Landschaft der Forschungsinfrastrukturen. Lhc der weltgrößte teilchenbeschleuniger

Ähnliche Dokumente
Landschaft der Forschungsinfrastrukturen. LHC der weltgrößte Teilchenbeschleuniger

Teilchenbeschleuniger Collider

Teilchenphysik Masterclasses. Das Leben, das Universum und der ganze Rest

Herzlich Willkommen bei DESY. Was ist das DESY und welche Forschung wird bei uns betrieben?

WELT MASCHINE DIE KLEINSTEN TEILCHEN UND GRÖSSTEN RÄTSEL DES UNIVERSUMS AUSSTELLUNG IM U-BAHNHOF BUNDESTAG, BERLIN. Mit freundlicher Unterstützung von

Elementarteilchen in der Materie

Wie arbeitet ein Teilchenphysiker? Das Standardmodell, Detektoren und Beschleuniger.

WELT MASCHINE DIE KLEINSTEN TEILCHEN UND GRÖSSTEN RÄTSEL DES UNIVERSUMS AUSSTELLUNG IM U-BAHNHOF BUNDESTAG, BERLIN. Mit freundlicher Unterstützung von

Der Teilchenbeschleuniger. am CERN in Genf

Viel Spaß wünscht das Teilchenwelt-Team

Der Large Hadron Collider (LHC) und ein. Elektron-Positron-Linearbeschleuniger

LHC: Beschleuniger, Experimente, physikalische Ziele. Peter Mättig Bergische Universität Wuppertal

Masterclasses Hands-on Particle Physics. - Technische Universität Dresden - 08 Juli 2011 Marcus Morgenstern

GOTTTEILCHEN und WELTMASCHINE

Fundamentale Physik. < Grundfrage der Menschheit: woraus besteht, wie funktioniert alles? Teilchenphysik, Allgemeine Relativitätstheorie, Kosmologie

Herzlich willkommen bei DESY! Tag der offenen Tür 2003 Rasmus Ischebeck

Das unbekannte Universum

Unsichtbares sichtbar machen

Jenseits der Antimaterie

Teilchenphysik. Das Leben, das Universum und der ganze Rest

Der Large Hadron Collider (LHC)

Teilchenphysik. Das Leben, das Universum und der ganze Rest

Besuch im Teilchenzoo. Claudia-Elisabeth Wulz Institut für Hochenergiephysik der ÖAW & TU Wien c/o CERN, Genf

Higgs, B-Physik und Co. die ersten 4 Jahre Physik am LHC

Die Suche nach dem Gottes-Teilchen

A. Straessner FSP 101 ATLAS. Lange Nacht der Wissenschaften 5. Juli 2013

Alles Quark? Jochen Schieck. Institut für Hochenergiephysik Österreichische Akademie der Wissenschaften und Technische Universität Wien

Hadron-Kollider-Experimente bei sehr hohen Energien

Das Unsichtbare sichtbar, und das Unmögliche möglich machen Die Forschung am

Die Bausteine der Natur

Wie kann man Elementarteilchen sehen?

Von schnellen Teilchen und hellem Licht

Kerne und Teilchen. Moderne Physik III. 7. Grundlagen der Elementarteilchen-Physik 7.1 Der Teilchenzoo. Vorlesung # 14.

Landschaft der Forschungsinfrastrukturen. Pierre-Auger-Observatorium: Astronomie bei höchsten Energien

Das CMS Experiment am Large Hadron Collider (LHC) am. Beispiel für globale Kommunikation in der Elementarteilchen-physik

Von der Entdeckung des Higgs-Teilchens zur Suche nach Dunkler Materie -Neues zur Forschung am LHC-

Das Higgs-Boson wie wir danach suchen

Große Beschleunigerexperimente (LHC, FAIR etc.)

Ist das Higgs entdeckt? erste Ergebnisse der Weltmaschine und wie es weiter geht.

