3. The proof of Theorem

Ähnliche Dokumente
NOTE ON LEVI'S PROBLEM WITH DISCONTINUOUS FUNCTIONS

3. A NEIGHBORHOOD OF THE UNIT CIRCLE

Träume in Schwarz-Weiss

Landschaften [Bilder Oskar Kokoschka]

Landschaften [Bilder Oskar Kokoschka]

Übersicht über die Bestände des Stadtarchivs

In memoriam Prof. Dr. Walter Saxer

Die Schweizer Heimat im Plakat und Tell- Karikaturen

"Alle Kleider einer Frau"

Arbeiten von Max Fueter, Bern

Zum 60. Geburtstag von André Mercier

Schweizer Monatshefte : Zeitschrift für Politik, Wirtschaft, Kultur


Frischer Wind im Jura: Bildbeitrag zum Windkraftwerk Mont-Crosin bei St.-Imier

Karikaturen & Cartoon Museum, Basel, 1996 : Architekten : Herzog & de Meuron, Basel

Körperhaftes Abwesendes: Rückbau der Kirche Dombusch, Frankfurt - Wand als Medium der Geschichte

Design, Hase in Gold : Entwurf und Qualität bringen Anita Mosers Schuhe zum Glänzen

Künstler in der Werkstatt : Pietro Chiesa

Die Fischarten des Kantons Schaffhausen

Ski : Jahrbuch des Schweizerischen Ski-Verbandes = Annuaire de l'association Suisse des Clubs de Ski

Kalkausscheidungen bei Flachdächern

Mitteilungen der Antiquarischen Gesellschaft in Zürich

Aus Museen und Sammlungen der Schweiz : aus dem Heimatmuseum Allschwil (BL)

Das Haus Arnold Ruesch : Architekten Müller & Freytag

Übungsblatt 6. Analysis 1, HS14

1. Notations and Definitions


Unit 4. The Extension Principle. Fuzzy Logic I 123

Grenzwächter-Uniformen

Bündner Monatsblatt : Zeitschrift für Bündner Geschichte, Landeskunde und Baukultur

3.2 $L_p(s,\tau;\lambda)$ FOR $\tau \in C_p$, $ \tau _p \leq 1$


Asiatische Studien : Zeitschrift der Schweizerischen Asiengesellschaft = Études asiatiques : revue de la Société Suisse - Asie

Übungen zur Analysis 2

Konterkarierend : Büro- und Geschäftshaus in Innsbruck, 1993 : Architekt : Peter Lorenz

Jahresrechnungen 2002 der AGG


A Classification of Partial Boolean Clones

Städte [Bilder Oskar Kokoschka]

Musterlösung 3. D-MATH Algebra I HS 2015 Prof. Richard Pink. Faktorielle Ringe, Grösster gemeinsamer Teiler, Ideale, Faktorringe

Wohnhaus Willimann-Lötscher

Über die Zugfestigkeit des Betons

Naturforschende Gesellschaft in Bern : Rechnugsabschluss 31. Dezember 2011

Herrn Professor Dr. med. et Dr. med. h. c. Hans Bluntschli zum 80. Geburtstag

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n

Jahresrechnung der Historischen und Antiquarischen Gesellschaft : 1. Juli 1993 bis 30. Juni 1994


Aus Museen und Sammlungen der Schweiz : aus dem Historischen Museum Baden, Landvogteischloss

Das spezifische Gewicht (Erarbeitung)

Bündner Schulblatt = Bollettino scolastico grigione = Fegl scolastic grischun

Functional Analysis Exam [MA3001]


Werken - Gestalten : mögliche Ablaufphasen bei der Lösung von Werkaufgaben und Projekten

Statistik über die privaten Schulen auf weltanschaulicher Grundlage 1940/41

Die Bestimmung der Koordinaten des Schnittpunktes zweier Geraden

Teil 2.2: Lernen formaler Sprachen: Hypothesenräume

Mitschrift zur Vorlesung Analysis III

Die literarische Produktion in der Schweiz

Wie man heute die Liebe fürs Leben findet

Traverse : Zeitschrift für Geschichte = Revue d'histoire

Phonographen und Grammophone : die Nachfolger der Musikautomaten

Willkommen zur Vorlesung Komplexitätstheorie

Vier Photographien des Bildhauers Karl Geiser

D-MATH Algebra I HS 2015 Prof. Richard Pink. Musterlösung 1. Ringe, Polynome, Potenzreihen. x(y z) = x(y + ( z)) = xy + x( z) = xy + ( xz) = xy xz.

