Logik für Informatiker

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker"

Transkript

1 Logik für Informatiker Vorlesung 1 und 2: Einführung in die Logik Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca 4. Oktober /62

2 ORGANISATORISCHES Vorbemerkungen Die Vorlesung wird (teilweise) folienbasiert gehalten; Die Folien enthalten nur die wichtigsten Aspekte (Definitionen, Sätze, knappe Beispiele, wichtige Bemerkungen); Alles was sonst eine Vorlesung ausmacht (Erläuterungen, ausführliche Beispiele, Beweise von Sätzen, Anwendungen, Querverweise auf andere Gebiete der Informatik, etc.) gibt es nur in der Vorlesung selbst. Sprechstunden Nach Vereinbarung 2/62

3 ÜBUNGEN Autonomes Lösen der Aufgaben ohne vorherige Wiederholung seitens des Dozenten ohne Musterlösung an der Tafel (kommt dann später als extra Datei). Notwendig dafür ist, dass man während der Vorlesung mitschreibt man sich für die nächste Übungsstunde zu Hause vorbereitet Mitschrift und Folien mitgebracht werden Initiative ergriffen wird. 3/62

4 VORTEILE aktives Erlernen der Inhalte ist effektiver Zusammenhänge aus dem Vorlesungsstoff werden selbst entdeckt und ausgearbeitet Man erlernt strukturiert und unabhängig zu denken team work wird erlernt Erklären wird geübt und erlernt Trainieren für die Prüfung ;-) You have finished your study of... Your personal strengths include pro-activity and team work, you are communicative and willing to cooperate. (typical job advertisement) 4/62

5 ORGANISATORISCHES Sprechstunden! (Consultaţii): Ihr stellt (logische) Fragen, ich beantworte sie. Wann? Nach Vereinbarung! Prüfungen: Ich stelle Fragen, ihr beantwortet sie :) Einmal im Monat: TEST IN LOGIK: Jeweils 30 Minuten, während der Vorlesung. Die Endnote besteht aus: Note in der schriftlichen Klausur + maximal 1,5 Punkte aus den drei Testen + verschiedene Bonuspunkte die während des Semesters vergeben werden 5/62

6 ORGANISATORISCHES Alle Lehrinhalte werden hier hochgeladen. Deine Deutschkenntnisse sind sind zwischen ähm und hä?. Dann kannst du kostenlos die Deutschkurse, die vom IDLF - Institut für Deutsche Lehre und Forschung angeboten werden besuchen. oder du belegst den Kurs Kommunikation in deutscher Sprache in IT. Sprachkurse für Informatiker werden extra angeboten. Bitte anmelden! Gilt auch für alle anderen! 6/62

7 ORGANISATORISCHES: Q & A Alle Prof s bieten Sprechstunden an Wie kontaktiere ich die Professoren? 7/62

8 ORGANISATORISCHES: Q & A Alle Prof s bieten Sprechstunden an Wie kontaktiere ich die Professoren? ist am einfachsten 7/62

9 ORGANISATORISCHES: Q & A Alle Prof s bieten Sprechstunden an Wie kontaktiere ich die Professoren? ist am einfachsten Wo finde ich die Addressen? 7/62

10 ORGANISATORISCHES: Q & A Alle Prof s bieten Sprechstunden an Wie kontaktiere ich die Professoren? ist am einfachsten Wo finde ich die Addressen? Wühle bitte auf der Homepage der Fakultät. Dort findest du viele interessante Informationen und sollte dein virtuelles zu Hause sein für die nächsten 3 Jahren... 7/62

11 LOGIK FÜR INFORMATIKER Mathematisch? 8/62

12 LOGIK FÜR INFORMATIKER Mathematisch? Ja Unverständlich? 8/62

13 LOGIK FÜR INFORMATIKER Mathematisch? Ja Unverständlich? Mal schauen... 8/62

14 LOGIK FÜR INFORMATIKER Mathematisch? Ja Unverständlich? Mal schauen... Reine Theorie ohne praktischen Nutzen? 8/62

15 LOGIK FÜR INFORMATIKER Mathematisch? Ja Unverständlich? Mal schauen... Reine Theorie ohne praktischen Nutzen? nein: Verifikation von Hardware, Software, Protokollen Sprachverarbeitung und Wissensrepräsentation, Abfragensprachen für Datenbanken; 8/62