Urknall im Tunnel: Urknall im Tunnel: das Large Hadron Collider Projekt VDI GMA-Kongress Baden-Baden, 12. Juni 2007 S.Bethke, MPI für Physik, München

Teilchenphysik Masterclasses. Das Leben, das Universum und der ganze Rest

Neue Physik am LHC. Die Erwartungen und Hoffnungen der theoretischen Physik, und was das alles mit Urknall und Schwarzen Löchern zu tun haben kann

Das Leben als Teilchenphysiker. Wie konnte das nur passieren?

CERN. Eine Einführung. Das europäische Forschungszentrum für Teilchenphysik (Conseil Européen pour la Recherche Nucléaire) CERN Hauptgelände.

Neue Ergebnisse der ATLAS Suche nach dem Higgs

DER LARGE HADRON COLLIDER AM CERN: DEM URKNALL AUF DER SPUR

analyse Von lhc-daten: Z-pfad ANLEITUNG ZUR AUSWERTUNG VoN TEILCHENSPUREN

Hands on Particle Physics International Masterclasses. WIMP's & Co

Die Suche nach dem Ursprung der Masse Forschung am neuen Beschleuniger LHC in Genf

LHC Beschleuniger und Detektoren. Seminarvortrag Philipp Hofmann

Das heutige Bild vom Aufbau eines Atoms

Der lange Weg zum Higgs

Elementarteilchen. wie wir sie bei LHC sehen können

Landschaft der Forschungsinfrastrukturen. European Synchrotron Radiation Facility ESRF

Die wahre Geschichte der Antimaterie

Was die Welt im Innersten zusammenhält

Beschleuniger und Detektoren

Die Grundbausteine des Universums

Reise ins Innerste der Materie Eine Einführung in die Teilchenphysik

Neue Horizonte in der Teilchenphysik - Vom Higgs-Teilchen zur Dunklen Materie im Universum -

Institut für Strahlenphysik Dr. Daniel Bemmerer Mitglied der Leibniz-Gemeinschaft. Altes und Neues zum Standardmodell

Die Masse, das Higgs und mehr...

Komplexe Lernleistung. Thema: Auswertung von Z(0)-Zerfällen. Fach: Physik. Fachlehrer: Frau Dr. Koch. Abgabetermin: 12.April 2010

Landschaft der Forschungsinfrastrukturen. ESS Spallationsquelle für die Neutronenforschung

Dunkle Materie & Dunkle Energie: die unbekannten 95% des Universums

Vernetzung für excellente Forschung

Experimente mit dem Large Hadron Collider am CERN...

Was machen Physikerinnen und Physiker mit einer Rechnerfarm?

Abb. 1 Einblick in die Forschungsanordnung des LHCb. Messungen des LHCb zur Gültigkeit des Standardmodells sorgen erneut für Aufregung.

und das ATLAS-Experiment

Teilchenphysik. Was wir heute wissen. Philipp Lindenau Dresden Herzlich willkommen!

Die Forschung am LHC und das CMS Experiment accelerating science and innovation

GIPFELTREFFEN DER TEILCHENPHYSIK IN WIEN

Einheit 13 Subatomare Physik 2

Experimente der Teilchen- und Astroteilchenphysik

Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt

Studienfahrt zum europäischen Forschungszentrum für TeilchenphysikCERN

Experimente der Teilchen- und Astroteilchenphysik

Moderne Methoden/Experimente der Teilchen- und Astroteilchenphysik

Neues vom LHC. Exkursion in die Welt der Elementarteilchen. Elementarteilchenphysik heute Higgs und das Gottesteilchen LHC - Wohin geht die Reise?