Algebra. Übungsblatt 2 (Lösungen)

The projectivity of the moduli space of stable curves. I: Preliminaries on "det"...

Willkommen zur Vorlesung Komplexitätstheorie

Der Xaver und der Wastel

"Retten - halten - löschen" : die Churer Feuerwehr heute

Willkommen zur Vorlesung Komplexitätstheorie

Raffael : die Schule von Athen

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010

Introduction FEM, 1D-Example

Martin Luther. Click here if your download doesn"t start automatically


VSI-Beilage : Innenarchitektur/Design : Laredo- Schuhe und -Kleider, Zürich

VSI-Beilage : Innenarchitektur/Design : Laredo- Schuhe und -Kleider, Zürich

Unit 5. Mathematical Morphology. Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 85

Über eine Eigenschaft einer Gammafunktion mit einer Potenz als Argument

Geometrical aspects of the circular billiard problem

Bilder im Heft : zwischen Chaos und Ordnung : Bilder von Ursula Goetz-Wiederkehr

Vergleich linearer Kurvenstücke zur quantitativen Bestimmung einer Stoffkomponente in der analytischen Chemie

Reparaturen kompakt - Küche + Bad: Waschbecken, Fliesen, Spüle, Armaturen, Dunstabzugshaube... (German Edition)

Utopie mit Bodenhaftung : der Photograph Christoph Schreiber

ZWEI LIMITATIONSSÄTZE ÜBER BEREICH- INTEGRALE

Allgemeines über Vierecke

Das grosse Zeichen : die Künstlerin Claudia Spielmann

Algorithm Theory 3 Fast Fourier Transformation Christian Schindelhauer

Korrosion von Aluminium durch Zementmörtel (Fortsetzung)

D-MATH Algebra I HS 2015 Prof. Richard Pink. Musterlösung 7. Moduln über Hauptidealringen, Jordansche Normalform

"Die Obelisken der Päpste"

4.1 Totally geodesic submanifolds

Handbuch der therapeutischen Seelsorge: Die Seelsorge-Praxis / Gesprächsführung in der Seelsorge (German Edition)

Introduction FEM, 1D-Example

Kontrolle als Raumpolitik = Le contrôle: une politique de l'espace = Control as politics of space

Der Geometrie-Unterricht in der I. und II. Klasse der Kantonsschule und in Realschulen

Transkript:

3. The proof of Theorem Objekttyp: Chapter Zeitschrift: L'Enseignement Mathématique Band (Jahr): 31 (195) Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE PDF erstellt am: 19.9.217 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 11, 92 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch

to be strongly plurisubharmonic if for every C real-valued fonction 6 with compact support there exists an e > such that (p + is plurisubharmonic for. A main resuit in [3] tells us that the above définition agrées with the usual one as given in [6]. Let us also recall that a complex space X is said to be 1-convex if there exist : i) a compact analytic set a X with dim x S > S for any x e S, Stein space Y, a finite set A <= Y and a proper holomorphic map ii) : X -? 7 inducing a bilholomorphism p X\5 = 7\^4 and which satisfies P*Ox = <!)y. a called the exceptional set of S is X and Y the Remmert réduction of X. Using the analytic version of Chow's lemma (Hironaka [5]) [2] that any 1-convex space X carries a strongly pluri subharmonicexhaustion function cp:x-> [?,), i.e. the converse of Theorem 1 holds too. Remark. it was proved in 3. The proof of Theorem We shall apply Andreotti-Grauert's technique [1] with suitable modifica tionsrequired by the upper semicontinuity. Throughout this section!f will dénote a cohérent sheaf on X and X c = {x e X cp(x) < c}. To prove Theorem 1 we need some lemmas. Lemma H\X map For any 1. C +Z c e R there exists,&) -> H\X C+E >,^) > such that is restriction is surjective for any. Proof. We may assume c =. Set K = {(p < 1} and let {L^,..., U m } be a covering of K with Stein open sets, Ui c a X and /i i GC^((7 i ), fo f r such that 9? X» = i s strongly plurisubharmonic for r = 5] /z; i=l 1,..., m and wj m < > on K. Choose a > < min(a, 1). such that i= We shall prove that this a for any /î;(*) xe K and take 1 in Lemma e we set X\. = {xex\ For any for r =,..., m (by définition X% = X e >). satisfies the conditions required 1. <p(x) < + h^x) +... + K(x)}

