit coupling : H so = λ L S (λ atomic number Z strong for heavy elements) spin-orbit coupling is the origin of the magneto-crystalline anisotropy energy (MAE) in many solids µ L is quenched and µ = µ L + µ S is dominated by µ S! many electron systems: total angular momentum J LS-coupling for small Z with J = L+S with L = Σl i and S = Σs i JJ-coupling for large Z with J = Σj i with j i = l i + s i Note: LS-coupling is not spin-orbit coupling, but a way of adding up momenta in Quantum Mechanics

Hamilton Operator of an Electron H = -ħ/2m + V p (r) + λ L S + g l µ B BL + g s µ B BS + V cf (r) energy scales: kinetic energy > 1 ev potential energy > 1 ev crystal field 10 mev spin-orbit interaction 1 mev Zeeman interaction 1 mev geometry dependent crystal field splitting V cf (r): tetrahedral coordination octahedral coordination

Magnetic Exchange: Heisenberg Model in multi-electron systems: Heisenberg spin operator H : J is the magnetic coupling constant (not the total angular momentum) J > 0 ferromagnetic order J < 0 antiferromagnetic order skalar product: no magnetic interaction for perpendicular spins (more details in Part II)

Ferro- and Antiferromagnetism Bethe-Slater Curve simplified picture to explain ferro- (fm) and antiferromagnetic (afm) order in solids based on direct magnetic exchange: for small separation ferromagnetic spins are not allowed to share the same orbital (Pauli exclusion principle)!

Zoo of Magnetic Order in Nature ferromagnet antiferromagnet ferrimagnet and more (Skyrmions) canted antiferromagnet spiraling spin structure apart from direct magnetic exchange, other mechanisms can become important as well: biquadratic, Dzyaloshinskii-Moriya,

Indirect Coupling via Super Exchange mediation of the magnetic exchange interactions between isolated localized spins via bridging atoms (note: many similarities to magnetism in molecules!) super exchange: prototypical in transition metal monoxides like NiO with afm order TM d-state oxygen p-state TM d-state afm order fm order

Magnetic Domains and Domain Walls

Magnetization Curves and Hysteresis magnetization M parallel to external magnetic field H is favored (Zeeman energy) (for single atoms: E Z = ±µb) M R M M S Barkhausen jumps magnetic domains! H saturation magnetization M S remanent magnetization M R coercive field H C paramagnets: no hysteresis!

The Origins of Magnetic Domains in Ferromagnets magnetic exchange energy: atomic spins parallel short range, strong stray field energy: atomic spins antiparallel long range, weak domain formation (energy minimization) large stray field small stray field

The Origins of Magnetic Domains in Ferromagnets magnetic exchange energy: atomic spins parallel short range, strong stray field energy: atomic spins antiparallel long range, weak external domain magnetic formation field H (energy (additional minimization) Zeeman energy) large stray field small stray field

The Origins of Magnetic Domains in Ferromagnets magnetic exchange energy: atomic spins parallel short range, strong stray field energy: atomic spins antiparallel long range, weak external domain magnetic formation field H (energy (additional minimization) Zeeman energy) large stray field small stray field

Domain Walls if there are domains with oppositely oriented magnetizations, there must be domain walls as well due to the strong and short-ranged magnetic exchange energy, domain walls cannot be atomically sharp 180 Bloch wall: out-of-plane rotation 180 Neel wall: in-plane rotation flux closure domains (180 & 90 walls) 100 nm K: uniaxial anisotropy (preferred magnetization direction) A: exchange stiffness (related to exchange energy)

Magnetic Anisotropy Energies exchange energy E ex stray field energy E sf Zeeman energy E Z magnetocrystalline anisotropy energy (MAE) E mae (spin orbit coupling) shape anisotropy energy E shape surface/interface anisotropy energy E surf/interf (symmetry breaking) magnetic state is determined by the total magnetic energy: E tot = E ex + E sf + E Z + E mae + E shape + E surf/interf + uniaxial anisotropy energy E = K u V sin 2 θ (simplest case!) K u : energy density along the easy axis, θ : angle relative to easy axis, V : volume

Summary: Magnetism atomistic origin: spin and angular momentum alignment of spins: Coulomb interaction and Pauli exclusion principle of indistinguishable particles theoretical description with Heisenberg modell direct and indirect magnetic exchange mechanisms (super exchange, double exchange, RKYY, ) ferromagnetism, antiferromagnetism, ferrimagnetism, but also complex non-collinear spin structures, origin of magnetic domains: interplay between short range magnetic exchange interaction and long range magnetostatic forces domain structure also influenced by shape, interfaces and external field domain walls: complex magnetic structures between domains

Magnetic Force Microscopy (MFM) demonstrated 1987 on a hard disk, just one year after AFM Magnetic imaging by force microscopy with 1000 Å resolution. Y. Martin, Y. and H. K. Wickramasinghe, Appl. Phys. Lett. 50, 1455 (1987).