Frei Rampe Schlachthofpreise in der EU exkl. USt. Jungrinder R3 in Euro je kg Kaltschlachtgewicht

Erzeugung Beschleunigung Ablenkung Kollision. Magnetfeld

Erzeugung Beschleunigung Ablenkung Kollision. Magnetfeld

Die Entwicklung des Universums vom Urknall bis heute

Ein neues Fenster in den Mikrokosmos

CERN. v Europäisches Zentrum für Elementarteilchenphysik bei höchsten Energien

Der Large Hadron Collider internationaler Vorstoß in unbekanntes Neuland des Mikro- und des Makrokosmos

Wieviele Dimensionen hat die Welt?

Krise, gar Ende der Physik?

Die Welt der Teilchen

Teilchenphysik: Unsichtbares sichtbar machen. Thomas Trefzger

Weltbilder auf dem Prüfstand. DESY und die Zukunft der Teilchenphysik

Der Higgs-Mechanismus. Max Camenzind Akademie Heidelberg Juli 2015

Der LHC. Neue Dimension[en] in der Teilchenphysik. Die Weltmaschine Darmstadt, August 2011

Quarks und Leptonen - Bausteine des Universums

CERN. European Organization for Nuclear Research Über 50 Jahre Grundlagenforschung in Physik. das Labor die Beschleuniger die Experimente die Physik

Urknall rückwärts: Experimente an den Grenzen der Physik. Peter Schleper Universität Hamburg

Das Higgs- Teilchen: Supersymetrische Teilchen:

CERN und die Suche nach dem rätselhaften Higgs-Teilchen

Transkript:

Landschaft der Forschungsinfrastrukturen Lhc der weltgrößte teilchenbeschleuniger

ForschungsinFrastruktur: Lhc, stand august 2016 2 LHC der weltgrößte Teilchenbeschleuniger groß, größer, Lhc: der Large hadron collider am cern bei genf ist mit einem umfang von 27 kilometern der größte und leistungsfähigste teilchenbeschleuniger, der jemals gebaut wurde. an dieser Weltmaschine wurden mehrere teilchen erstmals nachgewiesen darunter ein grundlegender Baustein des standardmodells der teilchenphysik, das sogenannte higgs-boson. nach umfangreichen Wartungsarbeiten stoßen die Wissenschaftler nun in noch höhere Energiebereiche vor. damit hoffen sie, offene Fragen der teilchenphysik und des ursprungs unserer Welt zu klären. Wie ist Materie aufgebaut? Und was hält sie im Innersten zusammen? Mit diesen Fragen beschäftigten sich bereits Philosophen wie Demokrit in der Antike. Während den griechischen Atomisten ausschließlich Gedankenmodelle zur Verfügung standen, um über die Beschaffenheit der Materie im Kleinsten zu philosophieren, ergänzen sich in der modernen Naturwissenschaft Theorie und Experiment. Das Bild, das wir heutzutage vom Aufbau der Materie und den zugrunde liegenden Kräften haben, hat sich inzwischen drastisch geändert und präzisiert. Beschrieben wird es in dem sogenannten Standardmodell der Teilchenphysik. Mit dem bisher leistungsstärksten Teilchenbeschleuniger, dem Large Hadron Collider (LHC) am CERN bei Genf, stellen Physiker in internationaler Zusammenarbeit dieses Modell auf den Prüfstand. der Beschleuniger Der Large Hadron Collider (LHC) befindet sich im Grenzgebiet zwischen Schweiz und Frankreich. Hauptbestandteil ist ein unterirdischer, rund 27 Kilometer langer Beschleunigerring, in den Protonen die positiv geladenen Bausteine der Atomkerne eingespeist werden. Supraleitende Magnetspulen, die keinen elektrischen Widerstand besitzen, halten die geladenen Teilchen mit starken Magnetfeldern auf ihrer Bahn innerhalb des Speicherrings. Im LHC werden zwei gegenläufige Protonenstrahlen auf Energien bis zu 6,5 Teraelektronenvolt beschleunigt und stoßen schließlich nahezu mit Lichtgeschwindigkeit aufeinander. Die Energien sind bei derartigen Kollisionen so hoch, dass die Protonen im Einzelnen zerstört werden, aber sämtliche elementaren Wechselwirkungen die Gravitation, der elektromagnetische, die schwache und die starke Kraft zum Zuge kommen und dadurch neue Teilchen erzeugt werden. Zwar zerfallen viele dieser Teilchen rasch wieder in andere Teilchen, so dass die Ursprünglichen sich gar nicht direkt detektieren lassen. Jedoch entstehen bei diesen Zerfällen Teilchen, die in speziell dazu gefertigten Detektoren ihre Spuren hinterlassen. Geneva CERN CMS LHCb ATLAS ALICE LHCb ATLAS PS SPS BOOSTER ALICE CMS LHC ~100 m Der LHC am CERN liegt in Genf im Grenzgebiet zwischen Frankreich und der Schweiz. Mit seinem 27 Kilometer langen Tunnel ist er der längste Ringbeschleuniger der Welt. Die vier großen Experimente ALICE, ATLAS, CMS und LHCb sind in unterirdischen Räumen aufgebaut. Zwei gegenläufige Teilchenstrahlen werden jeweils so durch den Ringtunnel geführt, dass sie sich im Zentrum der Detektoren kreuzen und dort zusammenstoßen. (Bild: CERN)