16 HILFE! ICH BIN EIN INFORMATIKER... Rechnerarchitektur (logische Schaltungen); Software Engineering (Testen und Verifikation); Programmiersprachen (Semantik, logische Programmierung) ; Datenbanken (relationale Algebra); Künstliche Intelligenz (automatisches Beweisen); Komplexität der Algorithmen. J. Y. Halpern, R. Harper, N. Immerman, P.G.Kolaitis, M.Y. Vardi, V.Vianu, On the Unusual Effectiveness of Logic in Computer Science Bulletin of Symbolic Logic 7(2), 2001, /62

17 LOGIK = TRAIN YOUR BRAIN! 10/62

18 LOGIK = TRAIN YOUR BRAIN! 11/62

19 LOGIK = TRAIN YOUR BRAIN! 12/62

20 FORMALE LOGIK Ziel Formalisierung und Automatisierung rationalen Denkens, Rational richtige Ableitung von neuem Wissen aus gegebenem Wissen. Rolle der Logik in der Informatik Anwendung innerhalb der Informatik: Spezifikation, Programmentwicklung, Programmverifikation Werkzeug für Anwendungen außerhalb der Informatik: Künstliche Intelligenz, Wissensrepräsentation 13/62

21 WAS IST LOGIK? Die Logik ist zu verstehen als die Wissenschaft des formal richtigen Schließens und fungiert als vorgängige Wissenschaft für alle anderen Wissenschaften (insbesondere der Mathematik). Wortabstammung logike techne = die Wissenschaft des Denkens; logos = Wort, Schlußfolgerung Aristotel, Prior Analytics: A deduction is speech (logos) in which, certain things having been supposed, something different from those supposed results of necessity because of their being so. Smith, R., Aristotles Logic, SEP (Spring 2014), Ed. N. Zalta (ed.) 14/62

22 WAS SAGT MAN SO ÜBER LOGIK? Contrariwise [...] if it was so, it might be; and if it were so, it would be; but as it isnt, it aint. Thats logic. Lewis Carroll, Through the Looking-Glass, and What Alice Found There Logic is the beginning of wisdom, [...], not the end. Captain Spock, Star Trek VI: The Undiscovered Country (1991) 15/62

23 WAS IST NUN LOGIK? Logik Ist eine formale Sprache, die aus Syntax und Semantik besteht. Jede Logik hat auch ein Deduktionsmechanismus, ein sogenannter Kalkül des Schließens, welches logische Schlußfolgerungen ermöglicht. Die klassische Logik Syntax: p q. Deduktion: p q,p q Semantik: p q (modus ponens) 16/62

24 GIBT ES MEHRERE LOGIKEN? JA! Klassische Logik; modale Logik; Temporale, dynamische und epistemische Logik; Intuitionistische Logik; Lineare Logik; Mehrwertige Logik; Fuzzy Logik; Logiken für das Überprüfen der Korrektheit von Programmen; Hoare Logik, dynamische Logik; Separation Logic, Matching Logic Beschreibungslogiken (Semantic Web) etc. 17/62

25 JETZT GEHT ES LOS! 18/62

26 FORMALE LOGIK Syntax welche Formeln? Semantik Modelle (Strukturen) Wann ist eine Formel wahr (in einer Struktur)? Deduktionsmechanismus/Kalkül Ableitung neuer wahrer Formeln. 19/62

27 AUSSAGENLOGIK Die Welt besteht aus Fakten die wahr oder falsch sein können. 20/62

28 SYNTAX DER AUSSAGENLOGIK: LOGISCHE ZEICHEN,,,,,, 21/62

29 VOKABULAR DER AUSSAGENLOGIK Abzählbare Menge von Symbolen: Π = {P 0,..., P n } oder Π = {P 0, P 1,... }. Bezeichnungen für Symbole in Π: atomare Aussagen Atome Aussagenvariablen 22/62

30 FORMELN DER AUSSAGENLOGIK Induktive Definition! 23/62

31 AUSSAGENFORMELN Falsum Verum P, P Π atomare Formel F Negation (F G) Konjunktion (F G) Disjunktion (F G) Implikation (F G) Äquivalenz 24/62

32 KONVENTION ZUR NOTATION Beispiele: Sei Π = {P, Q, R}, P, Q, P Q, (P ( R T)) sind Formeln Wir schreiben P Q R statt (P Q) R. 25/62

33 DAS 8-DAMEN PROBLEM 26/62

34 DAS 8-DAMEN PROBLEM Beschreibung des Problems Für jedes Feld des Schachbretts eine aussagenlogische Variable D ij die den Wert wahr hat, wann immer auf dem Feld (i, j) eine Dame steht. 27/62