We make the following remark: for any we hâve X z c X?. Indeed, let xex such that cp(x) <. In particular cp(x) < 1, hence xek. m From the définition of a it follows that /i (x) > a and from the inequalities ; = i cp(x) < < a < /i f (x) < s 7 + /i f(x) we get x e X%. i = 1 i=l Due to this remark Lemma 1 will be proved if we prove that the restriction map H l (X?., -? H 1 (X e^) is surjective for any s. The inclusions X z. = Xj c Ij c... cz X? show that it suffices to prove that the restrictions H 1 (X r/1 If we set, &) -> H\X r E >, &) are surjective for r =,..., m - 1. then V r/1 and X^nV^ 1 are Stein open X'/^XÏ c supp(/i r+1 ) c= U r + 1 and so X^+1 = X\. u K^+1. From the Mayer-Vietoris exact séquence : sets. On the other hand it follows that the restriction map H 1 (X r/1 and so Lemma 1 is proved.,^r) -> H^X^,^) is surjective Lemma 2. For any oc p the restriction map H\X^&) -? H\X a, &) is surjective. Proof. Set M(ot) = {S a for any a Ô y the restriction map From Lemma 1 and Lemma [1, p. 241] we deduce that M(oc) = [a, oo) which proves Lemma 2. Lemma 3. For any oe e R H 1(X a, &) has finite dimension. Proof. Choose p > oc such that X a o X p. From Lemma 2 the restriction map HH^p, &) -+ H\X a, &) is surjective and from [1, p. 24] Lemma 4. For any cer there exists > such that the restriction map r(x c + E,^) -s. T(X c+e,,^) has dense image for any s'.

Proof. We may assume c = and choose > as in Lemma 1. Exactly as in the proof of Lemma 1 it suffices to prove that the restriction,^) -? T{X r t.,&) has dense image for r =,..., m - 1. map TiX 1^ 1 Consider the Mayer-Vietoris exact séquence : Since (X r t. n V/ 1, K^+1 ) is a Runge pair it follows that a has dense image. On the other hand, applying Lemma 3 to the function we deduce that H^X^ 1, 3F) has finite dimension, in particular it is separated, hence a has closed image. Consequently a is surjective. From the open mapping theorem it follows easily that the restriction map has dense image and so Lemma 4 is proved. Lemma 5. For any oc p the restriction map F(Z p, J^) -? T(X ai $F) has dense image. Proof. Lemma 5 is an immédiate conséquence of Lemma 4 and of Lemma [1, p. 246]. Lemma 6. For any cer there exists s > such that the restriction map H\XC+Z,&) -? H\XC + Z.,&) is bijective for any s'. Proof. We may assume c = and choose > as in Lemma 1. Due to the inclusions X. z a X e c X? and using Lemma 2 it follows that it suffices to show that the restriction map H\X? 9 &) -? H\X Z., &) is bijective. The inclusions X z. = X ci X\. ci... ci X^îshow thatitis enoughto prove that the restrictions H 1 (X r /1, H 1 (X r r, are bijective for r =,..., m? 1. Consider the Mayer-Vietoris exact séquence : As remarked in the proof of Lemma 4 the map

is surjective. Since it follows that the restriction map is bijective and so Lemma 6 is proved. Lemma 7. For any oc < p the restriction map H\X^&) -? H 1 {X a, &) is bijective. Proof. Set M(a) = { > for oc any a y the restriction map and let a = sup M(oc). From Lemma 2 it follows that if e M(a) then [a, ] cz M(a), consequently [a, a ) cz M(a). To prove Lemma 7 we hâve to show that oc = oo. Suppose that a < oo. From Lemma 5 and Lemma [1, p. 25] we deduce that a g M(a). From Lemma 6 there exists s > such that oc + e e M(a). This contradicts the définition of oc, and so Lemma 7 is proved. We are now in a position to prove Theorem 1. Choose oc e R and take oc = oc < (*! <... < oi n <... an increasing séquence of real numbers tending to oo. By Lemma 7 the restriction map H 1 (X aln + 1, J* 7 ) -? H\X nn, &) is bijective and by Lemma 5 the restriction map T{X an + 1, $F) -»? r(x?n, J^) has dense image. It follows then from Lemma [1, p. 25] that the restriction map H\X, &) -? H\X^&) is also bijective and from Lemma 3 H\X, &) has finite dimension. Theorem V. in [6] tells us that X is 1-convex, as required.