Forschungsinfrastruktur: LHC, Stand August 2016 3 Die Experimente Insgesamt sind vier große Teilchendetektoren in den LHC eingebaut. Mit ATLAS, einem der beiden Viel zweckdetektoren, vermessen die Physiker unter anderem das Higgs-Boson und suchen nach Teilchen, die die Dunkle Materie ausmachen könnten. Der zweite große Vielzweckdetektor, CMS, hat ähnliche Ziele wie ATLAS. Hiermit suchen die Forscher ebenfalls nach dem Higgs-Boson, Teilchen der Dunklen Materie und stellen das Standardmodell der Teilchenphysik auf den Prüfstand. Allerdings unterscheiden sich die beiden Detektoren in ihrem technischen Aufbau. Beide Detektoren ergänzen sich und werden von unabhängigen Arbeitsgruppen betrieben. Dies ist vor allem auch für Neuentdeckungen wie etwa des Higgs- Teilchens im Jahr 2012 von Bedeutung. Auf diese Weise lassen sich die Ergebnisse beider Experimente gegenseitig auf ihre Zuverlässigkeit überprüfen. Die beiden weiteren Experimente sind speziellen Formen von Materie gewidmet. Mit ALICE untersuchen die Wissenschaftler das Quark-Gluon-Plasma ein Materiezustand, der kurz nach dem Urknall herrschte und sich ebenfalls nur bei extrem hohen Energien erzeugen lässt. Damit wollen sie die Natur der starken Wechselwirkung besser verstehen. Mit dem Experiment LHCb überprüfen die Physiker das Standardmodell der Teilchenphysik, indem sie nach winzigen Unterschieden zwischen Materie und Antimaterie suchen. Deutsche Beiträge zum LHC Deutschland übernimmt mit ca. 200 Millionen Euro im Jahr rund 20 Prozent des CERN-Haushaltes, aus dem der Betrieb des LHC bezahlt wird. Damit ist Deutschland der größte Geldgeber und sichert sich so eine herausragende Position innerhalb der Teilchenphysik. Das Bundesministerium für Bildung und Forschung (BMBF) fördert außerdem alle vier LHC- Experimente mit Mitteln aus der sogenannten Verbundforschung. Diese Förderung ermöglicht es deutschen Universitäten, sich mit wesentlichen Beiträgen an ATLAS, CMS, ALICE und LHCb zu beteiligen. Mit ihrem Fachwissen vor allem im Detektorbau und in der Datenauswertung sorgen die Universitäten dafür, dass die LHC-Experimente ständig weiterent wickelt und wissenschaftlich effizient genutzt werden. Im Zuge des weiter unten beschriebenen High- Luminosity-Upgrades soll die Leistungsfähigkeit des LHC ab Ende 2023 weiter erhöht werden. Damit die Experimente mit dieser Entwicklung Schritt halten können, ist ein Ausbau der Detektoren ATLAS und CMS geplant. Für dieses sogenannte Phase-II-Upgrade stellt das Ministerium in einem ersten Schritt zusätzliche Mittel bereit. Daraus werden Forschungs- und Entwicklungsarbeiten an den beiden Detektoren finanziert. Insgesamt sind mehr als 1000 deutsche Forscherinnen und Forscher an den CERN-Experimenten beteilig. 2012 wurde am LHC erstmals das Higgs-Teilchen sowohl mit dem AT LAS- als auch dem CMS-Experiment nachgewiesen. Direkt lässt es sich allerdings nicht detektieren, da es viel zu schnell zerfällt. Doch die dabei entstehenden Sekundärteilchen hinterlassen ihre Spuren, wie hier im CMS-Detektor, anhand derer die Physiker auf die Existenz des Elementarteilchens und auf dessen Masse schließen können. (Bild: CERN) Wie auch der CMS-Detektor ist das ATLAS-Experiment dem Test des Standardmodells und der Untersuchung des Higgs-Teilchens verschrieben. Allerdings basiert der ATLAS-Detektor auf einer anderen Technologie als der CMS. ATLAS besteht aus sechs Subdetektorsystemen und ist der größte jemals konstruierte Teilchendetektor. (Bild: Claudia Marcelloni/CERN)