35 DAS 8-DAMEN PROBLEM Beispiel Auf dem Feld (5, 7) steht eine Dame D 57 wahr. Einschränkungen pro Feld F ij Falls auf dem Feld (5, 7) eine Dame steht: keine andere Dame auf Feld (5,1), (5,2), (5,3), (5,4),(5,5), (5,6), (5,8); keine andere Dame auf Feld (1,7), (2,7), (3,7), (4,7),(6,7), (7,7), (8,7); keine andere Dame auf Feld (6,8), (4,6), (3,5), (2,4), (1,3); keine andere Dame auf Feld (4,8), (6,6), (7,5), (8,4); (ähnliche Bedingungen für alle Felder (i, j)). 28/62

36 DAS 8-DAMEN PROBLEM Einschränkungen pro Feld F ij keine andere Dame auf Feld (5,1), (5,2), (5,3), (5,4),(5,5), (5,6), (5,8); 29/62

37 DAS 8-DAMEN PROBLEM Einschränkungen pro Feld F ij keine andere Dame auf Feld (5,1), (5,2), (5,3), (5,4),(5,5), (5,6), (5,8); D 5,7 D 5,8 D 5,6 D 5,5 D 5,4 D 5,3 D 5,2 D 5,1 ; 29/62

38 DAS 8-DAMEN PROBLEM Einschränkungen pro Feld F ij keine andere Dame auf Feld (5,1), (5,2), (5,3), (5,4),(5,5), (5,6), (5,8); D 5,7 D 5,8 D 5,6 D 5,5 D 5,4 D 5,3 D 5,2 D 5,1 ; keine andere Dame auf Feld (1,7), (2,7), (3,7), (4,7),(6,7), (7,7), (8,7); 29/62

39 DAS 8-DAMEN PROBLEM Einschränkungen pro Feld F ij keine andere Dame auf Feld (5,1), (5,2), (5,3), (5,4),(5,5), (5,6), (5,8); D 5,7 D 5,8 D 5,6 D 5,5 D 5,4 D 5,3 D 5,2 D 5,1 ; keine andere Dame auf Feld (1,7), (2,7), (3,7), (4,7),(6,7), (7,7), (8,7); D 5,7 D 1,7 D 2,7 D 3,7 D 4,7 D 6,7 D 7,7 D 8,7 ; 29/62

40 DAS 8-DAMEN PROBLEM Einschränkungen pro Feld F ij keine andere Dame auf Feld (5,1), (5,2), (5,3), (5,4),(5,5), (5,6), (5,8); D 5,7 D 5,8 D 5,6 D 5,5 D 5,4 D 5,3 D 5,2 D 5,1 ; keine andere Dame auf Feld (1,7), (2,7), (3,7), (4,7),(6,7), (7,7), (8,7); D 5,7 D 1,7 D 2,7 D 3,7 D 4,7 D 6,7 D 7,7 D 8,7 ; keine andere Dame auf Feld (6,8), (4,6), (3,5), (2,4), (1,3); D 5,7 D 6,8 D 4,6 D 3,5 D 2,4 D 1,3 keine andere Dame auf Feld (4,8), (6,6), (7,5), (8,4); D 5,7 D 4,8 D 6,6 D 7,5 D 8,4 ; (ähnliche Bedingungen für alle Felder (i, j)). 29/62

41 DAS 8-DAMEN PROBLEM F 5,7 : D 5,7 D 5,8 D 5,6 D 5,5 D 5,4 D 5,3 D 5,2 D 5,1 D 5,7 D 1,7 D 2,7 D 3,7 D 4,7 D 6,7 D 7,7 D 8,7 D 5,7 D 6,8 D 4,6 D 3,5 D 2,4 D 1,3 D 5,7 D 4,8 D 6,6 D 7,5 D 8,4 30/62

42 DAS 8-DAMEN PROBLEM Globale Einschränkungen 31/62

43 DAS 8-DAMEN PROBLEM Globale Einschränkungen Für jedes k mit 1 k 8: R k := D 1,k D 2,k D 3,k D 4,k D 5,k D 6,k D 7,k D 8,k. 31/62

44 DAS 8-DAMEN PROBLEM Struktur: Wahrheitswerte für die atomaren Aussagen D i,j Modell für F i,j (R k ): Wahrheitswerte fur die atomaren Aussagen D i,j so dass F i,j wahr (bzw. R k wahr). Lösung des 8-Damen Problems: Eine aussagenlogische Struktur beschreibt eine Lösung des 8-DamenProblems genau dann, wenn sie ein Modell der Formeln F i,j für alle 1 i, j 8; R k für alle 1 k 8 ist. 32/62