Forces in Force Microscopy Electromagnetic Forces F ts electrostatic force magnetostatic force van der Waals force 100 nm 10 nm 0 nn steps (topography) MFM (z > 10 nm) chemical force magnetic exchange force repulsive forces 1 nm -1 nn -0.3 nm AFM/MExFM atomic resolution z magnitude of forces: magnetic exchange 0.1 nn (d < 0.5 nm) magnetostatic 1 pn (d > 10 nm)

Force Sensor Si 1-7 µm 20 30 µm pyramidal tip magnetic coating 200-400 µm Cantilever resolution of near field techniques: effective tip size and tip-sample distance metal wire (bulk) tips: possible, but usually not so sharp; complex domain structure at tip apex (closure domains )

CA-FM-AFM Set-Up Deflection Sensor Amplitude Detector Frequency Demodulator Sample XYZ- Scanner A (x,y) A-Feedback Cantilever Shaker Tip A-Set-Point a exc (x,y): Dissipation constant height z (x,y): Topography f (x,y) z-feedback f -Set-Point

Magnetostatic Tip-Sample Interaction F ts int S T T S Sample tip stray field interacts with sample magnetization or, equivalently, vice versa = E = µ ts 0 m H ( t s ) Tip z F z = µ 0 m J: Magnetic Polarization (= Magnetization M) H: Stray Field IMPORTANT: it is impossible to unambiguously infer the sample magnetization by sensing the stray field additional information is required! dipole approximation for tip: m t = (m x, m y, m z ) magnitudes of force: 1 pn soft cantilevers (1-5 N/m) force gradients: 10-5 N/m decay length (depends on domain size): λ 100 nm oscillation amplitude: A 10 nm x 2 H 2 z x + m y 2 H z y 2 + m z 2 H 2 z in general all three components of the sample stray field contribute to the magnetic signal! if λ >> A f F/ z z

Optimized Properties of Thin Film Tips Shape Anisotropy and Film Thickness large magnetic signal large tip stray field (thick film) high spatial resolution localized tip stray field tip tip stray field should not alter the magnetic structure of the sample small stray field sample stray field should not switch magnetization direction in the tip hard magnetic tip shape anisotropy easy axis follows tip shape 2 2 2 H H x y H z F = + + z µ 0 m x m m 2 y 2 z 2 z z z z out-of-plane sensitive tip 2 Hz x Fz = µ 0 mz x 2 z z potentially complex domain pattern at tip apex difficult image interpretation (true also for bulk magnetic tips: closure domains!) + + - - - - + - - + + + + - - - - + + + single domain tip with well defined easy axis easier image interpretation (only H z!) h

Bad Tip - Good Tip CoPt multilayer sample with out-of-plane anisotropy 500 nm tip with in-plane component 500 nm pure out-of-plane tip

Separation of Forces Van-der-Waals Force lift mode: disadvantage: long scan times, large magnetostatic interaction during topography scan 1st scan: topography z feedback on 2nd scan: true constant height (z-feedback off) using 1st scan data plane-subtraction-mode: obtain tilt from one topography scan (z-feedback on) better: obtain scan from two perpendicular topography scan lines (z-feedback on) even better: apply large bias to obtain tilt from topography scan (z-feedback on ) far away from surface 1st: compensate tilt between tip and sample h 20 nm 2nd: constant height (h > 10 nm) with z- feedback off (tilt remains constant over time!)

Separation of Forces: Electrostatic Forces +3.4 V +2.4 V +1.4 V +0.4 V topography (1 µm 2 ) plane-subtraction-mode: (non-magnetic tip) particularly important on inhomogeneous surfaces if signals are weak not every contrast visible with the tip far away from the surface is of magnetic origin a real proof is needed!

Contrast Formation and Interpretation Thin Films: Out-Of-Plane vs. In-Plane Anisotropy thickness dependent reorientation transition of Co on Au(111) below 4 ML: out-of-plane magnetization; surface/interface anisotropy dominates out-of-plane tip images magnetic domains above 4 ML: out-of-plane magnetization; shape anisotropy dominates out-of-plane tip images domain walls 180 Bloch wall with out-of-plane component!

Contrast Formation and Interpretation Magnetic Nanodots: In-Plane vs. Out-Of-Plane Anisotropy patterned media: polycrystalline cobalt nanodots on silicon diameter: 100 nm, height: 40 nm single domain; shape anisotropy favors in-plane magnetization diameter: 70 nm, height: 100 nm single domain; shape anisotropy favors out-of-plane magnetization dots appear as dipoles A. Fernandez et al., IEEE Trans. Mag. 32, 4472 (1996).

Field Dependent Experiments Magnetization Reversal Behavior of Thin Film Tips 30 mt manganite (La 0.7 Sr 0.3 MnO 3 ) on LaAlO 3 sample exhibits interface (stress) induced out-of-plane anisotropy 50 mt 20 mt area scan line scan (slow axis disabled) 0 mt contrast change along whole scan line indicates switching of the tip magnetization contrast inversion indicate complete reversal by 108 : well behaved single domain tip!

Hysteresis Loop on LSMO on LAO A. Schwarz et al., PRL 92, 077206 (2004) & M. Liebmann et al., PRB (2005): EPAPS document @ http://www.aip.org/pubservs/epaps.html

Visualization of Single Barkhausen Events 275 mt 270 mt difference images A-B: revealing Barkhausen events merging images A + C: position of Barkhausen events A A - B 1 µm B A + C 1 µm identification of nucleation of new domains and growth of old domains due to domain wall propagation N P C 1 µm D 1 µm resolution 10 nm depends on scan height and localization of the stray field emanating from the tip A. Schwarz et al., PRL 92, 077206 (2004)

Summary: MFM senses stray field above the surface long range magnetostatic interaction separation from other long range forces (vdw, electrostatic) lift mode or plane-subtraction mode compensation of CPD resolution limit about 10 nm tip-sample distance localization of the stray field emanating from the tip usually only qualitative, but not quantitative (e.g., not possible to obtain magnetization like with SEMPA)