4 Forschungsinfrastruktur: LHC, Stand August 2016 Bisheriger Betrieb und aktuelles Upgrade Der LHC hat während der ersten Betriebsphase bis 2012 doppelt so viele Daten geliefert wie ursprünglich vorgesehen. Während dieser ersten Laufzeit entdeck ten die Physiker sowohl in den Daten des ATLAS- als auch des CMS-Experiments das gesuchte Higgs-Teil chen. Für Wartungs- und Um bau arbeiten wurde die Beschleunigeranlage ab Februar 2013 für gut zwei Jah re heruntergefahren. Nach der Wartung läuft der LHC nun erstmals mit Strahlenergien von 6,5 Teraelektronenvolt. Die Anlage ging im Frühjahr 2015 wieder in Betrieb und nimmt seit Juni 2015 neue Daten auf. Die Kollisionsenergie ist dabei fast doppelt so hoch wie zuvor. Mit diesen neuen Möglichkeiten hoffen die Physiker unter anderem, das Higgs-Teilchen genauer charakterisieren zu können. Während die bisherigen Experimente das Standard modell bestätigt haben, werden in dem neu zugäng lichen Energiebereich zudem völlig neue physikalische Phänomene erwartet. Man hofft, das Modell der so genannten Supersymmetrie testen zu können. Es kann als Erweiterung des Standardmodells verstanden werden und schließt unter anderem die Dunkle Materie mit ein. Für 2019/2020 ist eine weitere Wartungsphase geplant, bei der die Vorbeschleuniger, mit denen die Protonen in den Beschleunigerring eingespeist werden, ver bessert werden sollen. Zudem sind für alle Experimen te Upgrades geplant. High-Luminosity-Upgrade für den LHC Weitere Wartungsarbeiten sind für 2024 bis 2026 vor gesehen. In dieser Zeit soll der LHC für eine noch bessere Strahlleistung und genauere Messungen fit gemacht werden. Dann sollen unter anderem neue supraleitende Magnete an den Detektoren ATLAS und CMS eingebaut werden, mit denen sich der Protonen strahl besser bündeln lässt. Außerdem sollen sie der neuen Strahlleistung besser standhalten können als ihre Vorgänger. Um die kollidierenden Teilchenpakete besser ausrichten zu können, wollen die Physiker zusätzliche Ablenkelemente installieren und die De tektoren mit neuer Technologie ausstatten. In der darauffolgenden Messphase von 2026 bis 2035 soll der LHC bei entsprechend höheren Kollisionsraten ein zehnmal höheres Datenvolumen liefern als in der ersten Betriebsphase von 2010 bis 2022. Auf diese Weise lassen sich auch sehr seltene Teilchen nach weisen und möglicherweise neue Physik jenseits des Standardmodells entdecken. LHC Der CMS-Detektor ist um eine supraleitende Magnetspule gebaut. In einem vier Tesla starken Magnetfeld werden die Teilchen, die bei den Kollisionen im LHC entstehen, abgelenkt. Anhand der im CMS-Detektor hinterlassenen Spuren lassen sich Rückschlüsse auf die Natur der Sekun där- und Primärteilchen ziehen. (Bild: CERN) Forschungsinfrastruktur der Forschungsinfrastruktur der naturwissenschaftlichen Grundlagenforschung naturwissenschaftlichen Grundlagenforschung