45 SYNTAX: BEISPIEL Q: Worin besteht das Geheimnis Ihres langen Lebens?, wurde ein 100 Jähriger gefragt. A: Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit trinke, dann habe ich immer Fisch. Immer wenn ich Fisch und Bier zur selben Mahlzeit habe, verzichte ich auf Eis. Wenn ich Eis habe oder Bier meide, dann rühre ich Fisch nicht an. 33/62

46 SYNTAX: BEISPIEL Wenn ich kein Bier zu einer Mahlzeit trinke, dann habe ich immer Fisch. 34/62

47 SYNTAX: BEISPIEL Wenn ich kein Bier zu einer Mahlzeit trinke, dann habe ich immer Fisch. B F 34/62

48 SYNTAX: BEISPIEL Wenn ich kein Bier zu einer Mahlzeit trinke, dann habe ich immer Fisch. B F Immer wenn ich Fisch und Bier zur selben Mahlzeit habe, verzichte ich auf Eis. 34/62

49 SYNTAX: BEISPIEL Wenn ich kein Bier zu einer Mahlzeit trinke, dann habe ich immer Fisch. B F Immer wenn ich Fisch und Bier zur selben Mahlzeit habe, verzichte ich auf Eis. F B E 34/62

50 SYNTAX: BEISPIEL Wenn ich kein Bier zu einer Mahlzeit trinke, dann habe ich immer Fisch. B F Immer wenn ich Fisch und Bier zur selben Mahlzeit habe, verzichte ich auf Eis. F B E Wenn ich Eis habe oder Bier meide, dann ruhre ich Fisch nicht an. 34/62

51 SYNTAX: BEISPIEL Wenn ich kein Bier zu einer Mahlzeit trinke, dann habe ich immer Fisch. B F Immer wenn ich Fisch und Bier zur selben Mahlzeit habe, verzichte ich auf Eis. F B E Wenn ich Eis habe oder Bier meide, dann ruhre ich Fisch nicht an. E B F 34/62

52 VON SYNTAX ZU SEMANTIK B F F B E E B F Wir möchten wissen, welche Menus solche Diätregeln erfullen. Beispiel: kein Bier, Fisch und Eis: erfüllt 3. Diätregel nicht! Bier, Fisch, kein Eis: erfüllt alle Diätregeln. 35/62

53 VON SYNTAX ZU SEMANTIK B F F B E E B F Wir möchten wissen, welche Menus solche Diätregeln erfüllen. Regeln Formalisierung kein Bier, Fisch und Eis: erfüllt 3. Diätregel nicht! B falsch, F wahr, E wahr Bier, Fisch, kein Eis: erfüllt alle Diätregeln B wahr, F wahr, E falsch 36/62

54 BEISPIEL B F F B E E B F Wir möchten wissen, welche Menüs solche Diätregeln erfüllen. Beispiel Formalisierung 0: falsch, 1: wahr A: {B, F, E} {0, 1} Kein Bier, aber Fisch und Eis A(B) = 0, A(F) = 1, A(E) = 1 erfüllt 3. Diätregel nicht! Bier, Fisch, kein Eis A(B) = 1, A(F) = 1, A(E) = 0 erfüllt alle Diätregeln 37/62

55 SEMANTIK DER AUSSAGENLOGIK Aussagenvariablen haben für sich keine Bedeutung. 38/62

56 SEMANTIK DER AUSSAGENLOGIK Aussagenvariablen haben für sich keine Bedeutung. Um eine Bedeutung der Variablen zuzuordnen, brauchen wir WertebelegungenValuationen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Eine Wertebelegung (Valuation, Interpretation, Struktur, Modell) ist eine Abbildung A: Π {0, 1}. Beispiel: A B C /62

57 3 VARIABLEN Wieviele Modelle existieren für drei Variablen? 39/62

58 SEMANTIK DER AUSSAGENLOGIK AUSWERTUNG VON FORMELN Sei A: Π {0, 1} eine Wertebelegung. A : For Π {0, 1} wird wie folgt definiert: A ( ) = 0 A ( ) = 1 A (P) = A(P), falls P Π 40/62

59 SEMANTIK DER AUSSAGENLOGIK AUSWERTUNG VON FORMELN Sei A: Π {0, 1} eine Wertebelegung. A : For Π {0, 1} wird wie folgt definiert: { A 0 falls A (F) = 1 ( F) = 1 falls A (F) = 0. 41/62

60 SEMANTIK DER AUSSAGENLOGIK AUSWERTUNG VON FORMELN Sei A: Π {0, 1} eine Wertebelegung. A : For Π {0, 1} wird wie folgt definiert: { A 0 falls A (F 1 ) = 0 oder A (F 2 ) = 0 (F 1 F 2 ) = 1 falls A (F 1 ) = A (F 2 ) = 1. 42/62

61 SEMANTIK DER AUSSAGENLOGIK AUSWERTUNG VON FORMELN Sei A: Π {0, 1} eine Wertebelegung. A : For Π {0, 1} wird wie folgt definiert: { A 0 falls A (F 1 ) = A (F 2 ) = 0 (F 1 F 2 ) = 1 falls A (F 1 ) = 1 oder A (F 2 ) = 1. 43/62

62 SEMANTIK DER AUSSAGENLOGIK AUSWERTUNG VON FORMELN Sei A: Π {0, 1} eine Wertebelegung. A : For Π {0, 1} wird wie folgt definiert: { A 1 falls A (F 1 ) = 0 oder A (F 2 ) = 1 (F 1 F 2 ) = 0 falls A (F 1 ) = 1 und A (F 2 ) = 0. A (F 1 F 2 ) = { 1 falls A (F 1 ) = A (F 2 ) = 1 0 sonst 44/62

63 SEMANTIK DER AUSSAGENLOGIK AUSWERTUNG VON FORMELN Sei A: Π {0, 1} eine Wertebelegung. A : For Π {0, 1} wird induktiv über den Aufbau von F wie folgt definiert: A ( ) = 0 A ( ) = 1 A (P) = A(P) falls P Π eine aussagenlogische Variable ist A ( F) = 1 A (F) A (FρG) = B ρ (A (F), A (G)) ρ {,,, } B ρ (x, y) wird berechnet entsprechend der Wahrheitstafel für ρ z.b. B (0, 1) = (0 1) = 1; B (1, 0) = (1 0) = 0 Wir schreiben normalerweise A statt A. 45/62

64 WAHRHEITSTAFELN FÜR DIE LOGISCHEN OPERATOREN 46/62

65 BEISPIEL 47/62

66 BEISPIEL 48/62

67 BEISPIEL 49/62

68 BEISPIEL 50/62

69 BEISPIEL 51/62

70 WAHRHEITSTABELLEN: BEISPIEL 52/62

71 WAHRHEITSTABELLEN: BEISPIEL 53/62

72 WAHRHEITSTABELLEN: BEISPIEL 54/62

73 MODELL EINER FORMELMENGE 55/62

74 BEISPIEL 56/62

75 GÜLTIGKEIT UND ERFÜLLBARKEIT 57/62

76 BEISPIEL 58/62

77 TAUTOLOGIEN UND KONTRADIKTIONEN 59/62

78 BEISPIEL 60/62

79 ZUSAMMENFASSUNG 61/62

80 ZUSAMMENFASSUNG 62/62

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Vorlesung 1: Einführung in die Logik Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 5. Oktober 2017 1/61 ORGANISATORISCHES Vorbemerkungen

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Grundlegende Beweisstrategien Induktion über

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Formale Logik Ziel Formalisierung und Automatisierung rationalen

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 6: Formale Logik Einführung schulz@eprover.org Formale Logik Ziel Formalisierung und Automatisierung rationalen Denkens Rational richtige Ableitung von

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 Motivation Aufgabe von letzter Vorlesungsstunde Worin besteht das Geheimnis Ihres langen Lebens?

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Definition (Modus Ponens) Wenn A, dann B. A gilt Also, gilt B

Definition (Modus Ponens) Wenn A, dann B. A gilt Also, gilt B Zusammenfassung der letzten LVA Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Fakt Korrektheit dieser Schlussfigur ist unabhängig von den konkreten Aussagen Einführung

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1 Aussagenlogik Formale Methoden der Informatik WiSe 22/23 teil 6, folie Teil VI: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning, Fakultät

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Ronja Düffel WS2018/19 01. Oktober 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis der

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Logik in der Informatik Was ist Logik? 2 Logik in der Informatik Was ist Logik? Mathematisch? 3 Logik in der Informatik

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Aussagenlogik: Syntax und Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 7.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2015/2016.

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2015/2016. Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Aussagenlogik: Syntax und Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Logik. Logik. Quick Start Informatik Theoretischer Teil WS2011/ Oktober QSI - Theorie - WS2011/12

Logik. Logik. Quick Start Informatik Theoretischer Teil WS2011/ Oktober QSI - Theorie - WS2011/12 Logik Logik Quick Start Informatik Theoretischer Teil WS2/2 7. Oktober 2 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine wichtige

Mehr

Was ist mathematische Logik?