Forschungsinfrastruktur: LHC, Stand August 2016 5 Steckbrief LHC Typ: Technologie: Standort: Betreiber: Teilchenbeschleuniger Synchrotron, supraleitender Speicherring Genf, Schweiz CERN Europäische Organisation für Kernforschung Gesamtbudget CERN: 1,127 Milliarden Schweizer Franken (Stand 2016) Deutsche Beteiligung am CERN: rund 20 Prozent ca. 200 Millionen Euro (Stand 2015) Betriebsbeginn: 2008 Wartung und erstes Upgrade: 2013 2015 Neustart: Frühjahr 2015 Länge des Beschleunigers: Strahlenergie: Kollisionsenergie: Kollisionsrate: Strahleigenschaften: Teilchen pro Paket: 27 Kilometer max. 6,5 Teraelektronenvolt max. 13 Teraelektronenvolt 600 Millionen pro Sekunde Protonenstrahl aus 2808 Teilchenpaketen mit einer Länge von 30 Zentimetern 1,15 10 11 Protonen Betriebstemperatur: 271,3 C Großexperimente: Bestandteil folgender Roadmaps: Beteiligte Länder: 4: ALICE, ATLAS, CMS und LHCb The European Strategy for Particle Physics Update 2013 (High Luminosity Upgrade), ESFRI, BMBF 21: Belgien, Bulgarien, Dänemark, Deutschland, Finnland, Frankreich Griechenland, Großbritannien, Israel, Italien, Niederlande, Norwegen, Österreich, Polen, Portugal, Rumänien, Spanien, Schweden, Schweiz, Slowakei, Tschechien, Ungarn Quelle: http://www.weltderphysik.de/vorort/forschung-an-grossgeraeten/physik-kleinster-teilchen/lhc/

Forschungsinfrastruktur: LHC, Stand August 2016 6 Impressum Dieser Artikel ist Teil der Webseite Landschaft der Forschungsinfrastrukturen (www.fis-landschaft.de), die der Projektträger DESY im Auftrag des Bundesministeriums für Bildung und Forschung gestaltet und umsetzt. Auf der Webseite werden Großforschungsanlagen der naturwissenschaftlichen Grundlagenforschung aus aller Welt vorgestellt, an denen sich Deutschland derzeit wissenschaftlich und finanziell beteiligt vom Radioteleskop ALMA bis zum Röntgenlaser European XFEL. Herausgeber: Deutsches Elektronen-Synchrotron DESY Abteilung Projektträger DESY Notkestraße 85 22607 Hamburg pt@desy.de https://pt.desy.de Stand: August 2016 Redaktion: Dr. Claudia Schneider Design und Layout: Britta von Heintze Bildnachweis (Titelbild, Weltkarte): CERN, Britta von Heintze/Welt der Physik