Was ist mathematische Logik? Was ist mathematische Logik? Logik untersucht allgemeine Prinzipien korrekten Schließens Mathematische Logik stellt zu diesem Zweck formale Kalküle bereit und analysiert die Beziehung zwischen Syntax und

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Logik in der Informatik Was ist Logik? 2 Logik in der Informatik Was ist Logik? Mit Logik (von altgriechisch logiké

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Vorlesung 6: Modellierung Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 1/30 MOTIVATION FÜR AUSSAGENLOGIK Aussagenlogik erlaubt Repräsentation

Mehr

Syntax der Aussagenlogik

Syntax der Aussagenlogik Einführende Beispiele bitte im Buch nachlesen: Uwe Schöning: Logik für Informatiker. 5. Auflage, Spektrum Akad. Verlag, 2. Definition: Syntax der Aussagenlogik ) Atomare Formeln (A i, i =, 2, 3,...)sindFormeln.

Mehr

Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen Barbara König Übungsleitung: Dennis Nolte, Harsh Beohar Barbara König Logik 1 Geschichte der Logik Beginn in Griechenland: Aristoteles

Mehr

Schlussregeln aus anderen Kalkülen

Schlussregeln aus anderen Kalkülen Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik,

Mehr

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet. Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)

Mehr

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet. Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)

Mehr

Geschichte der Logik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Syllogismen (I) Syllogismen (II)

Geschichte der Logik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Syllogismen (I) Syllogismen (II) Geschichte der Logik Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Beginn in Griechenland: Aristoteles (384 322 v.chr.) untersucht das Wesen

Mehr

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =?

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =? Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 2 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl.

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik & Frank Heitmann heitmann@informatik.uni-hamburg.de Mit der Aussagenlogik lassen sich einfache Verknüpfungen zwischen (atomaren) Gebilden ausdrücken

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Logik Vorlesung 4: Horn-Logik und Kompaktheit

Logik Vorlesung 4: Horn-Logik und Kompaktheit Logik Vorlesung 4: Horn-Logik und Kompaktheit Andreas Maletti 14. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

1.1 Grundbegriffe. Logik und Diskrete Strukturen (Sommer 2018) Prof. Dr. Ulrich Hertrampf

1.1 Grundbegriffe. Logik und Diskrete Strukturen (Sommer 2018) Prof. Dr. Ulrich Hertrampf . Grundbegriffe Beispiele: Paris und Mäuse / Otto und der Arzt /... Definition: Syntax der Aussagenlogik ) Atomare Formeln (A i, i =, 2, 3,...)sindFormeln. 2) Falls F und G Formeln, dann auch (F ^ G) und

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Aussagen Begriff Aussage: Ausdruck, welcher entweder wahr oder falsch ist e Die RWTH Aachen hat

Mehr

FORMALE SYSTEME. 21. Vorlesung: Aussagenlogik. TU Dresden, 9. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 21. Vorlesung: Aussagenlogik. TU Dresden, 9. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 21. Vorlesung: Aussagenlogik Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 9. Januar 2017 Besprechung Lehrevaluation Markus Krötzsch, 9. Januar 2017 Formale Systeme Folie

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F

Mehr

FORMALE SYSTEME. Besprechung Lehrevaluation. Kommentare: Verständlichkeit und Motivation. Kommentare: Allgemeines

FORMALE SYSTEME. Besprechung Lehrevaluation. Kommentare: Verständlichkeit und Motivation. Kommentare: Allgemeines FORMALE SYSTEME 21. Vorlesung: Aussagenlogik Besprechung Lehrevaluation Markus Krötzsch Professur für Wissensbasierte Systeme TU Dresden, 8. Januar 2017 Markus Krötzsch, 8. Januar 2017 Formale Systeme

Mehr

Logik Vorlesung 2: Semantik der Aussagenlogik

Logik Vorlesung 2: Semantik der Aussagenlogik Logik Vorlesung 2: Semantik der Aussagenlogik Andreas Maletti 24. Oktober 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Mathematik für Informatiker I

Mathematik für Informatiker I Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft

Mehr

FORMALE SYSTEME. Besprechung Lehrevaluation. Kommentare: Beispiele und Praxisbezug. Kommentare: Allgemeines

FORMALE SYSTEME. Besprechung Lehrevaluation. Kommentare: Beispiele und Praxisbezug. Kommentare: Allgemeines FORMALE SYSTEME 21. Vorlesung: Aussagenlogik Besprechung Lehrevaluation Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 9. Januar 2017 Markus Krötzsch, 9. Januar 2017 Formale Systeme Folie

Mehr

Logik Vorlesung 2: Semantik der Aussagenlogik

Logik Vorlesung 2: Semantik der Aussagenlogik Logik Vorlesung 2: Semantik der Aussagenlogik Andreas Maletti 24. Oktober 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 = Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min

Mehr

Motivation und Geschichte. Geschichte der Logik Logik und Informatik

Motivation und Geschichte. Geschichte der Logik Logik und Informatik Motivation und Geschichte Geschichte der Logik Logik und Informatik Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 2.1 Motivation und Geschichte Geschichte der Logik 13 Aufgaben der Logik

Mehr

Was bisher geschah Modellierung in Logiken: klassische Prädikatenlogik FOL(Σ, X) Spezialfall klassische Aussagenlogik AL(P)

Was bisher geschah Modellierung in Logiken: klassische Prädikatenlogik FOL(Σ, X) Spezialfall klassische Aussagenlogik AL(P) Was bisher geschah Modellierung in Logiken: klassische Prädikatenlogik FOL(Σ, X) Spezialfall klassische Aussagenlogik AL(P) Syntax Semantik Signatur, Variablen Terme (induktive Definition, Baumform) Atome

Mehr

FORMALE SYSTEME. 21. Vorlesung: Aussagenlogik. TU Dresden, 8. Januar Markus Krötzsch Professur für Wissensbasierte Systeme

FORMALE SYSTEME. 21. Vorlesung: Aussagenlogik. TU Dresden, 8. Januar Markus Krötzsch Professur für Wissensbasierte Systeme FORMALE SYSTEME 21. Vorlesung: Aussagenlogik Markus Krötzsch Professur für Wissensbasierte Systeme TU Dresden, 8. Januar 2017 Besprechung Lehrevaluation Markus Krötzsch, 8. Januar 2017 Formale Systeme

Mehr

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Grundbegriffe der Aussagenlogik 1 Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK Rückblick: Logelei Wir kehren zurück auf das Inselreich mit Menschen von Typ W (Wahrheitssager) und Typ L (Lügner). THEORETISCHE INFORMATIK UND LOGIK 14. Vorlesung: Modelltheorie und logisches Schließen

Mehr

Motivation und Geschichte. Geschichte der Logik Logik und Informatik

Motivation und Geschichte. Geschichte der Logik Logik und Informatik Motivation und Geschichte Geschichte der Logik Logik und Informatik Logik für Informatiker, M. Lange, IFI/LMU: Motivation und Geschichte Geschichte der Logik 12 Aufgaben der Logik Logik (aus Griechischem)

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Mathematische und logische Grundlagen der Linguistik. Mathematische und logische Grundlagen der Linguistik. Karl Heinz Wagner. Hier Titel eingeben 1

Mathematische und logische Grundlagen der Linguistik. Mathematische und logische Grundlagen der Linguistik. Karl Heinz Wagner. Hier Titel eingeben 1 Grundbegriffe der Aussagenlogik 1 Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Vorlesung 5: Normalformen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 2. November 2017 1/37 MOTIVATION FÜR AUSSAGENLOGIK Aussagenlogik

Mehr

Anwendungsgebiete mehrwertiger Logik. P. H. Schmitt: Nichtklassische Logiken p.1

Anwendungsgebiete mehrwertiger Logik. P. H. Schmitt: Nichtklassische Logiken p.1 Anwendungsgebiete mehrwertiger Logik P. H. Schmitt: Nichtklassische Logiken p.1 Anwendungsgebiete Unabhängigkeitbeweise, Modellierung undefinierter Funktions- und Prädikatswerte in der Spezifikation und

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

/26

/26 7 8 3 3 7 2 8 2 8. /2 Sudoku 2 2 3 3 7 7 8 8 8 Füllen Sie die leeren Felder so aus, dass in jeder Zeile, in jeder Spalte und in jedem 3x3 Kästchen alle Zahlen von bis stehen.. 2/2 Warum? 7 8 3 3 7 2 8

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 14. Vorlesung: Modelltheorie und logisches Schließen Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 31. Mai 2017 Rückblick: Logelei Wir kehren zurück auf

Mehr

Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung

Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Sudoku. Warum 6? Warum 6?

Sudoku. Warum 6? Warum 6? . / Sudoku Füllen Sie die leeren Felder so aus, dass in jeder Zeile, in jeder Spalte und in jedem x Kästchen alle Zahlen von bis stehen.. / Warum?. / Warum?. / Geschichte der Logik Syllogismen (I) Beginn

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation

Mehr

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Fragen Seite Punkte 1. Was ist die Mathematische Logik? 3 2 2. Was sind die Aussagenlogik und die Prädikatenlogik? 5 4 3. Was sind Formeln,

Mehr

Die Folgerungsbeziehung

Die Folgerungsbeziehung Kapitel 2: Aussagenlogik Abschnitt 2.1: Syntax und Semantik Die Folgerungsbeziehung Definition 2.15 Eine Formel ψ AL folgt aus einer Formelmenge Φ AL (wir schreiben: Φ = ψ), wenn für jede Interpretation

Mehr

Logische Äquivalenz. Definition Beispiel 2.23

Logische Äquivalenz. Definition Beispiel 2.23 Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt

Mehr

Logik (Prof. Dr. Wagner FB AI)

Logik (Prof. Dr. Wagner FB AI) Logik (Prof. Dr. Wagner FB AI) LERNZIELE: Über die Kenntnis und das Verständnis der gegebenen Definitionen hinaus verfolgt dieser Teil der Lehrveranstaltung die folgenden Lernziele: Bei gegebenen sprachlichen

Mehr

Mathematische Grundlagen I Logik und Algebra

Mathematische Grundlagen I Logik und Algebra Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte

Mehr

Formale Grundlagen der Informatik 1 Kapitel 13 Aussagenlogik Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 13 Aussagenlogik Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 13 Aussagenlogik & Frank Heitmann heitmann@informatik.uni-hamburg.de 23. Mai 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/42 Literaturhinweis Literaturhinweis

Mehr

1. Einführung in Temporallogik CTL

1. Einführung in Temporallogik CTL 1. Einführung in Temporallogik CTL Temporallogik dient dazu, Aussagen über Abläufe über die Zeit auszudrücken und zu beweisen. Zeit wird in den hier zunächst behandelten Logiken als diskret angenommen

Mehr

Formale Logik - SoSe 2012

Formale Logik - SoSe 2012 2.44 % Formale Logik - SoSe 2012 Versuch einer Zusammenfassung Malvin Gattinger http://xkcd.com/435/ 4.88 % Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

b= NaN

b= NaN 42 Beispiel: IEEE single precision: 0 10000000 00000000000000000000000 b= + 2 128 127 1.0 2 = 2 0 10000001 10100000000000000000000 b= + 2 129 127 1.101 2 = 6.5 1 10000001 10100000000000000000000 b= 2 129

Mehr

3. Grundlegende Begriffe von Logiken - Aussagenlogik

3. Grundlegende Begriffe von Logiken - Aussagenlogik 3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 1, 16. April Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 1, 16. April Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 1, 16. April 2008 Gerhard Jäger Formale Methoden II p.1/30 Sätze und Aussagen (1) Schon wieder Verona Feldbusch! (2) Hat die Vorlesung schon angefangen?

Mehr

Frank Heitmann 2/42. 1 Etwas aus der realen Welt in der Logik abstrakt ausdrücken. 2 In der Logik Schlüsse ziehen.

Frank Heitmann 2/42. 1 Etwas aus der realen Welt in der Logik abstrakt ausdrücken. 2 In der Logik Schlüsse ziehen. Literaturhinweis Formale Grundlagen der Informatik 1 Kapitel 13 Aussagenlogik & Frank Heitmann heitmann@informatik.uni-hamburg.de 23. Mai 2016 Literaturhinweis Der Logikteil (die nächsten fünf Wochen)

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP4 Slide 1 Grundlagen der Programmierung Vorlesung 4 vom 04.11.2004 Sebastian Iwanowski FH Wedel Grundlagen der Programmierung 1. Einführung Grundlegende Eigenschaften von Algorithmen und Programmen

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur, Junktoren: t, f,,,,, Prinzip der strukturellen Induktion über Baumstruktur von Formeln, arithmetischen Ausdrücken usw. induktive

Mehr

Mütze und Handschuhe trägt er nie zusammen. Handschuhe und Schal trägt er immer zugleich. (h s) Modellierung als Klauselmenge

Mütze und Handschuhe trägt er nie zusammen. Handschuhe und Schal trägt er immer zugleich. (h s) Modellierung als Klauselmenge Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik,

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

Modellierungsbeispiel Geräte

Modellierungsbeispiel Geräte Was bisher geschah Modellierung von Aussagen in (klassischer) Aussagenlogik Syntax: Aussagenvariablen sind Atome Junktoren,,,, induktive Definition: Baumstruktur der Formeln strukturelle Induktion äquivalente

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr